Resonant Di-Boson Searches with ATLAS and CMS

DIS 2014
Motivation

- How to look for NP in view of hierarchy problem
 - High mass (~TeV)
 - Not seen in EWK precision tests
 - Coupling to massive SM particles (W,Z,t)

\[X \rightarrow VV \]

- Experimental advantages:
 - W/Z with well known mass → suppress backgrounds
 - Good kinematic reconstruction → reconstruct resonance mass

- Disadvantages:
 - Many different final states → lots of work
 - Resolution suffers in final states with neutrinos
What are we looking for?

Extra Dimensions:
- RS1: traditional benchmark, small BR to VV
- Bulk G: localize SM particles in 5th dim. (bulk)
- Bulk G: large BR to $t\bar{t}$, V_LV_L and HH
- Radion \rightarrow HH

New strong Sector:
- Technicolor
- Little Higgs
- Partial compositeness
- …

More Ideas Welcome
Want to have your model excluded (or found!) ?
Talk to us!
All leptonic final states

- Look for:
 - $Z \rightarrow \text{ee/}\mu\mu,$
 - $Z \rightarrow \nu\nu$
 - $W \rightarrow e\nu/\mu\nu$

- Advantages:
 - Low backgrounds, high purity
 - Kinematic resolution for $ZZ \rightarrow 4l$

- Disadvantages:
 - Low branching fraction
 - Kinematic reconstruction with more than one neutrino
WZ → lllν

- All leptonic final state
 - Only one ν → decent mass resolution
 - very pure
 - Very low BR (~ 1.5%)

- Analysis strategy
 - Select three leptons
 - Compute MWZ from MET and W mass constraint
 - Search for bump in MWZ spectrum
WZ → IIIν limits

- Interpret limits in terms of
 - Sequential SM W'
 - Heavy vector triplet (weakly coupled resonance and composite Higgs)
 - Technicolor

\[\pi_{TC} \text{ and } \rho_{TC} \text{ masses and BR related} \]
WW → 2l2ν

- Compared to WZ:
 - Two ν → poor mass resolution
 - Only two leptons → increased background

- Strategy:
 - Select two leptons (Z veto!)
 - b-veto suppresses top
 - Require MET
 - Study transverse mass of l+l+MET system

- Sensitive to many neutral resonances:
 - RS and bulk Graviton used as benchmark
 - Can be reinterpreted as other narrow resonances
Hadronic Decays

- Look for:
 - Semi-leptonic
 - Fully hadronic

- Advantages:
 - Decent kinematic resolution
 - High branching fractions
 - Access to $H \rightarrow bb$

- Disadvantages:
 - Large backgrounds
 - Somewhat less at very high masses
Reconstruct leptonic Z
- The easy part
- Two leptons, opposite sign, same flavor
- Compatible with Z mass

Reconstruct Hadronic Z
- Tricky: high p_t Z reconstructed as single jet (“merged”)
- Analyze 2 categories → dijet with Z mass → single massive jet

$$\Delta R_{qq} \approx 2 \frac{M_Z}{p_{t,z}}$$
ZZ → 2l2q

- Background estimated from $M_{jj/j}$ sidebands
- Dominant syst. uncertainties come from background estimates
- Two ~independent results for dijet and monojet → joint at point of equal exclusion power
Jet sub-structure

- Recluster jet constituents, applying additional conditions at each recombination

\[
z = \frac{\min(p_{T,i},p_{T,j})}{p_{T,jet}} > 0.1 \quad \Delta R < 0.5 \frac{M_{jet}}{p_{T,jet}}
\]
- Filter out soft and large angle QCD emissions

Mass Drop *(PRL 100 240001)*
- De-cluster jet by stopping jet algo before last iteration
- Two subjets
- Jet is V-tagged if its mass drop \(\mu_D \) < (analysis dependent) cut value

\[
\mu_D = \frac{M_1}{M_{jet}}
\]

N-subjettiness *(JHEP03(2011)015)*
- Topological compatibility with hyp of N subjets
- Recluster jet, halting when N subjets reached
- \(\tau_N \) : \(p_T \)-weighted sum over jet constituents of distances from closest subjet axis

\[
\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \cdot \min(\Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k})
\]

These are NOT THE ONLY POSSIBILITIES! Plenty of alternatives available
check **CMS EXO-13-006**
Control Measurements

- Jet-substructure depends on hadronization models
 - Depends on MC program
 - Decently but not perfectly modeled

- Get Control measurement from data
 - Select semileptonic ttbar events
 - Lepton, MET, bjet
 - Look at opposite hemisphere → high chance for W from t decay
 - Similar to “Tag & Probe” technique

- Extract & Apply correction factors
 - Correct jet mass and cut efficiency
 - Still about 10% uncertainty
 - Application to Z justified by MC
Semileptonic with Substructure

- High p_t lepton reco from Z’ searches
- Standard CMS W reconstruction
- Special treatment for leptons in Z
 - At high boosts, leptons in each others isolation cones \rightarrow subtract!
- Only merged category
 - Using CA8 jets to catch lower p_t W/Z
 - Jet pruning
 - N-subjettiness
- Backgrounds
 - Z+jets for Z channel
 - Also top, WW in W channel
 - Estimate from M_j sideband
Model independent limits

- Nominal Limits in narrow width approximation, restrictive

 Solution:
 - Some simplifications to avoid model dependence
 - Extract resolution function from simulation
 - Parameterize Efficiency as function of V kinematics

- Result:
 - Generic limit as function of M_X, Γ_X
 - Estimate model efficiency from published parameterization
 - Test arbitrary model (including WZ)

Read Limit

Apply efficiency parameterization
VV all hadronic

- No leptons, only jets
 - Reduce large backgrounds with substructure variables
 - Somewhat compensated by large signal branching ratio
 - Trigger thresholds quite high

- Analysis Flow:
 - Select two CA8 jets
 - Apply jet-substructure selection
 - Scan M_{jj}

- Results:
 - Many possible final states implicit (WW/WZ/ZZ) → many possible signals (W', Graviton…)
VV all hadronic

Jet resolution + efficiency depends on V flavor (W vs Z) an polarization

→ need to check different signal hypothesis separately, even if data remains the same
Follow example of Higgs groups to combine many channels

- Improves exclusion power
- Coherent picture over wider mass range
- Ultimately model-specific
HH→4b

- All hadronic
 - Use btags to suppress QCD background
 - M_{jj} to define signal and control regions

- Selection
 - 4 b-jets, $p_t > 40$ GeV, $|\eta| < 2.5$
 - 2 dijets with $\Delta R < 1.5$, $p_{t,dijet} > 200$ GeV
 - Top veto
 - Signal region in M_{jj} of leading vs subleading dijet

[ATLAS-Conf-2014-005]
HH→4b results

- Background
 - Multijet dominates
 - Use fewer btag samples
 - Use M_{jj} control regions

- Systematic uncertainties dominated by b-tagging uncertainties

- Competitive limits on RS Graviton
 - Losing sensitivity to jet merging at high mass
Outlook: We are not done yet

- Subjet b-tag
 - Especially suitable for H
 - Huge reduction in background

- Explore more final states
 - VH of additional interest
 - Currently not all W/Z final states covered
 - Limit by manpower

- Combine different channels
 - More powerful limits
 - Increases model dependence
 - Requires coordination between analysis groups
Conclusion

- Searches for new physics in diboson push to higher masses
 - Low signal cross section \rightarrow hadronic final states gain importance
 - Developing new techniques to deal with high boosts

- No WW/ZZ/WZ resonance seen
 - SM still standing strong
 - Exclusion limits stronger than ever
 - Many final states probed, but some missing

- Expect more results in Run II
 - Greatly increased reach at 13 TeV
 - Jet-substructure will become more important