Measurements of the 7 and 8 TeV cross sections for $Z \rightarrow 4I$ in pp collisions with ATLAS and CMS

Bing Zhou

The University of Michigan

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects 4/28-5/2 2014, Warsaw, Poland

Introduction

- ✤ The Z→4ℓ production was first observed at the LHC by both ATLAS and CMS experiments along with the Higgs boson discovery in the 4ℓ decay channel
- Cross section measurement of the $Z \rightarrow 4\ell$ production provides
 - > A SM test for a rare decay process (measurements of $\sigma(4\ell)$ and BR(Z $\rightarrow 4\ell$))
 - > A complementary test of the detector response for $H \rightarrow 4\ell$ detection

References:

- ATLAS: arXiv:1403.5657 [hep-ex]; ATLAS-CONF-2013-055
- CMS: JHEP 12 (2012) 034, arXiv:1210.3844 [hep-ex]; CMS PAS SMP-12-009

4^{*l*} Production at Z Resonance

*****Four lepton final states: 4e, 4μ and $2e2\mu$

* Resonant 4/ production via an s-channel

- -- $Z \rightarrow \ell^+ \ell^-$ include an additional $\ell^+ \ell^-$ from internal conversion of Z^* / γ^*
- -- s-channel is dominant (>96% for 80< m_{4ℓ} < 100 GeV, m_{2ℓ}>5 GeV)

q \bar{q} \bar{q} \bar{q} $Z^{0/\gamma^{*}}$ $Z^{0/\gamma^{*}}$ ℓ^{+}

Non-resonant 4^l production

- via t-channel: $qq \rightarrow Z^*/\gamma^* + Z^*/\gamma^* \rightarrow 4\ell$ including the Z production with ISR internal conversion (< 4% 4 ℓ event rate at the Z resonance)
- via gg \rightarrow ZZ \rightarrow 4 ℓ (~0.1% 4 ℓ event rate at the Z resonance)

4^ℓ Production Modeling

 $qq \rightarrow Z/Z^*Z^* \rightarrow 4\ell$ modeled by Powheg MC for

- Cross section calculations (NLO QCD)
- Event generations (interfaced to PYTHIA)

gg \rightarrow ZZ \rightarrow 4 ℓ modeled by GG2ZZ MC for

- Cross section calculations (LO QCD)
- Event generations (interfaced to Herwig/Jimmy) MCFM MC used to cross check cross sections

CalcHEP MC (LO QCD) used to calculate the magnitude of interference between the s-channel and the tchannel 4*ℓ* production processes

~0.2% in the 4ℓ phase space

80< m₄₁ < 100 GeV, m₂₁>5 GeV

• treat it as systematic uncertainty when determine the $Z \rightarrow 4I$ branching fraction

$Z \rightarrow 4I Is A Rare Decay$

• No measurement before the LHC

 NLO Calculation by Powheg MC (PDF: CT10, Scales: m₄) in a phase space: 80 < m₄ < 100 GeV and m_{ℓ+ℓ-} > 5 GeV

Expected quantity	7 TeV	8 TeV
Total inclusive cross-section of $pp \rightarrow Z$	26.0 ± 0.6 nb	30.3 ± 0.8 nb
Total cross-section of $pp \rightarrow Z/ZZ^* \rightarrow 4\ell(e,\mu)$ Cross-section of $pp \rightarrow Z/ZZ^* \rightarrow 4e, 4\mu$ Cross-section of $pp \rightarrow Z/ZZ^* \rightarrow 2e2\mu$	89.97 ± 2.06 fb 45.78 ± 1.10 fb 44.19 ± 1.04 fb	104.84 ± 2.50 fb 53.35 ± 1.24 fb 51.49 ± 1.26 fb
Total <i>t</i> -ch. cross-section of $pp \rightarrow ZZ^* \rightarrow 4\ell(e,\mu)$) <i>t</i> -ch. cross-section of $pp \rightarrow ZZ^* \rightarrow 4e, 4\mu$ <i>t</i> -ch. cross-section of $pp \rightarrow ZZ^* \rightarrow 2e2\mu$	3.28 ± 0.08 fb 1.55 ± 0.04 fb 1.73 ± 0.04 fb	3.80 ± 0.09 fb 1.79 ± 0.04 fb 2.01 ± 0.05 fb
Branching ratio of $Z \rightarrow 4\ell(e,\mu)$	(3.33 ± 0.133)	$(01) \times 10^{-6}$

 For a larger phase space 80 < m_{4l} < 100 GeV, m_{l+l-} > 4 GeV, the inclusive 4l cross section is 35% higher

Measurement Approaches

• ATLAS (with data collected at 7 and 8 TeV)

- Measure *inclusive 4* production cross-section at the Z resonance, i.e. the non-resonance 4I events are treated as *signal* → cross section measurement will be less depending on theory interpretation; measured both *fiducial* and *final phase space* cross sections.
- In determination of $Z \rightarrow 4\ell$ decay branching fraction, the non-resonance 4l contribution is subtracted and the resonance 4l event yield is normalized by the $Z \rightarrow \mu\mu$ with the same dataset

• CMS (with data collected at 7 TeV)

- Measure the resonance $Z \rightarrow 4\ell$ production cross section, and treat the tchannel 4ℓ events as background
- Using the $Z \rightarrow \mu\mu$ events to normalize the $Z \rightarrow 4\ell$ events to determine the BR($Z \rightarrow 4I$)
- Phase space for measurements
 - **ATLAS:** $80 < m_{41} < 100 \text{ GeV}$ and $m_{\ell+\ell-} > 5 \text{ GeV}$;

also measured BR in a larger phase space: $m_{\ell+\ell-} > 4 \text{ GeV}$

- **CMS:** $80 < m_{41} < 100 \text{ GeV}, m_{\ell} > 4 \text{ GeV}$ (for any pairs of leptons)

Data Sets for $Z \rightarrow 4I$ Analysis

ATLAS

- 4.6 fb⁻¹ at 7 TeV (collected in 2011);
- -20.3 fb⁻¹ at 8 TeV (collected in 2012)
- In detection fiducial volume, trigger efficiencies for 4*l* event detection: 95 99% (2011); 94 98% (2012)

CMS

- 5.0 fb⁻¹ at 7 TeV (collected in 2010 and 2011)
- In detection fiducial volume, trigger efficiencies:
 96 99%

Experimental Challenge to Detect $Z \rightarrow 4\ell$

- The Z→4ℓ process is dominant by low mass m₃₄ and low pT leptons (the pT-ordered 4th leptons)
- Need to detect low pT leptons

ATLAS $Z \rightarrow 4\ell$ selection:

e : $p_T > 20$, 15, 10, 7 GeV, $|\eta| < 2.5$ μ : $p_T > 20$, 15, 8, 4 GeV, $|\eta| < 2.7$ $m_{12} (\ell^+ \ell^-) > 20$ GeV, $m_{34} (\ell^+ \ell^-) > 5$ GeV

80 GeV < m_{4l} < 100 GeV

CMS $Z \rightarrow 4\ell$ selection:

e:
$$p_T > 20, 10, 7, 7 \text{ GeV}, |\eta| < 2.5$$

 $\mu : p_T > 20, 10, 5, 5 \text{ GeV}, |\eta| < 2.4$
 $m_{\ell\ell} > 4 \text{ GeV}$
 $80 \text{ GeV} < m_{4l} < 100 \text{ GeV}$

Event Display of Z \rightarrow **4** μ

Figure 5: Event display of a typical event from the peak at the Z boson mass.

CMS Run: 180076 Event : 456795917

pT₁ : 43.76 GeV pT₂ : 24.20 GeV pT₃ : 10.51 GeV pT₄ : 7.39 GeV

 M_{Z1} : 62.58 GeV M_{Z2} : 17.27 GeV M_{4L} : (91.30 \pm 0.61) GeV

Min(mass2l) : 12.22 GeV Max(mass2l) : 62.58 GeV

Muon Momentum Scale and Resolution

ATLAS

Muon energy scale and resolution corrections and systematic uncertainties determined from large Z, J/ ψ and Y samples

 \Box Resolution correction (0.2-1.3%), scale correction (< 0.1%)

- □ Independent measurements from Muon Spectrometer and inner tracker
- \square Probe global and local scale biases, overall uncertainty on 4µ scale 0.2%
- □ Calibration using Z→ 4μ mass peak (with $m_{2l} > 1$ GeV)

EM Calorimeter Calibration

□ In-situ energy calibration results and their stability checked with different methods (E/P with W→ ev, Z→ee, and J/ ψ → ee)

□ Uncertainty on the diphoton mass scale 0.6%, largely contributions

- > Material effects (separately for volumes for $|\eta| < 1.8$, and $|\eta| > 1.8$)
- Uncertainty on the in-situ calibration method

Stability of EM calorimeter response vs time/pile-up better than 0.1%

Acceptance A_{4I}, Correction Factor C_{4I}, σ^{fid} and σ^{total}

Fiducial volume definition

ATLAS

$$\begin{split} p_T^{\ell_1} &> \text{20 GeV}; p_T^{\ell_2} > \text{15 GeV}; \\ p_T^{\ell_3} &> \text{10 GeV (if electron), } > 8 \text{ GeV (if muon);} \\ p_T^{\ell_4} > 7 \text{ GeV (if electron), } > 4 \text{ GeV (if muon);} \\ |\eta^{\mu}| &< \text{2.7 for all muons; } |\eta^{e}| < \text{2.5 for all electrons;} \\ \Delta R(\ell, \ell') > \text{0.1 for all same flavor parings and } > \text{0.2 for different flavor pairings;} \\ M_{\ell+\ell} - &> \text{20 GeV for at least one SFOS lepton pair;} \\ M_{\ell+\ell} - &> \text{5 GeV for all SFOS lepton pair;} \\ \text{80} &< M_{4\ell} < \text{100 GeV.} \end{split}$$

Acceptance factors:

 $C_{41} = N_{41}$ (pass full selection)/ N_{41} (in F. V.)

 $A_{41} = N_{41}$ (in F.V.)/ N_{41} (in P.S.)

$$\sigma_{Z \to 4\ell}^{\text{fiducial}} = \frac{N_{obs} - N_{bkg}}{\mathcal{L}C_{Z \to 4\ell}}$$
$$\sigma_{Z \to 4\ell}^{total} = \frac{\sigma_{Z \to 4\ell}^{fiducial}}{A_{Z \to 4\ell}}$$

Signal Acceptance A₄₁ and C₄₁ ATLAS

The acceptance and correction factors are determined by using Powheg MC signal samples

7 TeV	eeee	ее µµ	μμ ee	μμμμ
A _{4I}	7.47%	15.83%	8.79%	18.26%
C _{4I}	21.5%	49.0%	36.3%	59.2%
8 TeV				
A _{4I}	7.30%	14.8%	7.91%	17.79%
C _{4I}	36.06%	55.54%	46.24%	71.13%

> The uncertainties on A_{41} are theoretical due to scales and PDF (1.3 - 1.7%)

The uncertainties on C₄₁ are mainly experimental: lepton reconstruction and identification efficiencies and energy/momentum scales and resolution; ΔC₄₁/C₄₁: 2.7%, 3.7%, 6.2% and 9.4% for 4m, eeµµ, µµee and 4e channel, respectively (at 8 TeV).

Larger C₄₁ values at 8 TeV due to lepton recon. And ID improvements

Currently statistical uncertainties are larger than the systematic uncertainties

Data Driven Top and Z+jet Background Estimation ATLAS

 Select the *u*+j_{*j*,} background control samples, where j<sub>*j*, are two lepton-like jets (selected with invert lepton selection cuts)
</sub>

- MC background control samples indicate the jet compositions
- Each event in the control samples is scaled by a fake-factor product f₁xf₂ to estimate the background in the signal region
- **f** is determined using jet enriched ttbar and Z+jet samples

Determination of Fake-Factor f

ATLAS

 $f = N_i$ (pass full lepton selection) / N_i (fail full lepton selection)

Summary of Estimated Background

ATLAS

Dibosons (including τ final states and gg production) estimated with MC, $t\bar{t}$ and Z + X estimated with data and fake factor as before.

Year	Channel	diboson from MC	Z+jet and <i>tt</i> from data-driven	total
2011	4e 2e2μ 2μ2e 4μ	0.010 ± 0.002 0.024 ± 0.002 0.015 ± 0.002 0.038 ± 0.003	0.11 ± 0.05 0.16 ± 0.09 0.06 ± 0.03 0.05 ± 0.04	0.12 ± 0.04 0.18 ± 0.09 0.08 ± 0.04 0.09 ± 0.04
2012	4e 2e2μ 2μ2e 4μ	0.064 ± 0.009 0.156 ± 0.019 0.132 ± 0.017 0.301 ± 0.026	$\begin{array}{c} 0.10 \pm 0.01 \\ 0.20 \pm 0.05 \\ 0.08 \pm 0.02 \\ 0.11 \pm 0.05 \end{array}$	0.16 ± 0.03 0.36 ± 0.05 0.21 ± 0.04 0.41 ± 0.05

Remark:

> Overall background contribution to selected 4I sample is < 1%</p>

> Likelihood e-ID significantly reduce the fake electron rate in 2012 data analysis

Selected Candidates Observation vs Predictions

ATLAS	Channel	Data	Total expected	MC sig	nal ($Z/ZZ \rightarrow$	4ℓ) Back	grounds
7 TeV	ееее еец µ	$\frac{1}{7}$	$1.8 \pm 0.3 \\ 8.0 \pm 0.4$		$1.7 \pm 0.3 \\ 7.7 \pm 0.4$	$0.12 \\ 0.18$	$\pm 0.04 \pm 0.09$
	μμее	5	3.3 ± 0.3		3.2 ± 0.3	0.08	± 0.04
	$\mu \mu \mu \mu$	8	11.3 ± 0.5		11.2 ± 0.3	0.09	± 0.04
	Combined	21	24.4 ± 1.2	1	23.8 ± 1.2	0.47	± 0.11
8 TeV	eeee	16	14.4 ± 1.2		14.3 ± 1.2	0.16	± 0.03
	$ee\mu\mu$	48	43.2 ± 2.3	4	42.9 ± 2.2	0.36	± 0.05
	$\mu\mu ee$	16	19.3 ± 1.2		19.1 ± 1.2	0.21	± 0.04
	$\mu\mu\mu\mu\mu$	71	68.8 ± 3.0	(68.4 ± 2.9	0.41	± 0.05
	Combined	151	145.7 ± 7.7		145 ± 7	1.14	± 0.13
CMS (7	′ TeV)						
Final state	channels			4e	4μ	2e2µ	4ℓ
Irreducible	e background	d (pp $ ightarrow$	$Z\gamma^* ightarrow 4\ell)$	0.07	0.25	0.14	0.46 ± 0.05
Other (red	ucible) back	grounds		0.01	0.01	0.05	0.07 ± 0.1
Expected s	signal (pp $ ightarrow$	$Z \to 4\ell$)	3.8	13.6	12.0	29.4 ± 2.6
Total expe	cted (simula	tion)		3.9	13.9	12.2	30.0 ± 2.6
Observed	events			2	14	12	28
Yield from	fit to the ob	served n	nass distribution	_	13.6 ± 3.8	11.5 ± 3.1	27.3 ± 5.4

CMS 4I Spectrum at 7 TeV

arXiv:1210.3844

Figure 2: Four-lepton invariant mass distribution for events passing all selection requirements except that on $m_{4\ell}$. The data are shown by points. The filled histograms represent standard model expectations for pp $\rightarrow Z/Z\gamma^* \rightarrow 4\ell$ and for reducible backgrounds. The three final states, 4e, 4 μ , and 2e2 μ , are combined.

ATLAS 4I Mass Distributions

arXiv:1403.5657

FIG. 2. Invariant mass distributions of (a) the leading lepton pair, m_{12} , (b) the subleading lepton pair, m_{34} , and (c) the four-lepton system, $m_{4\ell}$. The MC simulation expectation for a combination of all channels is compared to $\sqrt{s} = 7$ and 8 TeV data. All selections are applied except in (c) there is no $m_{4\ell}$ requirement. The background contributes < 1% of the total expected signal (invisible in the plots).

pT of Leptons

arXiv:1403.5657

Good data and MC agreement in lepton kinematic distributions

Measured Fiducial Cross Sections

$$\sigma_{Z \to 4\ell}^{fiducial} = \frac{N_{obs} - N_{bkg}}{\mathcal{L}C_{Z \to 4\ell}}$$

<u>ATLAS</u>

\sqrt{s}	Final state	$C_{4\ell}$	Measured $\sigma^{\it Fid}$ fb
7 TeV	ееее µµµµ	$21.5\% \\ 59.2\%$	$0.910^{+1.39}_{-0.72}$ (stat) ± 0.14 (syst) ± 0.02 (lumi) fb $2.970^{+1.18}_{-0.94}$ (stat) ± 0.07 (syst) ± 0.05 (lumi) fb
	ееµµ µµее	$49.0\%\ 36.3\%$	$3.091^{+1.35}_{-1.05}$ (stat) ± 0.16 (syst) ± 0.05 (lumi) fb $3.015^{+1.57}_{-1.17}$ (stat) ± 0.30 (syst) ± 0.06 (lumi) fb
8 TeV	ееее µµµµ	36.06% $71.13%$	$2.16^{+0.59}_{-0.50}$ (stat) ± 0.16 (syst) ± 0.06 (lumi) fb $4.89^{+0.66}_{-0.56}$ (stat) ± 0.13 (syst) ± 0.14 (lumi) fb
	ее $\mu\mu$ $\mu\mu$ ее	$55.54\%\ 46.24\%$	$4.23^{+0.05}_{-0.59}$ (stat) \pm 0.15 (syst) \pm 0.12 (lumi) fb $1.68^{+0.46}_{-0.39}$ (stat) \pm 0.07 (syst) \pm 0.04 (lumi) fb

σ_{41} measurement in final phase-space

ATLAS measurement in final phase space $80 < m_{41} < 100$ GeV and $m_{\ell+\ell-} > 5$ GeV

$$\sigma_{Z \to 4\ell}^{total} = \frac{\sigma_{Z \to 4\ell}^{fiducial}}{A_{Z \to 4\ell}}$$

The 4e and 4 μ channels, and The 2e2 μ and 2 μ 2e channels are combined with 2x2 covariance error matrices for σ measurement

★The 4I $\sigma^{\text{total}} = \sigma(4e+4\mu) + \sigma(2e2\mu)$, uncertainties are determined by 4x4 error matrices

\sqrt{s}	4ℓ state	$N_{4\ell}^{\mathrm{obs}}$	$N_{4\ell}^{\mathrm{exp}}$	$N_{4\ell}^{\mathrm{bkg}}$	$C_{4\ell}$	$\sigma^{\rm fid}_{Z4\ell}$ [fb]	$A_{4\ell}$		$\sigma_{Z4\ell}$ [fb]
$7 { m TeV}$	ee + ee	1	1.8 ± 0.3	0.12 ± 0.04	21.5%	$0.9^{+1.4}_{-0.7} \pm 0.14 \pm 0.02$	7.5%	$\int A_{\alpha} A_{\mu}$	$32 \pm 11 \pm 1.0 \pm 0.6$
	$\mu\mu + \mu\mu$	8	11.3 ± 0.5	0.08 ± 0.04	59.2%	$3.0^{+1.2}_{-0.9} \pm 0.07 \pm 0.05$	18.3%	$\int 4c, 4\mu$	$52 \pm 11 \pm 1.0 \pm 0.0$
	$ee + \mu\mu$	7	7.9 ± 0.4	0.18 ± 0.09	49.0%	$3.1^{+1.4}_{-1.1} \pm 0.16 \pm 0.05$	15.8%	220211	44 + 14 + 33 + 0.9
	$\mu\mu + ee$	5	3.3 ± 0.3	0.07 ± 0.04	36.3%	$3.0^{+1.6}_{-1.2} \pm 0.30 \pm 0.06$	8.8%	$\int 2c2\mu$	$44 \pm 14 \pm 5.5 \pm 0.5$
	$\operatorname{combined}$	21	24.2 ± 1.2	0.44 ± 0.14					$76\pm18\pm4\pm1.4$
$8 {\rm TeV}$	ee + ee	16	14.4 ± 1.4	0.14 ± 0.03	36.1%	$2.2^{+0.6}_{-0.5} \pm 0.20 \pm 0.06$	7.3%	LAG AU	$56 \pm 6 \pm 1.8 \pm 1.6$
	$\mu\mu + \mu\mu$	71	68.8 ± 2.7	0.34 ± 0.05	71.1%	$4.9^{+0.7}_{-0.6} \pm 0.13 \pm 0.14$	17.8%	$\int 4c, 4\mu$	50 ± 0 ± 1.0 ± 1.0
	$ee + \mu\mu$	48	43.2 ± 2.1	0.32 ± 0.05	55.5%	$4.2^{+0.7}_{-0.6} \pm 0.16 \pm 0.12$	14.8%	$\int g_{\rho 2 \mu}$	52 + 7 + 24 + 15
	$\mu\mu + ee$	16	19.3 ± 1.3	0.18 ± 0.04	46.2%	$1.7^{+0.5}_{-0.4} \pm 0.10 \pm 0.04$	7.9%	$\int 2e^{2\mu}$	$52 \pm 7 \pm 2.4 \pm 1.5$
	$\operatorname{combined}$	151	146 ± 7	1.0 ± 0.11					$107\pm9\pm4\pm3.0$

Measured σ^{total} vs Predicted σ^{total}

ATLAS	Phase-space cross section (m _{2l} > 5 GeV, 80 < m _{4l} < 100 GeV)
7 TeV measured	76 \pm 18 (stat.) \pm 4 (syst.) \pm 1.4 (lumi.) fb
7 TeV NLO SM prediction	90.0±2.1 fb
8 TeV measured	107 \pm 9 (stat.) \pm 4 (syst.) \pm 3.0 (lumi.) fb
8 TeV NLO SM prediction	104.8±2.5 fb

CMS	Phase-space cross section (m _{2l} > 4 GeV, 80 < m _{4l} < 100 GeV)		
7 TeV measured	112 ⁺²³ -20 (stat.) ⁺⁷ -5 (syst.) ⁺³ -2 (lumi.) fb		
7 TeV NLO SM prediction	120±2.1 fb		

Determination of BR($Z \rightarrow 4I$) ATLAS

□ Measure the Z→2µ cross section and take the known Br(Z→2µ) to get inclusive cross section of Z from pp collisions
 □ Cancels luminosity uncertainty and theoretical uncertainty of σ(pp→Z)
 □ Derive the BR (Z→4I) as below

$$BR(Z \to 4\ell) = BR(Z \to 2\mu)(1-f_t) \frac{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{4\ell} (C \times A)^{2\mu}}{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{2\mu} (C \times A)^{4\ell}}$$

Uncertainty on $BR(Z \rightarrow 2\mu)$ is small. f_t = fraction of *t*-channel in phase-space.

 $f_t = (3.35 \pm 0.02)\%$ for 4e, 4 μ ; $f_t = (3.90 \pm 0.02)\%$ for 2e2 μ

- Cancel luminosity uncertainty: 2.8% (8 TeV)
- Cancel NLO σ (Z) calculation uncertainties (Scales, PDF, NNLO correction): 4%

Branching Fraction of $Z \rightarrow 4\ell$

Branching fraction results uses an error weighted combination of 7 and 8 TeV results. For phase space $m_{2\ell} > 5$ GeV, $80 < m_{4\ell} < 100$ GeV

Quantity	\sqrt{s}	Value	ATLAS
Measured	7 TeV	(2.67 ± 0)	$0.62 \text{ (stat)} \pm 0.14 \text{ (syst)} \times 10^{-6}$
	8 TeV	(3.33 ± 0)	$0.27 \text{ (stat)} \pm 0.11 \text{ (syst)} \times 10^{-6}$
	Combined	(3.20 ± 0)	$0.25~(\mathrm{stat})\pm0.12~(\mathrm{syst})) imes10^{-6}$
Expected		$(3.33\pm0$	$(.01) \times 10^{-6}$

For phase space m ₂	> 4 GeV,	$80 < m_{4\ell} <$	100 GeV
--------------------------------	----------	--------------------	---------

	BR (measured)	BR (predicted)
ATLAS	(4.31±0.34±0.17)x10 ⁻⁶	(4.50±0.01)x10 ⁻⁶
CMS	(4.2 ^{+0.9} - _{0.8} ±0.2)x10 ⁻⁶	4.45 x10 ⁻⁶

Cross Check the Mass Scale for H→4I Mass Measurement CMS PAS SMP-12-009

From the fit results, as shown in Fig. **above** , one can see that the offset of the peak is 0.4 ± 0.4 GeV (to the right) (the "mean" value of the Crystal Ball function represents an offset with respect to the fixed Breit–Wigner function peak position), or, in relative units, $0.4 \pm 0.4\%$. These numbers can be used to constrain the possible systematic uncertainty of the four-lepton mass scale. With the current data there is no evidence for a statistically significant bias.

ATLAS 4^e Mass Scale

ATLAS-CONF-2013-055

4l mass fitted with the convolution of a Breit-Wigner and a Gaussian distribution for four 4l channels shown good consistence with MC predictions. Example of 4μ mass fit for data and MC

Invariant mass distributions of 4μ , fitted with the convolution of a Breit-Wigner and a Gaussian distribution, for the reconstructed events within the Z-mass window of 80 to 100 GeV using (a) 4μ data, (b) simulated Z $\rightarrow 4\mu$. All for 8 TeV datasets using relaxed dilepton mass requirement in event selection, $m_{2l} > 1$ GeV. The parameter m_{4l} is the fit mean and σ_{4l} is the standard deviation of the Gaussian component of the fit.

Summary

- The 4*l* production at the Z resonance has been observed at the LHC by both ATLAS and CMS experiments
- The 4*l* production cross sections are measured by ATLAS (at 7 and 8 TeV) and by CMS (at 7 TeV). Results are consistent with the SM predictions calculated to NLO (QCD) (Powheg/MCFM)
- The rare decay branching fraction of Z→4ℓ is determined from the cross section measurements by normalizing the 4ℓ events to the Z→µµ events. Results are consistent within uncertainties from both experiments

	Phase Space	BR (measured)	BR (predicted)
ATLAS	80 < m_{4l} < 100 GeV and $m_{\ell+\ell-}$ > 5 GeV	(3.20±0.25±0.13)x10 ⁻⁶	(3.33±0.01)x10 ⁻⁶
	80 < m_{4l} < 100 GeV and $m_{\ell^+\ell^-}$ > 4 GeV	(4.31±0.34±0.17)x10 ⁻⁶	(4.50±0.01)x10 ⁻⁶
CMS	80 < m_{4l} < 100 GeV and m_{α} > 4 GeV	(4.2 ^{+0.9} - _{0.8} ±0.2)x10 ⁻⁶	4.45 x10 ⁻⁶

 The 4ℓ mass scales and resolutions between data and MC simulations are consistent for both ATLAS and CMS, which provide a good crosscheck on the Higgs →4ℓ mass measurement.

Backup slides

ATLAS 4I Event Selection

Red indicates differences from $H \rightarrow ZZ^* \rightarrow 4\ell$

Electrons Muons	GSF electrons selected with Loose++ from the H4l2011 menu (2011) or Loose from the Likelihood menu (2012) with $E_T > 7$ GeV and $ \eta < 2.47$ Combined, segment-tagged, calo-tagged ($p_T > 15$ GeV), and stand-alone Staco muons with $p_T > 4$ GeV and $ \eta < 2.7$
Event Selection	
Quadraplet selection	Two pairs of same-flavour opposite-charge leptons. The three leading leptons in the quadruplet have $p_T > 20, 15$, and 10 GeV. If the third lepton is a muon it may have $p_T > 8$ GeV Pick the pair that has M_{Z1} nearest the Z-mass, and then a second pair with M_{Z2} greatest.
Kinematic selection	Leading di-lepton pair must have inv. mass $M_{Z1} > 20 \text{ GeV}$ Sub-leading di-lepton pair must have inv. mass $M_{Z2} > 5 \text{ GeV}$ No same-flavor opposite-charge di-lepton giving $M_{\ell+\ell-} < 5 \text{ GeV} (J/\psi \text{ veto})$ $\Delta R(\ell, \ell') > 0.1 (0.2)$ for all same-flavor (opposite-flavor) leptons in the quadruplet.
Isolation	Lepton track isolation ($\Delta R = 0.20$): $\Sigma p_T / p_T < 0.15$ Lepton calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T / E_T < 0.30$ except < 0.15 for stand-alone muons and in 2012 < 0.20 for electrons,
Impact parameter significance	Apply impact parameter significance cut to all leptons of the quadruplet. For electrons : $d_0/\sigma_{d_0} < 6.5$ For muons : $d_0/\sigma_{d_0} < 3.5$
Four-body mass	$80 < m_{4\ell} < 100 \text{ GeV}$