

Searches for Mono-X at the LHC

2014

A.Cortés-Gonzalez

Institut de Fisica d'Altes Energies, Barcelona

On behalf of the **ATLAS** and **CMS** collaborations May 1, 2014

Outline

- Introduction / Motivation.
- **ATLAS** and **CMS** experiments
- **Searches** (7 and 8 TeV):
 - Mono-jets ?
 - Mono-photons
 - Mono-W/Z
- Conclusions

- Dark Matter
- Large Extra Dimensions.
- Super symmetry.
- Higgs to invisible particles.

interpretations

Motivation Dark Matter

Presence of a **dark matter** component in the universe inferred from the observation of its gravitational interactions.

3.6% INTERGALACTIC GAS 0.4% STARS, ETC. **Rotation of stars** around the center of the galaxies is not consistent with the amount of mass *observed*.

- Collisions of cluster of galaxies.
- ← The bullet cluster.

Gravitational Lensing:

Large distortion of images of distant galaxies due to gravitational lensing (indication of DM in galaxy clusters).

Requirements:

- **Stable.**
- Electrically Neutral.
- Massive & weakly interacting.

Candidates:

- Neutrinos not a good candidate.
- SUSY particles? E.g. Lightest neutralino.
- WIMPs.

At colliders like the LHC, WIMPs can be produced in pairs. Escaping detection

We can tag those events via
the presence of an energetic jet,
a photon or a boson from initial state radiation:

WIMPS

Effective theories of SM interaction with WIMPs.

- Effective Lagrangian approach with parameters M^* and m_{χ} . Assuming interaction is mediated by a heavy particle with mass M and coupling g_1 and g_2 .
- $M^{*2} = \frac{M^2}{g_1 g_2}$

🕏 χ taken as a *Dirac fermion*.

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar{\chi}\chiar{q}q$
D5	qq	vector	$rac{1}{M_\star^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
D8	qq	axial-vector	$rac{1}{M_\star^2}ar{\chi}\gamma^\mu\gamma^5\chiar{q}\gamma_\mu\gamma^5q$
D9	qq	tensor	$rac{1}{M_\star^2}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$
D11	gg	scalar	$rac{1}{4M_\star^3}ar{\chi}\chilpha_s(G_{\mu u}^a)^2$

Different operators, with different structures, are considered.

- Theory only applicable when M is much larger than the energy scale present in the reaction.
- Natural solution to **EFT validity**: **simplified models** (with mediator).
 - Three regimes can be studied: off-shell, resonance, contact interaction.

Motivation

SM is a very successful theory, but...

- Particles in the SM have masses in the EW scale. No new particles between $m_w(~10^2 \text{ GeV})$ and $m_p(~10^8 \text{ GeV})$.
- High levels of fine tuning needed to avoid divergences in Higgs mass corrections.

Corrections can be up to 30 orders of magnitude larger than m_H.

No Dark matter candidate.

SUSY:

- $\begin{array}{c|cccc} \widetilde{\mathbf{u}} & \widetilde{\mathbf{c}} & \widetilde{\mathbf{t}} & \widetilde{\gamma} \\ \widetilde{\mathbf{d}} & \widetilde{\mathbf{s}} & \widetilde{\mathbf{b}} & \widetilde{\mathbf{g}} \\ \widetilde{\mathbf{v}}_{\mathbf{e}} & \widetilde{\mathbf{v}}_{\mu} & \widetilde{\mathbf{v}}_{\tau} & \widetilde{\mathbf{z}} \\ \widetilde{\mathbf{e}} & \widetilde{\mathbf{\mu}} & \widetilde{\mathbf{\tau}} & \widetilde{\mathbf{w}} \\ \end{array}$
- Hierarchy problem? New super-partner loop roughly cancels the SM loop.
- DM? If R-parity is conserved, lightest SUSY particle (LSP) is stable. Good candidate for Dark Matter.

Mono jet/photon signatures:

- Gravitino.
- Stop in compressed scenarios.

Hierarchy problem.

Motivation

Large Extra Dimensions:

Extra spatial dimensions proposed as a way to solve the hierarchy problem.

Explain the apparent weakness of Gravity (relevant scale ~TeV).

ADD (Arkani-Hamed, Dimopoulos, Dvali):

Gravity propagates through

4+n dimensional bulk.

Other **SM fields** confined to the usual 4D.

- $m^{2}_{pl} \sim m^{2+n}_{pl} R^{n}$
- Allows a fundamental Planck scale of the order of EW scale.

Signature of these events:

1 photon/jet + Graviton (missing transverse energy)

LHC Data

- Superb LHC performance in Run I.
 - Rapidly accumulating large data samples!
 - Large Luminosity → Large Pileup

These challenging conditions require a lot of work to achieve great physics performance.

CMS Integrated Luminosity, pp

13-14 TeV collisions coming in 2015!

Monojet searches at 7 TeV

Search for new physics in events with a high-energy jet + large E_T^{miss} .

Main bkg.: W/Z+jets estimated via data-driven methods using dedicated CRs.

7 TeV, 4.7 fb-1

JHEP 04 (2013) 75

Good agreement between observation in data and SM expectation.

7 TeV, 5.0 fb⁻¹
JHEP 09 (2012) 94

 $\label{eq:signal regions: equation} 4 \text{ signal regions:} \\ E_T^{miss}, p_T(j1) > 120, 220, 350, 500 \text{ GeV}$

	SR1	SR2	SR3	SR4
Total Background	124000 ± 4000	8800 ± 400	750 ± 60	83 ± 14
Events in Data (4.7 fb^{-1})	124703	8631	785	77

 $p_T(j1) > 110 \text{ GeV. 4 signal regions:}$ $E_T^{\text{miss}} > 250, 300, 350, 400 \text{ GeV}$

$E_{\rm T}^{\rm miss}$ (GeV/c) \rightarrow	≥ 250	≥ 300	≥ 350	≥ 4 00
Total SM	7842 ± 367	2757 ± 167	1225 ± 101	573 ± 65
Data	7584	2774	1142	522

Limits on WIMP production

ATLAS

JHEP 04 (2013) 75

90% CL limits on the visible cross-sections are translated into limits on \mathbf{M}^* as a function of \mathbf{m}_{χ} (WIMP mass) for different operators.

Thermal relic
Indicates the values for M^* and m_χ leading to the proper
abundance (WMAP).

EFT no longer valid.

WIMP-nucleon cross section

JHEP 04 (2013) 75 JHEP 09 (2012) 94 Different operators contribute either to **spin-dependent** or **spin-independent** WIMP-nucleon cross sections

Under assumption of the validity of the EFT, LHC results are competitive to direct detector experiments (mainly for m, < 10 GeV).

Strong limits in spin-dependent processes. Large sensitivity in case of spin-independent D11 (gg initiated).

Mono-photon searches at 7 TeV

Search for new physics in events with a photon + large E_T^{miss}

Main background: irreducible $W/Z\gamma(\rightarrow vv\gamma)$ and jets/electrons faking photons.

7 TeV, 5.0 fb⁻¹ PRL108, 261803 (2012)

Isolated photon:

$$p_{\text{TT}}(\gamma) > 145 \text{ GeV}, |\eta^{\gamma}| < 1.44$$

 $E_T^{miss} > 130 \text{ GeV}$

Veto on leptons, isolated tracks, jets

7 TeV, 4.6 fb⁻¹ PRL110, 011802 (2013)

Isolated photon:

$$p_{\text{T}}(\gamma) > 150 \text{ GeV}, |\eta^{\gamma}| < 2.37$$

 $E_T^{miss} > 150 \text{ GeV}$

 $N_{\rm jets}(p_{\rm T}>30~{\rm GeV})<2, \Delta\phi(E_{\rm T}^{
m miss},{\rm jets/\gamma})>0.5$

Veto on leptons

Good agreement with SM expectation

Total Background	75.1 ± 9.5
Total Observed Candidates	73

-	Prediction	\pm (stat.)	\pm (syst.)	
Total background	137	± 18	± 9	7
Events in data (4.6 fb^{-1})	116			

WIMP-nucleon cross section

assumption of the validity of the EFT!

Not enough sensitivity yet to exclude/confirm the CoGeNT/ DAMA excess* at $m_{\chi} \sim 10$ GeV in D1/D5 models

*not confirmed by Xenon100 and LUX results

Rather strong limits from LHC:

For m_{χ} < 100 GeV : WIMPS-nucleon cross sections above 3 x10⁻⁴⁰ cm² (10⁻³⁹ cm²) are excluded for spin –dependent (spin-independent) operators .

Monojet searches in CMS

CMS Preliminary

 $L dt = 19.5 fb^{-1}$

s = 8 TeV

 $Z \rightarrow I^{\dagger}I^{\dagger}$

CMS Preliminary

 $L dt = 19.5 fb^{-1}$

s = 8 TeV

8 TeV, 19.5 fb⁻¹

CMS-PAS-EXO-12-048

Following similar strategy as 7 TeV analysis.

■ W→lν

 $Z \rightarrow I^{\dagger}I^{\overline{}}$

Main bkg.: **W/Z+jets** estimated via data-driven methods using dedicated control regions.

CRs: μ+jets, Z(→μμ)+jets

 $E_{\rm T}^{\rm miss}$ (GeV) \rightarrow

Total SM

Data

 $\begin{array}{c} Lepton*\ veto, \Delta \varphi(j_1,j_2) > 2.5, \\ N_{jets}(p_T > 30\ GeV) < 3 \end{array} - \\ \\ \end{array}$

Leading jet $p_T > 110 \text{ GeV}$. $E_T^{\text{miss}} > 250-550 \text{ GeV}$

Monojet searches in ATLAS

8 TeV, 10 fb⁻¹

ATLAS-CONF-2012-147

Main bkg.: **W/Z+jets** estimated via data-driven methods using dedicated control regions.

CRs: W(→e/µv)+jets, Z(→ee/µµ)+jets

Lepton veto, $\Delta \phi(E_T^{miss}, j_2)>0.5$, $N_{jets}(p_T>30 \text{ GeV})<3$

4 signal regions:

Following similar strategy as 7 TeV analysis.

Background Predictions \pm (stat.data) \pm (stat.MC) \pm (syst.)					
_	_ SR1 SR2 SR3 SR4				
Total background	$344400 \pm 900 \pm 2200 \pm 12600$	$25600 \pm 240 \pm 500 \pm 900$	$2180 \pm 70 \pm 120 \pm 100$	$380 \pm 30 \pm 60 \pm 30$	
Data	350932	25515	2353	268	

 E_{T}^{miss} , leading jet $p_{T} > 120$, 220, 350, 500 GeV

Event Displays

Monojet candidate events.

8 TeV, 19.5 fb⁻¹

CMS-PAS-EXO-12-048

8 TeV, 10 fb⁻¹ ATLAS-CONF-2012-147

90% CL Limits on...

Suppression Scale

8 TeV data improves previous limits on $\Lambda(M^*)$ by about 150 GeV.

assumption of the validity of the EFT

WIMP-Nucleon

Excluding, at $m_{\chi} \sim 10 \text{GeV}$:

- Vector operator:
- WIMP-Nucleon $\sigma > 1.2 \times 10^{-39} \text{cm}^2$
- * Axial-vector operator:
- WIMP-Nucleon $\sigma > 4.2 \times 10^{-41} \text{cm}^2$
- Scalar operator:
- WIMP-Nucleon $\sigma > 1.1 \times 10^{-44} \text{cm}^2$

Light Mediators

Exploring the scenario with a vector-like coupling and a light **mediator** with given mass and Γ (width) and different DM masses.

For M > few hundred GeV, we enter in the EFT regime, conservative in the bounds on Λ (though effective couplings become large).

For M < 100 GeV the collider bounds are weakened.

Limits on LED

Mono-jet 8TeV

ATLAS Preliminary

10⁻²

CMS-PAS-EXO-12-048

95% CL on the visible cross-section for the effective ADD theory are translated to limits on M_D for

different number of extra dimensions.

Limits on M_D beyond 5 - 3 TeV

	L	O	NLO		
δ	Exp. Limit	Obs. Limit	Exp. Limit	Obs. Limi	
2	5.12	5.10	5.70	5.67	
3	3.96	3.94	4.31	4.29	
4	3.46	3.44	3.72	3.71	
5	3.11	3.10	3.32	3.31 T	
6	2.95	2.94	3.13	3.12	

The models starts being challenged by the limits, exclusion ~TeV scale.

ATLAS-CONF-2012-147

PRL110, 011802 (2013)

Limits sensitive to the truncation strategy for

 $s-hat > M_D^2$

LHC probing phase space at large Q²

Limits on Gravitino

ATLAS-CONF-2012-147

Gravitino is considered the LSP in gauge-mediated SUSY breaking (GMSB) scenarios.

Results interpreted in terms of GMSB gravitino+squark/gluino production.

Gluinos (squarks) decay to gluon(quark) + gravitino (100%).

95% CL limits on the mass of the GMSB gravitino as a function of the squark or gluino masses.

$$m_{3/2} = \langle F \rangle / \sqrt{3} \bar{M}_{\rm Pl}$$

SUSY Breaking scale Limits on **√F > 640 GeV** (LEP limit at 240 GeV)

Excluding $M_{\rm Gravitino}$ in the range [3x10⁻⁴, 4x10⁻⁹] eV Depending on $m_{\rm squark}$ and $m_{\rm gluino}$.

Limits on Stop production

8 TeV, 20.3 fb⁻¹

ATLAS-CONF-2013-068

$$\Delta m = m_{\tilde{t_1}} - m_{\tilde{v_0}} \le m_b + m_W$$

Signal Region M1

Observed events (20.3 fb⁻¹) 30793

SM prediction

Dedicated analysis targeting compressed scenario.

Main bkg W/Z+jets estimated via data driven methods.

CRs: $W(\rightarrow e/\mu\nu)$ +jets, $Z(\rightarrow \mu\mu)$ +jets.

Mono-W

CMS-PAS-EXO-13-004

Search for mono-W (e/ μ channel), interpreted in terms of **DM-DM + W**.

Considering vector and axial-vector operators and interference between different contributions ($\xi = +1, -1, 0$).

90% CL limits on DM-Nucleon σ

	$\xi = -1$		$\xi = 0$	
M_{χ}	Λ[TeV]	$\sigma_{p\chi}[\mathrm{cm}^2]$	Λ[TeV]	$\sigma_{p\chi}[\mathrm{cm}^2]$
1	1.02	1.3×10^{-40}	0.72	2.3×10^{-40}
10	0.10	4.4×10^{-40}	0.72	7.3 ×10 ⁻⁴⁰
300	0.85	1.0×10^{-39}	0.60	1.7×10^{-39}
1000	0.33	4.4×10^{-38}	0.24	7.6×10^{-38}

cross section enhancement when interference is constructive : ξ = -1

	$\xi = -1$		$\xi = 0$	
M_{χ}	Λ[TeV]	$\sigma_{p\chi}[\mathrm{cm}^2]$	Λ[TeV]	$\sigma_{p\chi}[\mathrm{cm}^2]$
1	0.95	3.5×10^{-41}	0.68	5.5×10^{-40}
10	0.97	1.0×10^{-40}	0.68	1.7×10^{-39}
300	0.86	1.9×10^{-40}	0.60	3.2×10^{-39}
1000	0.44	3.0×10^{-39}	0.31	4.6×10^{-38}

Mono-Z

8 TeV, 19.5 fb⁻¹

CMS-PAS-HIG-13-018

Mono-Z(\rightarrow11): Search for 2 leptons + $\mathbb{E}_{\mathbb{T}}^{\text{miss}}$

BR (H \rightarrow invisible) < 75% at 95% CL for m_H = 125 GeV

Ratio to SM σ_{ZH} < 1.82 at 95% CL for m_{H} = 125 GeV

8 TeV, 18.9 fb⁻¹

CMS-PAS-HIG-13-028

 E_{T}^{miss} : (100-130,130-170,>170) $Ge^{\bar{\Psi}}$ Two b-jets p_{T} > 25 GeV

 $\Delta \phi_{\min} \left(\mathbf{E}_{\mathrm{T}}^{\min}, \mathbf{P}_{\mathrm{T}}^{\min} \right) > 0.7 - 0.5$

 $\Delta \phi_{\min}(E_{T}^{\text{miss}}, \text{jet}) > 0.5$

Lepton vetoes

Fit to BDT to extract the $H\rightarrow$ inv signal.

Mono-Z(\rightarrow bb): Very similar to CMS ZH(H \rightarrow bb) SM analysis.

Mono-W/Z

8 TeV, 20 fb⁻¹

PRL 112.041802

Search based on the hadronic decay products of W/Z.

Decays reconstructed as a single massive jet:

- **CA** R=1.2 jets.
- $\red{:}$ Jet $p_T^{}$ > 250 GeV, $|\eta|$ < 2.1, 50 < $M_{
 m iet}$ < 120 GeV .
- No additional jet (anti- k_T 0.4) with $p_T > 40$ GeV.

Limits in terms of **DM-nucleon** scattering cross section.

Process	$E_{\rm T}^{\rm miss} > 350~{\rm GeV}$	$E_{\rm T}^{\rm miss} > 500~{ m GeV}$
Total	710+48	89+9
Data	705	89

Mono-W/Z

8 TeV, 20 fb⁻¹

PRL 112.041802

Mono-W/Z

Limits in terms of **VH(H→invisible)** process.

 $\sigma(VH, H\rightarrow invisible) /$ $\sigma(VH)_{SM} \rightarrow 1.6 @ m_H = 125$ GeV

7+8 TeV, 4.7+13 fb⁻¹

arXiv:1402.3244

Mono-Z(→11):

Search for 2 leptons + E_{π}^{miss}

BR (H \rightarrow invisible) < 65% at 95% CL for m_{H} = 125 GeV

Mono-top

8 TeV,19.7 fb⁻¹ CMS-PAS-B2G-12-022

data/MC

Search for mono-top final states. Single top quark + large E_T^{miss} . Two SRs: 0 and 1 b-tagged jets.

# of b tags	Zero CSVm b tag	One CSVm b tag
sum	140±36	28±16
Data	143	30

Conclusions

- More than 25 fb⁻¹ of LHC data (7 TeV + 8 TeV) analyzed by ATLAS and CMS experiments.
 - Very successful Run I program.
- **Mono-X** final states are very **sensitive** in several searches for physics beyond the SM.
 - DM, Large Extra Dimensions, SUSY, Higgs...
- As of now, **no significant excess** wrt SM expectations has been observed.
 - Improvement on limits on LED ADD model.
 - Limits on M* and WIMP-nucleon scattering cross section.
 - Within EFT framework: LHC DM searches competitive for low WIMP masses.
 - **Validity of EFT approach**, use of **simplified models**, etc. undergoing.
 - Limits on Gravitino mass, stop pair production.
- Stay tuned for 13-14 TeV data next year!

Bonus Slides

LHC Data

- Superb LHC performance in Run I.
 - Rapidly accumulating large data samples!

Large luminosity \rightarrow Large pileup.

These challenging conditions require a lot of work to achieve **great physics performance**.

ATLAS 2012 $Z \rightarrow \mu\mu$ event with high pileup (25 reco vtx).

CMS Integrated Luminosity, pp

13-14 TeV collisions coming in 2015!

ATLAS and CMS Experiments

	AILAS	CIVIS
Inner tracker : η coverage	2.5	2.5
$\sigma(P_T)/P_T$ at P_T =100 GeV	3.8%	1.5%
EM calorimeter: η coverage	3.2	3.0
σ(E)/ E	10%/√E+0.7%	3%/√E+0.5%
HAD calorimeter: η coverage	4.9	5.2
σ (E)/E (EM+HAD combined)	50%/√E+3%	85%/√E+7%
Muon system: η coverage	2.7	2.4

 $\sigma(P_T)/P_T$ at P_T =1 TeV (standalone) 12% ($|\eta|$ <1.5) 15-40% (depend

1 TeV (standalone) 12% ($|\eta|$ <1.5) 15-40% (depend on η range) Both detectors had **excellent** performance in Run I.

More than 90% of the delivered data used for physics...

ATLAS

WIMP-nucleon cross section

JHEP 04 (2013) 75 JHEP 09 (2012) 94 Different operators contribute either to **spin-dependent** or **spin-independent** WIMP-nucleon cross sections

Under assumption of the validity of the EFT, LHC results are competitive to direct detector experiments (mainly for m, < 10 GeV).

Strong limits in spin-dependent processes. Large sensitivity in case of spin-independent D11 (gg initiated).

Light Mediators

Exploring the scenario with a vector-like coupling and a light **mediator** with given mass and Γ (width) and different DM masses.

For M < 100 GeV the collider bounds are weakened.

For M > few hundred GeV, we enter in the EFT regime, conservative in the bounds on Λ (though effective couplings become large).

P.J. Fox et al., PhysRevD.85.056011 (based on ATLAS 7 TeV monojet data)

Monojet searches in ATLAS

7 TeV, 4.7 fb⁻¹

JHEP 04 (2013) 75

Search for new physics in events with a high-energy jet + large missing transverse momentum.

$$\begin{split} \text{Lepton veto, } \Delta \varphi(E_T^{\text{miss}}, j_2) > &0.5, \\ N_{\text{jets}}(p_T > &30 \text{ GeV}) < &3 \end{split}$$

4 signal regions: E_T^{miss} , leading jet $p_T > 120$, 220, 350, 500 GeV

E _T [Gev]				E _T [Ge
	SR1	SR2	SR3	SR4
Total Background	124000 ± 4000	8800 ± 400	750 ± 60	83 ± 14
Events in Data (4.7 fb^{-1})	124703	8631	785	77

Main systematic uncert. W/Z MC modeling $\sim 3\%$ JES/JER/ $E_T^{miss} \sim 1-6\%$ Stats. of CR (higher E_T^{miss} cuts).

Good agreement between observation in data and SM expectation.

Monojet searches in CMS

7 TeV, 5.0 fb⁻¹

JHEP 09 (2012) 94

Main bkg.: **W/Z+jets** estimated via data-driven methods using dedicated control regions.

CRs: μ +jets, $Z(\rightarrow \mu\mu)$ +jets

Search for new physics in events with a high-energy jet + large missing transverse momentum.

Lepton* veto, $\Delta \phi(j_1, j_2) > 2.5$, $N_{\text{jets}}(p_T > 30 \text{ GeV}) < 3$

Data

10³

CMS

10⁶

VS = 7 TeV

10⁵

L dt = 5.0 fb¹

CCD

Data

DMA = 599 GeV, m = 1 GeV

10²

10²

10²

10²

10²

10²

10²

10³

REPROVED THE PROVIDED THE PROVIDE THE PROVIDED THE PROVIDED THE PROVIDED THE PROVIDED THE PROVIDE

Leading jet $p_T > 110$ GeV. 4 signal regions: $E_T^{miss} > 250, 300, 350, 400$ GeV

Main systematic uncert. Statistical uncert. in CRs, PDF uncertainties.

Good agreement between observation in data and SM expectation.