# Probing Sea Quark and Gluon Polarization at STAR Justin Stevens (STAR Collaboration) DIS 2014

## Proton Spin Puzzle

#### **DSSV Global Analysis**





Integral of quark polarization is well measured in DIS to be ~30%, some info on decomposition from SIDIS but sea not well constrained

$$\Delta G = \int \Delta g(x) \, dx$$

Indirectly constrained by DIS and a primary focus of the RHIC spin program



# Flavor Asymmetry of the Sea

#### **Unpolarized Flavor Asymmetry:**

- Quantitative calculation of Pauli blocking does not explain d/u ratio
- \* Non-perturbative processes may be needed in generating the sea
- \* E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.



# Flavor Asymmetry of the Sea

#### **Unpolarized Flavor Asymmetry:**

- Quantitative calculation of Pauli blocking does not explain d/u ratio
- \* Non-perturbative processes may be needed in generating the sea
- \* E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.





#### **Polarized Flavor Asymmetry:**

- Valence u and d distributions are well determined from DIS
- Polarized flavor asymmetry x(Δū Δd̄)
   could help differentiate models
- SIDIS results depend on FFs





- \* For most of the RHIC kinematics, qg and gg dominate, making A<sub>LL</sub> for inclusive probes (jets, π<sup>0</sup>s, etc) sensitive to gluon polarization
- \* Jet cross sections at RHIC well described by NLO pQCD calculations

#### STAR Inclusive Jet ALL



\* Statistics from 2009 sufficient to bin in η

- Inclusive jet ALL falls between DSSV and GRSV-STD
- \* What have we learned about  $\Delta g(x)$ ?



- DSSV has a new, global analysis which includes 2009 PHENIX and STAR ALL data
- First experimental evidence of non-zero gluon polarization in the RHIC range (0.05 < x < 0.2)</p>
- Consistent with results from NNPDF group (see talk by E. Nocera this afternoon)

## Inclusive jet projections



- Significant improvement in statistical precision with data collected in 2011-2013 and expected in 2015
- \* Expect to reduce uncertainties on  $\Delta g$  by a factor of  $\sim 2$

## Gluon polarization: low-x<sub>g</sub>

- Higher  $\sqrt{s}$  and forward rapidities probe the low-x<sub>g</sub> region
- Correlated probes are sensitive to the x dependence of  $\Delta g$ \*
- 2011-2013 collected large dataset at  $\sqrt{s}$  = 500 GeV \*





# Probing sea quark polarization through W production







$$u + \bar{d} \to W^+ \to e^+ + \nu$$
  
 $d + \bar{u} \to W^- \to e^- + \bar{\nu}$ 

- Ws couple directly to the quarks and antiquarks of interest
- Detect Ws through e+/e- decay channels
- V-A coupling of the weak interaction
   leads to perfect spin separation

Measure parity-violating single-spin asymmetry:  $A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$ (Helicity flip in one beam while averaging over the other)

$$A_L^{W-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

$$A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

## What do W decays look like?



#### $W \rightarrow e + v \text{ Candidate Event}$

- Isolated track pointed to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

# What do W decays look like?



#### **Di-jet Background Event**

- Several tracks pointing to EM energy deposit in several towers
- Vector p<sub>T</sub> sum is balanced by opposite jet, "missing energy" is small

#### $W \rightarrow e + v$ Candidate Event

- Isolated track pointed to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate



# Mid-rapidity background estimation



#### W Signal

# "Jacobian Peak"

#### Electroweak

- $\ast$  Z → ee MC
- \*  $W \rightarrow \tau v MC$

#### **QCD Background**

- Second EEMC
- \* Data-driven QCD

**DIS 2014** 

# STAR W $A_L(\eta)$



- \* A<sub>L</sub>(W+) is consistent
   with the theoretical
   predictions constrained
   by polarized SIDIS data
- \*  $A_L(W-)$  is larger than the predictions for  $\eta_e < 0$ , which is particularly sensitive to  $\Delta \overline{u}$
- What have we learned about sea quark polarization?

STAR W  $A_{L}(\eta)$ 



- \* A<sub>L</sub>(W+) is consistent
   with the theoretical
   predictions constrained
   by polarized SIDIS data
- \*  $A_L(W-)$  is larger than the predictions for  $\eta_e < 0$ , which is particularly sensitive to  $\Delta \overline{u}$
- What have we learned about sea quark polarization?



## Sea quark polarization in global fits



SSV++ is a new, preliminary global analysis from the DSSV group which includes 2012 STAR W AL

Higher precision data already collected in 2013 will further improve the constraints on the sea quark polarization



## Sea quark polarization in global fits



**DSSV++** is a new, preliminary global analysis from the DSSV group which includes 2012 STAR W AL

Higher precision data already collected in 2013 will further improve the constraints on the sea quark polarization



Justin Stevens,

20

## Sea quark polarization



- \* Lots of recent progress!
- Preliminary STAR data included in fits by **DSSV** and **NNPDF** (talk by E. Nocera)
- \* Even first attempts to calculate flavor asymmetry in lattice QCD





\* Probes different combination of quark polarizations

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \qquad A_{LL}^{W+} \sim \frac{\Delta u}{u} \frac{\Delta \bar{d}}{\bar{d}} \qquad A_{LL}^{W-} \sim \frac{\Delta d}{d} \frac{\Delta \bar{u}}{\bar{u}}$$

\* Asymmetries expected to be smaller, and first measurement consistent with predictions from DSSV

STAR Z AL



 $Z \rightarrow e^+e^-$  Candidate



Reconstruct initial state kinematics at leading order:

$$x_{1(2)} = \frac{M_{ee}}{\sqrt{s}} e^{\pm y_Z}$$





- \* Inclusive jet results provide evidence for a non-zero  $\Delta g$  in the x range probed at RHIC
- \* New constraints on light quark sea polarization from W data, preferring a positive  $\Delta \bar{u}$
- Higher precision data being analyzed now from Run 13

# Backup

## Parity-Violating Asymmetry: AL

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

Proton helicity ="--"

 $u\bar{(}x_1)$ 

 $\overline{d}(x_2)$ 

 $\overline{d}(x_1)$ 

 $u(x_2)$ 

 $W^{+}$ wiw

 $W^{+}$ wiiw

- V-A coupling of the weak interaction \* leads to perfect spin separation
- Only LH quarks and RH anti-quarks \*

$$A_L^{W+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)}$$

Proton helicity ="+"  

$$d_{t}^{\dagger}(x_{1})$$
  
 $u(x_{2})$   
Proton helicity ="-"  
 $d_{t}^{\dagger}(x_{1})$   
 $u(x_{2})$   
Proton helicity ="-"  
 $d_{t}^{\dagger}(x_{1})$   
 $u(x_{2})$ 

Proton helicity ="+"

 $u_{+}(x_1)$ 

 $d(x_2)$ 

××××

$$A_L^{W+} \propto \frac{\bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2)}{\bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2)} = \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}$$

$$A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

#### Expectations for WAL

$$A_L^{W-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)} \qquad A_L^{W+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$



\* DSSV  $\Delta \chi^2 = 1$  band underestimates the theoretical uncertainty (and Lagrange multiplier estimates for a  $\Delta \chi^2 / \chi^2 =$ 2% error are in progress)



- Large parity-violating asymmetries expected
- Simplified interpretation at forward and backward rapidity

![](_page_26_Figure_7.jpeg)

## Previous STAR Measurements

![](_page_27_Figure_1.jpeg)

 2009 was a very successful first 500 GeV physics run
 Increase in FOM = P<sup>2</sup>L of an order of magnitude!

![](_page_27_Figure_3.jpeg)

#### How do we find Ws?

- Match p<sub>T</sub> > 10 GeV track to BEMC cluster
- Isolation Ratios
- P<sub>T</sub>-balance

$$\vec{p_T}^{bal} = \vec{p_T}^e + \sum_{\Delta R > 0.7} \vec{p_T}^{jets}$$

$$P_T$$
-balance  $\cos(\phi) = \frac{\vec{p}_T^{\ e} \cdot \vec{p}_T^{\ bal}}{|\vec{p}_T^{\ e}|}$ 

![](_page_28_Figure_6.jpeg)

![](_page_28_Figure_7.jpeg)

#### Forward rapidity

![](_page_29_Figure_1.jpeg)

#### p+p 500 vs 510

\* Expect negligible difference in  $A_{L}$  from change in  $\sqrt{s}$ 

\* CHE (NLO) curves with DSSV confirm this expectation

![](_page_30_Figure_3.jpeg)