

Yann Bedfer, Barbara Pasquini, Ernst Sichtermann

US2014 - WG6: Spin Physics

Itaru NAKAGAWA Justin STEVENS Ciprian GAL **Ralf SEIDL** Francesca GIORDANO Ana Sofia NUNES Marcin STOLARSKI Maxime LEVILLAIN

Malte Christian WILFERT Alberto ACCARDI Emanuele Roberto NOCERA Ignazio SCIMEMI Christopher BRAUN Klaus RITH Kazuhiro TANAKA Cédric LORCÉ

Umberto D'ALESIO Mriganka Mouli MONDAL Wlodek GURYN Marc SCHLEGEL Sergio Anefalos PEREIRA Francesca GIORDANO Nicolas DU FRESNE VON HOHENESCHE Andrea SIGNORI Jose Osvaldo GONZALES HERNANDEZ

Vladimir BRAUN **Kirill SEMENOV-TIAN-SHANSKY** Samuel WALLON Carlos GRANADOS Klaus **RITH** Melissa CUMMINGS Andrey KIM Franck SABATIÉ Pawel SZNAJDER

Justin STEVENS Eva-Maria KABUß Thomas BURTON Bernd SURROW Pawel NADEL-TURONSKI Jakub WAGNER Ken BARISH Catarina QUINTANS Salvatore FAZIO

43 talks:

14 theory / phenomenology

29 experiment / future

11 Quark and gluon helicity

13 TMD

10 GPD

9 multiple, other

DS2014 - WG6: Spin Physics

Itaru NAKAGAWA Justin STEVENS Ciprian GAL Ralf SEIDL Francesca GIORDANO Ana Sofia NUNES Marcin STOLARSKI Maxime LEVILLAIN

Malte Christian WILFERT Alberto ACCARDI Emanuele Roberto NOCERA Ignazio SCIMEMI Christopher BRAUN Klaus RITH Kazuhiro TANAKA Cédric LORCÉ Umberto D'ALESIO Mriganka Mouli MONDAL Wlodek GURYN Marc SCHLEGEL Sergio Anefalos PEREIRA Francesca GIORDANO Nicolas DU FRESNE VON HOHENESCHE Andrea SIGNORI Jose Osvaldo GONZALES HERNANDEZ

Vladimir BRAUN Kirill SEMENOV-TIAN-SHANSKY Samuel WALLON Carlos GRANADOS Klaus RITH Melissa CUMMINGS Andrey KIM Franck SABATIÉ Pawel SZNAJDER Justin STEVENS Eva-Maria KABUß Thomas BURTON Bernd SURROW Pawel NADEL-TURONSKI Jakub WAGNER Ken BARISH Catarina QUINTANS Salvatore FAZIO

43 talks:

14 theory / phenomenology

29 experiment / future

11 Quark and gluon helicity
 13 TMD
 10 GPD
 9 multiple, other

Thank you to all Speakers!

Our apologies where we omitted your favorite topic...

How is the nucleon spin carried by quark and gluon spins and orbital momenta?

What is the role of spin in QCD?

Jianwei QIU, plenary

The Past

□ EMC (European Muon Collaboration '87) – "the Plot":

Malte WILFERT

- COMPASS 2011 (200 GeV)
- COMPASS 2007 (160 GeV)
- COMPASS fit at NLO
- New data point at very low x
- New input for global QCD fit
- Indirect ΔG extraction

Malte WILFERT

Malte WILFERT

Marcin STOLARSKI

The Analysis Method of High- p_T Events in the DIS Region

• Contribution from 3 processes to the observed asymmetry is assumed:

• $A_{LL}^h(x_{Bj}) = R_{PGF} a_{LL}^{PGF} \Delta g/g(x_G) + R_{LP} DA_1^{LO}(x_{Bj}) + R_{QCDC} a_{LL}^{QCDC} A_1^{LO}(x_C)$ where:

•
$$A_1^{LO} \equiv \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i}$$

- the fraction of the processes (R_i) and partonic cross-section asymmetries (aⁱ_{LL}) are obtained from MC and parametrized by NN
- Idea: larger $p_T \rightarrow$ larger $R_{PGF} \rightarrow$ larger sensitivity to $\Delta g/g$

Marcin STOLARSKI

forward π^{0} , clusters

Justin STEVENS

• $\Delta q^+ \equiv \Delta q + \Delta \bar{q}$, q = u, d are statistically equivalent in the two parton sets

- Δs^+ is almost unaffected by W data (unlike in the unpolarized case)
- the underlying probability distributions for ∆g in the two determinations differ up to one sigma in the region covered by jet data, 0.05 ≤ x ≤ 0.2
- \Delta g from NNPDFpol1.1 is definitely positive in the data region and its uncertainty is reduced up to a factor three w.r.t. NNPDFpol1.0

- $\Delta q^+ \equiv \Delta q + \Delta \bar{q}$, q = u, d are statistically equivalent in the two parton sets
- Δs^+ is almost unaffected by W data (unlike in the unpolarized case)
- the underlying probability distributions for ∆g in the two determinations differ up to one sigma in the region covered by jet data, 0.05 ≤ x ≤ 0.2
- \Delta g from NNPDFpol1.1 is definitely positive in the data region and its uncertainty is reduced up to a factor three w.r.t. NNPDFpol1.0

Angular Momentum Decomposition

C. Lorcé

The relevant question is to whether a gauge non-invariant quantity with clear physical interpretation can be associated with a measurable quantity

C. Lorcé

The relevant question is to whether a gauge non-invariant quantity with clear physical interpretation can be associated with a measurable quantity

C. Lorcé

Sum rule for longitudinally polarized nucleon

The relevant question is to whether a gauge non-invariant quantity with clear physical interpretation can be associated with a measurable quantity

olarized nucleon $L^{q} + L^{g}$ Ds arized nucleon K.Tanaka

Sum rule for longitudinally polarized nucleon

Sum rule for transversely polarized nucleon

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma_T + \Delta G_T + L_T$$

$$\Delta \Sigma_T = \int \mathrm{d}x \, g_T(x) = \Delta \Sigma$$

twist-3 PDF

 $\Delta G_T = \int \mathrm{d}x \, G_T(x) = \Delta G$

no-decomposition of OAM $L_T \neq L_T^q + L_T^g$

Generalized Parton Distributions

- accessible in exclusive reactions
- ▶ factorization for large Q², |t|<< Q²
- depend on 3 variables: \bar{x}, ξ, t

Compton Form Factors Im $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{H}(\xi, \xi, t)$ Re $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{P} \int_{-1}^{1} dx \ \text{H}(\overline{x}, \xi, t) \frac{1}{\overline{x} - \xi}$

OMPASS

Measurements of deeply virtual Compton scattering and hard exclusive meson production at

HERMES

DVCS at JLab

cross section at JLab mostly sensitive to CFF ${\cal H}$

$A_{X Y} \\ \downarrow \downarrow \\ eam \ target$	Experiment	Observable	Normalized CFF dependence
	CLAS	$A_{ m LU}^{-,\sin\phi}$	${ m Im}\mathcal{H}+0.06{ m Im}\mathcal{E}+0.21{ m Im}\widetilde{\mathcal{H}}$
		$A_{\mathrm{UL}}^{-,\sin\phi}$	${ m Im}\widetilde{\mathcal{H}}+0.12{ m Im}\mathcal{H}+0.04{ m Im}\mathcal{E}$
		$A_{\rm UL}^{-,\sin 2\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}}-0.79\mathrm{Im}\mathcal{H}+0.30\mathrm{Im}\mathcal{E}-0.05\mathrm{Im}\widetilde{\mathcal{E}}$
	HALL A	$\Delta \sigma^{\sin \phi}$	${ m Im}\mathcal{H}+0.07{ m Im}\mathcal{E}+0.47{ m Im}\widetilde{\mathcal{H}}$
		$\sigma^{\cos 0\phi}$	$1+0.05\mathrm{Re}\mathcal{H}+0.007\mathcal{H}\mathcal{H}^*$
		$\sigma^{\cos\phi}$	$1 + 0.12 \text{Re}\mathcal{H} + 0.05 \text{Re}\widetilde{\mathcal{H}}$

beam

Kroll, Moutarde, F.S., EPJC73 2278 (2013)

New data and/or analysis from Hall A and CLAS for DVCS unpolarized cross section and helicity-difference cross sections

Hall A pioneering results (proton target)

First complete calculation of kinematics power corrections $\sim t/Q^2$ and $\sim m^2/Q^2$ to twist-4 accuracy

 Preliminary results from re-analysis of data show even better agreement with calculation including target mass and finite-t corrections
 F. Sabatié

DVCS asymmetries measured @ HERMES

Single-charge BSA with recoil proton

Recoil data leads to a significantly better overlap with HEMP data

Exclusive ρ^0 production at COMPASS

continued at COMPASS-II E. Kabuss in the summary talk of WG7

Exclusive π^0 production at CLAS

A. Kim

From theory: need of more phenomenological studies for chiral-odd GPDs

New representation for Chiral-odd GPDs

K. Semenov-Tian-Shansky

S.Wallon

- •GPD modeling can be done in various representations: double-distribution (most common) conformal PW expansion (dual representation)
- Aim: get more insights from considering GPD properties within different representations

Dual representation:

GPDs are presented as infinite series of t-channel Regge exchanges

Theoretical framework extended to chiral-odd GPDs and phenomenological applications are under study

•New classification of chiral-odd pion GPDs beyond leading twist

transverse charge and magnetization densities

$$\rho_{1,2}(b) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i \Delta_T b} F_{1,2}(t = -\Delta_T^2)$$

peripheral transverse densities from chiral effective field theory

K. Barish, M. Mondal

Transverse Single Spin Asymmetry

- Incompleteness of the integrated PDF: 2nd piece of (experimental) evidence
- First evidence E704 @ FNAL. TMDs have emerged as the prime explanation.
- \circ Significant asymmetries already measured @ RHIC for $x_F > 0 \ (p \uparrow)$
- Enriched measurement set from runs 2011/2

Å **STAR Preliminary** Systematic Error **PH***ENIX p+p[↑] @ √s = 500GeV π⁰-Jets (x <0) Uncorrelated 0.20 preliminary $p_{-}^{EMJet} > 2.0 \text{ GeV/c}$ Correlated EM-Jets $(x_c > 0)$ $p^{\uparrow} + p \rightarrow \eta + X, \sqrt{s}=200 \text{ GeV}$ 0.04 π $2.8 < n^{EMJet} < 4.0$ Vertical Scale Uncertainty 4.8% 0.15 EM-lets (x < 0)(n) = 3.5 2-photon-Jets-m >0.3 0.10 $\triangleleft^{\mathsf{Z}}$ 0.02 0.05 2 0.00 (p_) (GeV/c) = 1.35 2.34 2.68 3.04 3.4 Е 0.05 -0.6 -0.4 -0.2 0.2 70 80 90 40 50 60 EM-Jet Energy (GeV)

• PHENIX: A_N for extended set of FS: π^0 , η and (compatible w/ 0) μ , $J/\psi \Rightarrow$ Explore difference in fragmentation mass, strangeness, isospin

Upgrades planned. Will significantly extend physics capabilities

 STAR: EM jets: complex behaviour upon jet topology ⇒ Challenging for the TMD-based interpretation.

TSSA @ HERMES Ο

- $x_F(l)$ reminiscent of hadron collisions. Turns out to be a reflexion of the underlying p_T dependence
- Complicated p_T dependence of subsamples (not shown)

TMD phenomenology 0

• Reproduces some of HERMES subsamples (SIDIS, high- p_T)

TSSA in $l+p^{\uparrow} \rightarrow h+X$

• Predicts significant asymmetries for EIC.

K. Rith

• TMDFF @ Belle

Spin Session WG6

• Collins FF, H_1^{\perp} : Correlation between parton transverse spin and direction of the final hadron

TMDFFs

• SIDIS: Convolutes w/ transversity TMD $A_{UT} \;,\; A_{UU} \propto h_1^\perp \bigotimes H_1^\perp$

• Disentangling the flavor dependent fragmentation contributions challenging.

~ ~

Summary

F. Giordano

Spin Session WG6

Extract TMDs from data: (global) fit

 \circ Fit of unpolarized SIDIS multiplicity vs. p_T data TMDPDF \bigotimes TMDFF

- Gaussian widths (modeling k_{\perp}, p_{\perp} dependence) specified per flavor
- ⇒ Clear indication of a flavor dependence (*e.g.*) D_q^{π} favored width < unfavored & D_q^K favored

• Attempt at fitting of HERMES + COMPASS

- \Rightarrow Unsuccessful: large tension between/within sets. Whether to data or oversimplistic model?
- $\circ~$ Upcoming: global fits, using TMD evolution

J. O. Gonzalez Hernandez

Evolution of all TMDs is universal (alike PDFs and FFs it is process independent) Evolution of all TMDs is spin independent and it is the same for TMDs and TMDFFs

First fits for unpolarized TMD in DY. Data with 4 < Q < 10 GeV can fix non-perturbative parameters which have some impact on vector boson production and DY processes at LHC.

TMD non-perturbative QCD effects should be included in high precision LHC observables

(courtesy of B. Pasquini)

Application of TMDs:

Gluon TMDs and Higgs Boson Production M. Schlegel

 $pp \to \gamma \gamma X$

TMD Factorization:

cross section is split into a partonic $gg \rightarrow \gamma \gamma$ cross section

and two TMD gluon correlators $(f_1^g, h_1^{\perp g})$

Fazio

S.

Prospects

• Mapping of GPD H from JLab \rightarrow HERA (F. Sabatie) • TCS @ JLab (J. Wagner)

• DVCS/MP @ COMPASS in 1916 (E.M. Kabuß)

- \circ Sign change between SIDIS and Drell-Yan or W or Z
 - Important test of pQCD
 - $W\pm$ and Z0 production @ RHIC

- Test measurement of A_N for Z0 and $W\pm$
- Systematics under control. Up to 900 pb⁻¹
- ⇒ Proof of principle: Stat. significant sign change measurement

Polarized Drell-Yan @ COMPASS

- Expected stat. error in the Sivers asymmetry $\simeq 1\%$.
- Direct Drell-Yan vs. SIDIS comparison in overlapping kinematical domain.

C. Quintans