Leading track and leading jet cross-sections at small p_T

A. Knutsson (Universiteit Antwerpen) on behalf of CMS Collaboration

DIS2014, Warsaw, 28 April – 2 May 2013

- Introduction
- Data and selections
- Results
- Summary

Analyses motivated by:

Jet production and the inelastic *pp* cross section at the LHC

A. Grebenyuk^a, F. Hautmann^b, H. Jung^{a,c}, P. Katsas^a and A. Knutsson^a

Abstract

We suggest that, if current measurements of inclusive jet production for central rapidities at the LHC are extended to lower transverse momenta, one could define a visible cross section sensitive to the unitarity bound set by the recent determination of the inelastic proton-proton cross section.

arXiv:1209.6265v1 [hep-ph] 27 Sept 2012

Phys.Rev. D86 (2012) 117501

Total cross-section for 2→2 process given by

$$\sigma(p_{T min}) = \int_{p_{T min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2 \sigma}{dp_T^2 dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- At LHC this happens around ~5 GeV at LHC.

Total cross-section for 2→2 process given by

$$\sigma(p_{T min}) = \int_{p_{T min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2 \sigma}{dp_T^2 dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \to 2 cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the $2\rightarrow2$ cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma \to \sigma imes rac{lpha_s(p_t + p_{t0})}{lpha_s(p_t)} rac{p_t^4}{(p_t^2 + p_{t0}^2)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Total}$$

Total cross-section for 2→2 process given by

$$\sigma(p_{T min}) = \int_{p_{T min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2 \sigma}{dp_T^2 dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total $2\rightarrow 2$ cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the 2→2 cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma o \sigma imes rac{lpha_s(p_t + p_{t0})}{lpha_s(p_t)} rac{p_t^4}{(p_t^2 + p_{t0}^2)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Total}$$

Can be studied in a range accessible by the experiments.

Tracks vs Jets

Measurement possible to do with tracks and track jets.

Leading charged particle jets

- Different shapes of the cross-sections. The jet events are shifted towards higher values. More than just the leading particle clustered in the jet. UE important for the jets.
- When radius parameter in the jet algorithm is decreased the shape of the jet cross-section approaches the leading track cross-section.

The Measurement

CMS and T2 Detectors

Data and selections

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with p > 40 MeV in 5.3 < $|\eta|$ < 6.5
- Track selection:

$$|\eta| < 2.4, p_t > 0.4 \text{ GeV}$$

→ Measurement of the **normalized integrated** *leading track* cross-section.

Data and selections

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with p, > 40 MeV in $5.3 < |\eta| < 6.5$
- Track selection:

$$|\eta| < 2.4, p_{_{t}} > 0.4 \text{ GeV}$$

- → Measurement of the **normalized integrated** *leading track* cross-section.
- Track-jets:

Anti- k_{t} algorithm. R = 0.5.

Input: Tracks with $|\eta|$ < 2.4 and p₊ > 0.4 GeV.

Jet selection: The leading jet in $|\eta|$ < 1.9 with p_t > 1 GeV.

- → Measurement of the **normalized integrated** *leading track-jet* cross-section.
- Measurement corrected to stable particle level defined by cuts corresponding to above.

Data and selections

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with p, > 40 MeV in $5.3 < |\eta| < 6.5$
- Track selection:

$$|\eta| < 2.4, p_{t} > 0.4 \text{ GeV}$$

- → Measurement of the **normalized integrated** *leading track* cross-section.
- Track-jets:

Anti- k_{t} algorithm. R = 0.5.

Input: Tracks with $|\eta|$ < 2.4 and p₊ > 0.4 GeV.

Jet selection: The leading jet in $|\eta|$ < 1.9 with p_t > 1 GeV.

→ Measurement of the normalized integrated leading track-jet cross-section.

Measurement

• Normalized integrated charged-particle or charged particle jet event cross-section as a function of $p_{T,min}$ for events with a leading charged particle (jet) with $p_T > p_{T,min}$.

$$D(p_{\text{T,min}}) = \frac{1}{N_{\text{events}}} \sum_{p_{\text{T,leading}} > p_{\text{T,min}}} \Delta p_{\text{T, leading}} \left(\frac{dN_{\text{ch}}}{dp_{\text{T,leading}}} \right)$$

• Measurement to normalized to events (N $_{\rm events}$) with a leading charged particle with $|\eta| < 2.4$ and $p_T > 0.4$ GeV

Results

Normalized Leading Charged Particle Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_{_{T}} > p_{_{T,min}}$ as a function $p_{_{T,min}}$.

- Normalized event cross-sections.
 - → No sensitivity to particle multiplicities in events.
 - \rightarrow Distribution converges to one by construction. Looking for effects at low p_{τ} - MC scaled to data at $p_{\tau,min}$ = 9 GeV.
- Large difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data.
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

Normalized Leading Charged Particle Jet Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_{T} > p_{T,min}$ as a function $p_{T,min}$.

- Normalized event cross-sections.
 - → No sensitivity to jet multiplicities in events.
 - \rightarrow Distribution converges to one by construction. Looking for effects at low p_{τ} - MC scaled to data at $p_{\tau,min}$ = 14 GeV.
- Larger difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data.
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

Comparison Track vs Jet measurement

Leading charged particles

 Different shapes for leading jets and leading charged particles.

- More activity than just the leading track clustered in the jet. Thus, UE important for the jets.
 - → The p_t is shifted towards higher value in jets compared to leading charged particles.
 - → Larger spread between different MC predictions in the jet measurement.
 - → Larger deviation between MC and data for the jets compared to the charged particles.
 - → MC somewhat better description of the charge particle measurement.

Leading charged particle jets

Summary

- Normalized integrated event cross-sections has been measured for Leading charged particles with p_T > 0.8 GeV in |η| < 2.4 Leading charged particle jets with p_T > 1 GeV in |η| < 1.9
- The integrated distributions probe the transition from the pertubative to the non-pertubative regions, and are sensitive to the "taming of the cross-section".
- Difference between the charge particle and the charge particle jet measurement. Jets larger sensitivity to MPI and UE.
- The measurements are in general not well describe by the models. Only EPOS provides a decent description of the data.

BACKUP

Sensitivity to saturation

- Tame the divergence by using saturated PDFs.
- CASCADE. KT-factorization based MC generator.

Low-pT behavior from:

- ME dependence (low-p $_{\scriptscriptstyle T}$ rise from k $_{\scriptscriptstyle T}$ << p $_{\scriptscriptstyle T}$, slower rise for k $_{\scriptscriptstyle T}$)
- unintegrated PDF $f(x,k_{_{\!\scriptscriptstyle T}},\!\mu)$ suppression of uPDF at low $k_{_{\!\scriptscriptstyle T}}$

Modification of uPDF such that it goes to 0 for $kT \rightarrow 0$.

Cross-section of jets with $p_{T} > 4$ GeV $|\eta| < 1.9$

MC area normalised to data.

-->

Data well described at low pt. MC fails at high pt.