Detailed study of the K_{e4} decay mode properties

Milena Misheva

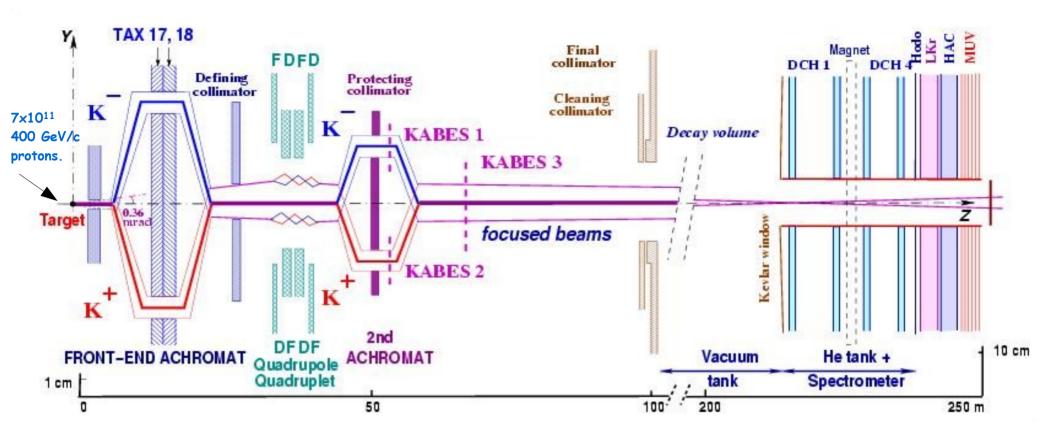
(JINR, Dubna)

on behalf of the NA48/2 Collaboration

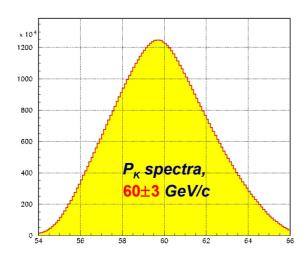
(Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna)

XII International Workshop on Deep-Inelastic Scattering 2014 and Related Subjects

Outline


- NA48/2 beam line and detector
- Ke4 introduction
- NA48/2: K_{e4} event selection, Form Factors and Bramching ratios:
 - $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$, called $K_{e4}(+-)$
 - $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} v$, called $K_{e4}(00)$
- Summary

NA48/2 - a fixed target experiment at CERN SPS.



The main goal was to search for direct CP violation in 3π decays of charged kaons. High statistics collection gives an excellent opportunity for rare decay measurements. / 2003 and 2004 ~6 months data taking/

Simultaneous K⁺ and K⁻ beams

2-3M K/spill (π/K~10),πdecay products stay in the
beam pipe.
Flux ratio K+/K- ≈1.8

Beams coincide within ~ 1mm all along 114m decay volume.

The NA48/2 detector

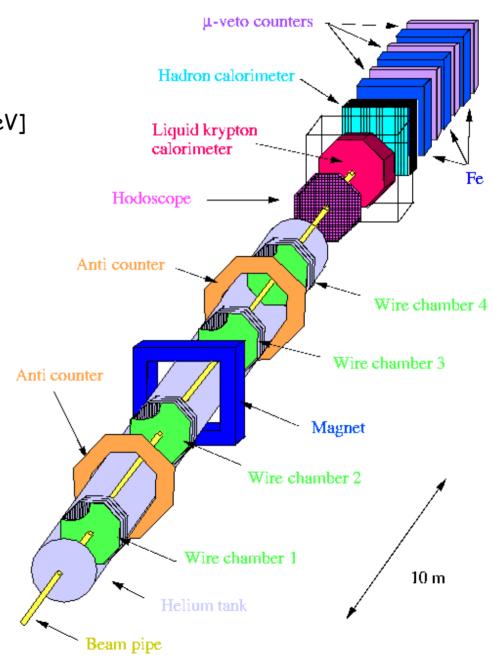
Liquid Krypton EM calorimeter (Lkr)

High granularity (13248 cells 2x2cm2)

Quasi-homogeneous (7m³ liquid Kr, 27X_o)

 $\sigma(E)/E=(3.2\%/E^{1/2}) + (9\%/E) + 0.42\% [E in GeV]$

 $\sigma x = \sigma y \sim 1.5 \text{ mm for E=10 GeV}$


E/p ratio used for e/π discrimination

<u>Hodoscope</u>

fast trigger; precise time measurement σ_t =150ps

Magnetic spectrometer

4 drift chambers and dipole magnet $\sigma(p)/p = (1.02 + 0.044*p)\%$ [p in GeV/c]

The Ke4 amplitude is a product of weak lepton current and (V-A) hadron current:

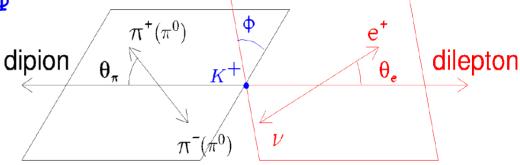
$$\frac{G_F}{\sqrt{2}}V_{us}^*\bar{u_{\nu}}\gamma_{\lambda}(1-\gamma_5)v_e\langle\pi^+\pi^-|V^{\lambda}-A^{\lambda}|K^+\rangle$$

R enters in the decay rate multiplied by lepton mass squared -> this term is negligible for K.

where

$$\langle \pi^{+}\pi^{-}|A^{\lambda}|K^{+}\rangle = -\frac{i}{m_{\kappa}}(F(\mathbf{p}_{\pi^{+}} + \mathbf{p}_{\pi^{-}})^{\lambda} + G(\mathbf{p}_{\pi^{+}} - \mathbf{p}_{\pi^{-}})^{\lambda} + R(\mathbf{p}_{e} + \mathbf{p}_{\nu})^{\lambda})$$

$$\langle \pi^{+} \pi^{-} | V^{\lambda} | K^{+} \rangle = -\frac{H}{m_{K}^{3}} \epsilon^{\lambda \mu \rho \sigma} (\mathbf{p}_{\pi^{+}} + \mathbf{p}_{\pi^{-}} + \mathbf{p}_{e} + \mathbf{p}_{\nu})_{\mu}) \times (\mathbf{p}_{\pi^{+}} + \mathbf{p}_{\pi^{-}})_{\rho}) (\mathbf{p}_{\pi^{+}} + \mathbf{p}_{\pi^{-}})_{\sigma})$$


p is the 4-momentum of each particle, F, G, R are three axial-vector and H one vector complex Form Factors.

F,G,R,H are Form Factors (FF) which depend on the decay Lorentz invariants, so their parameterisation (or some tabulation) is needed to describe data.

K. Introduction - formalism

$$K_{e4}(+-) - S_{\pi}(M_{\pi\pi}^2)$$
, $S_{e}(M_{ev}^2)$, $\cos\theta_{\pi}$, $\cos\theta_{e}$ and Φ

$$K_{e4}(00) - S_{\pi}(M_{\pi\pi}^2)$$
, $S_{e}(M_{ev}^2)$ and $\cos\theta_{e}$

Partial Wave expansion of the decay amplitude into s and p waves (*Pais-Treiman, Phys.Rev. 168, 1968*) + Watson theorem (T – invariance) for $\delta_l^{\rm I}$

$$\delta_s = \delta_0^0$$
 and $\delta_p = \delta_1^1$

F,G - 2 complex Axial Form Factors

$$F = F_s e^{i\delta s} + F_p e^{i\delta p} \cos(\theta_{\pi})$$

$$G = G_{\rm p} e^{i\delta g}$$

H - 1 complex Vector Form Factor

$$H = H_p e^{i\delta h}$$

Cabibbo-Maksymowicz

Phys. Rev. 137 (1965)

Map the distribution of the Cabibbo-Maksymowicz variables in the five-dimensional space with 4 real Form factors and only one phase shift, assuming identical phases for p-wave Form factors F_p , G_p , H_p .

 $K_{e4}(+-)$ - the fit parameters (real) are: F_s F_p G_p H_p and $\delta = \delta_s - \delta_p$

 $K_{e4}(00)$ - reduces to 5 wave only (one complex Form factor F = $F_s e^{i\delta s}$), the fit parameter is only one F_s

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ event selection

Event reconstruction:

- * 3 tracks, reconstructed by the magnetic spectrometer,
 - * forming a vertex within the decay volume;
 - * Opposite sign 2π (''Right Sign'')
 - * 1 electron ($E_{LKr}/P_{DCH} \sim 1$)
 - * No MUV hit associated with tracks

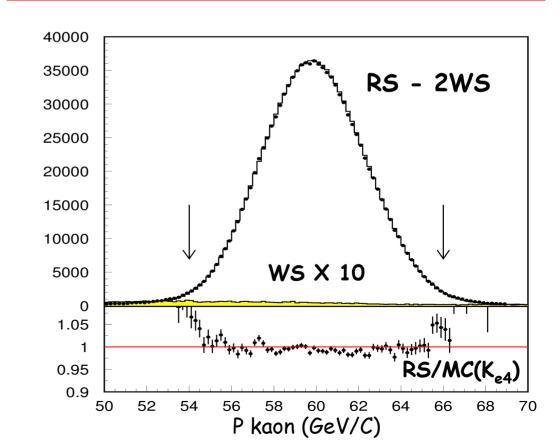
Main background sources: $K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ case of K^{+} :

a $K^+ \rightarrow [\pi^+ \text{ misident. as } e^+] \pi^+ \pi^ K^+ \rightarrow [\pi^+ \rightarrow e^+ v] \pi^+ \pi^-$

contributes twice more to

''Right Sign'' events than to ''Wrong Sign''
misident. lost

b $K^+ \rightarrow [\pi^0 \rightarrow e^+ e^- \gamma] \pi^0 \pi^+$ almost negligible


"Right Sign" events:

RS = $e^+\pi^+\pi^-$, 2 π^+ can decay

"Wrong Sign" events:

 $WS = e^{-}\pi^{+}\pi^{+}$, 1 π^{-} can decay

Total background is below 1%, estimated from WS events (contribution ${f a}$ is dominant) and checked by MC.

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ relative Form Factors: fit results

Form factors (normalized to f_s)

[Eur.Phys. C70 (2010) 635]

NA48/2 total statistics (2003+2004)

Series expansion with:

$$q^2 = S_{\pi}/(4m_{\pi}^2) - 1$$

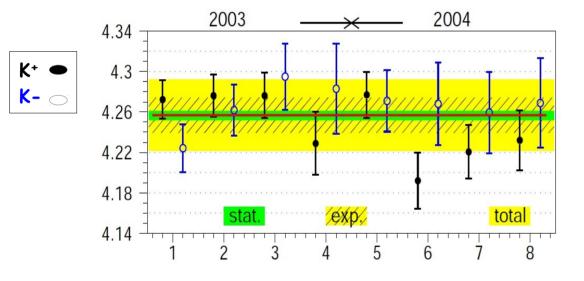
 $S_e/(4m_{\pi}^2)$

	value	stat.	syst.	
f _s /f _s	0.152	±0.007	±0.005	
f"s/fs	-0.073	±0.007	±0.006	
f' _e /f _s	0.068	±0.006	±0.007	
f _p /f _s	-0.048	±0.003	±0.004	
g_p/f_s	0.868	±0.010	±0.010	
g'p/fs	0.089	±0.017	±0.013	
h _p /f _s	-0.398	±0.015	±0.008	

$$F_s = f_s(1+f'_s/f_sq^2+f''_s/f_sq^4+f'_e/f_sS_e/4m_{\pi}^2)$$

$$F_s = f_p/f_s$$

$$G_p = f_s(g_p/f_s + g'_p/f_s q^2)$$


$$H_p = h_p/f_s$$

correlations

	f'' _s /f _s	f' _e /f _s		g_p/f_s
f'_{s}/f_{s}	-0.954	0.080	g'p/fs	-0.914
f'' _s /f _s		0.019		

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v$ / $K_{e4}(+-)$ / branching fraction

* Use
$$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$$
 channel for normalization
* Number of signal (1.1 × 106), number of normalization (1.9 × 109)
and number of background (0.95% of Ke4) events
* Br($K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$)= (5.59 ± 0.04)%

Relative systematic uncertainty	%
Acceptance, beam geom.	0.18
Muon vetoing	0.16
Accidental activity	0.21
Particle ID	0.09
background	0.07
Radiative effects	0.08
Trigger efficiency	0.11
Simulation statistics	0.05
Total systematics	0.37
External error [Br(K3π)]	0.72

K-: first measurement

$$BR(K_{e4}(+)) = (4.255 \pm 0.008) \times 10^{-5}$$
 $BR(K_{e4}(-)) = (4.261 \pm 0.011) \times 10^{-5}$

$$BR(K_{e4}(+-)) = (4.257 \pm 0.004_{stat.} \pm 0.016_{syst.} \pm 0.031_{ext.}) \times 10^{-5} = (4.257 \pm 0.035) \times 10^{-5} = 0.8\% \text{ rel.err.}$$

PDG 2012: $(4.09 \pm 0.1) \times 10^{-5}$ 2.4% rel.err.

Absolute form factor value (for $|V_{us}| = 0.2252 \pm 0.0009$ from PDG 2012) $F_s(q2=0, Se=0) = 5.705 \pm 0.003_{stat} \pm 0.017_{syst} \pm 0.031_{ext}$

Published in *Phys.Lett. B715 (2012) 105*

$K_{e4}(+-)$ decay and $\pi\pi$ scattering lengths

The S-wave $\pi\pi$ scattering lengths a0 and a2 (I=0 and I=2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008]

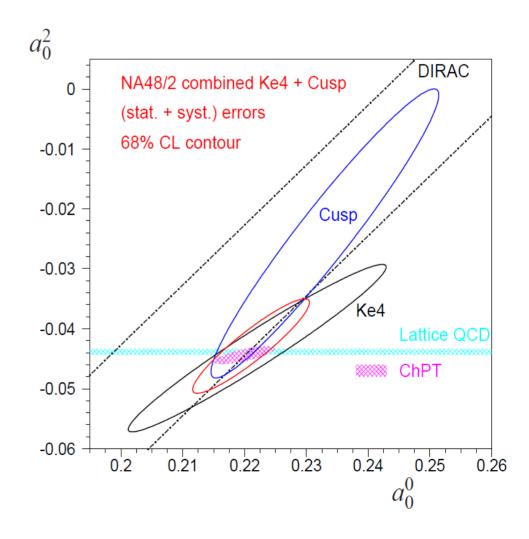
Two statistically independent measurements by the NA48/2:

- * From the cusp in $M_{\pi^0\pi^0}$ in $K^{\pm} \rightarrow \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64(2009)589]]
- * From the phase shift $\delta(M_{\pi\pi})=\delta_s-\delta_p$ in Ke4(+-) decay [Eur. Phys. J. C70(2010)635]

Different theoretical inputs:

Roy equations and isospin breaking correction vs. re-scattering in the final state and ChPT expansion

Large overlap in the a^0_0 and a^2_0 plane.


Impressive agreement with ChPT!

combined $\pi\pi$ scattering lengths result

$$a_0^0 = 0.2210 \pm 0.0047_{stat.} \pm 0.0040_{syst.}$$

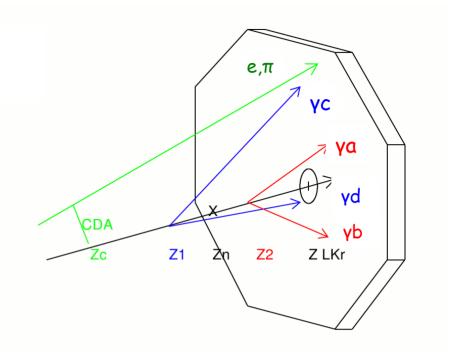
$$a^2_0$$
= -0.0429 ± 0.0044_{stat.} ± 0.0028_{syst.}

$$a_{00}^{0}$$
 - a_{00}^{2} = 0.2639 ± 0.0020_{stat.} ± 0.0015_{syst.}

$K^{\pm} \rightarrow \pi^{0}\pi^{0}e^{\pm}v$ event selection

Event reconstruction:

* find 2 Lkr y-cluster pairs (ab) & (cd) in time


 $(\pm 2.5 \text{ ns})$ and energy > 3 GeV

* decay positions Z_1 and Z_2 assuming $\pi^0 \to \gamma \gamma$

 $Z_n = (Z_1 + Z_2)/2$ within the decay volume

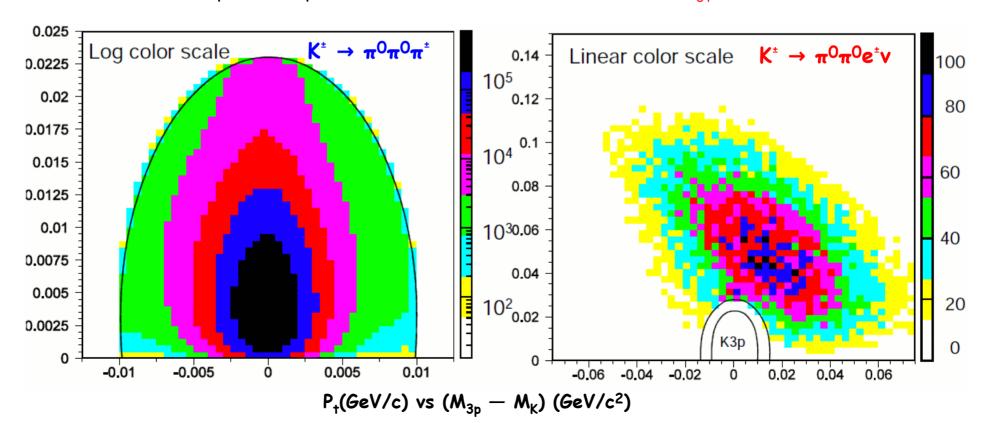
$$D_{zn} = |Z_1 - Z_2| < 500 \text{ cm}$$

* Combined with charged track (Zc at CDA to the beam line) if $D_7 = |Z_c - Z_n| < 800$ cm

Electron identification:

- * LKr cluster associated to track is in-time (±10 ns) with track and $2\pi^0$
- * $E_{LKr}/P_{DCH} \sim 1 [0.9-1.1]$
- * Extra rejection using a dedicated discriminant variable. It is a linear combination of variables related to shower properties and trained on real and fake electrons from data.

Background rejection	
Fake-electron background ($K^{\scriptscriptstyle \pm} \to \pi^0 \pi^0 \pi^{\scriptscriptstyle \pm}$)	0.65 %
Decay electron background ($K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{+}; \pi^{\pm} \rightarrow e^{\pm}v$)	0.12 %
Accidental track or photon	0.23 %


Total BGR ~ 1%

$K^{\pm} \rightarrow \pi^{0}\pi^{0}e^{\pm}v$ relative to $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$

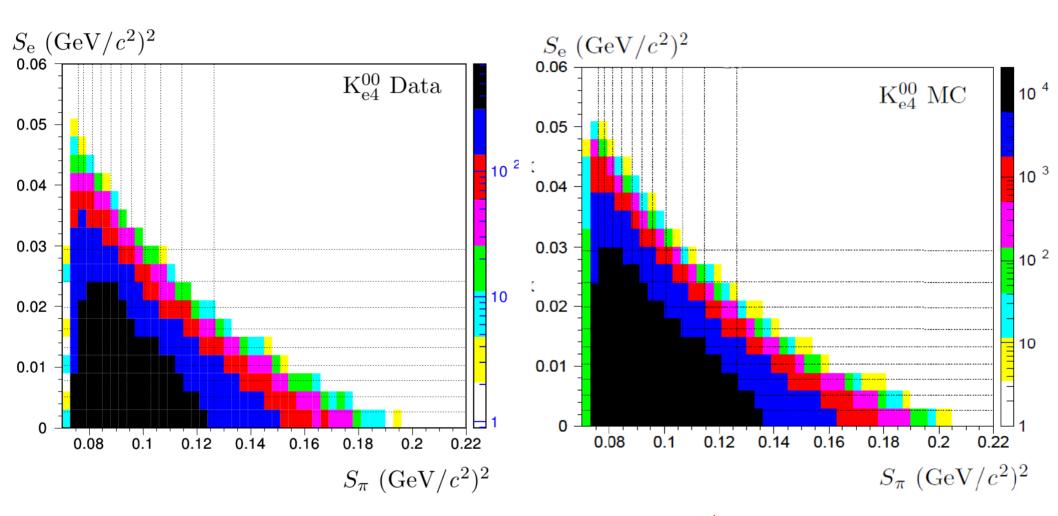
Signal/normalization kinematic separation

- * Assign \mathbf{m}_{π} to the charged track, plot \mathbf{P}_{t} to the beam vs invariant mass
- * Cut $K^{\!\scriptscriptstyle \pm} \! \to \! \pi^{\!\scriptscriptstyle 0} \pi^{\!\scriptscriptstyle 0} \pi^{\!\scriptscriptstyle 0} \pi^{\!\scriptscriptstyle \pm}$ events with a small P and close to the kan PDG mass
- * Cut $S_{ev} < 0.25 (GeV/c^2)^2$, rejects 0.5% candidates (mis-reconstructed tracks in fake electrons and accidentals)
- * No extra close cluster E > 3 GeV

Elliptic cut separates ~93 x 106 K[±] $\rightarrow \pi^0 \pi^0 \pi^{\pm}$ from ~65000 K_{e4} candidates

K_{e4} (00) Form Factor measurement - principle

- * Because of two identical particles in the final state, the π^0 π^0 system cannot be in a l=1 state and only the S-wave term contributes to the partial wave expansion of the form factors (F_s).
 - * The differential rate depends only on 3 kinematic variables:


$$d^{3}\Gamma = \frac{G_{F}^{2}|V_{us}|^{2}}{2(4\pi)^{6}m_{K}^{5}} \rho(S_{\pi}, S_{e}) J_{3}(S_{\pi}, S_{e}, \cos\theta_{e}) \times dS_{\pi} dS_{e} d\cos\theta_{e}$$
$$J_{3} = |XF_{s}|^{2}(1 - \cos 2\theta_{e}) = 2|XF_{s}|^{2}\sin^{2}\theta_{e}$$

$$\rho(S,Se)$$
 - phase space factor
$$X=0.5*\lambda^{1/2}(M^2_K,S_\pi,S_e)$$

$$\lambda(a,b,c)=a^2+b^2+c^2-2(ab+ac+bc)$$

- * Differential rate in the (S_{π}, S_e) plane is proportional to $|F_s|^2$.
- * No F_s dependence with θ_e angle, F_s must be studied only in the (S_{π}, S_e) plane!
- * Subtract background in the 2d-plane.
- * Compare to the same distribution obtained from simulation including acceptance, resolution, trigger efficiency, radiative corrections and kinematic factors but using a constant form factor.
 - * Switch to dimensionless variables: $q2=(S_{\pi}/4m_{\pi^+}^2-1)$ and $S_e/4m_{\pi^+}^2$
- * Define a grid of 10 equal population bins in S_{π} above the $2m_{\pi^+}$ treshold and two equal population bins below (10 bins with 6000 events each, 2 bins with 3000 events each), 10 bins in S_e (300 or 600 events in 2d-bins).

Form Factor measurement: 2d plot (S_{π}, S_e)

 $\sim 65~000~{\rm K_{e4}}$ candidates + background

 $\sim 100 \times 10^6 \ {\rm K_{e4}} \ {\rm simulated} \ {\rm events}$ with constant ${\rm F_s}$

Fit procedure

2d fit function:

$$G = N(1 + aX + bX^2 + cY)^2$$
 X > 0, above treshold

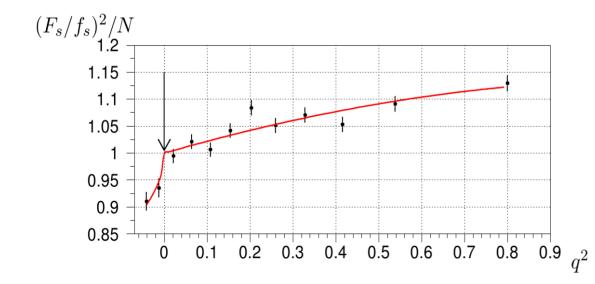
$$G = N (1 + d (|X/(1+X)|)^{1/2} + c Y)^2 \times (0,below treshold)$$

Dimensionless variables:

$$X=q^2=S_{\pi}/(4m_{\pi^+}^2)-1$$

$$Y=S_{e}/(4m_{\pi+}^{2})$$

To minimize:

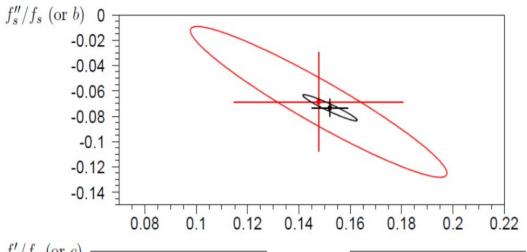

$$\chi^2 = \sum_{i=1}^{12} \sum_{j=1}^{10} ((n_{ij}/m_{ij} - G(X_i, Y_j, \hat{p}))/\sigma_{ij})^2$$

fit parameters = a,b,c,d

n_{ii} = Data - BGR

 $m_{ij} = MC$ with $F_s = 1$

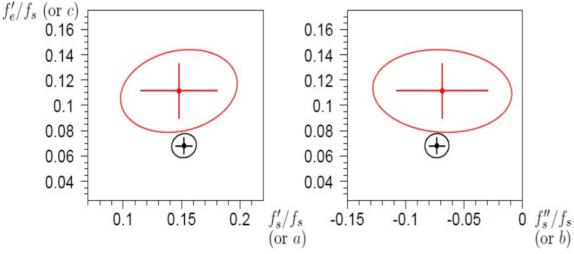
 X_i, Y_i are the barycenters of the bin ij.



We observe the cusp-like behavior of Form Factor S_{π} dependence with a threshold at 4m²

Ke4(+-) and Ke4(00)

Final/Preliminary


$$F_s = f_s(1+f'_s/f_sq^2+f''_s/f_sq^4+f'_e/f_sS_e/4m_{\pi}^2)$$

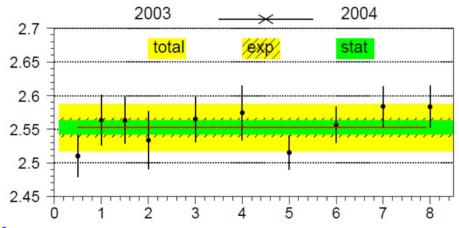
68% CL contours

 f_s'/f_s (or a)

- Similar q2 and Se dependence
- Same correlations
- Consistent within statistical errors

 $a = 0.149 \pm 0.033_{stat} \pm 0.014_{syst}$ $b = -0.070 \pm 0.039_{stat} \pm 0.013_{syst}$ $c = 0.113 \pm 0.022_{stat} \pm 0.007_{syst}$ $d = -0.256 \pm 0.049_{stat} \pm 0.016_{syst}$

chi²/ndf =101.4/107: 63% probability


$K^{\pm} \rightarrow \pi^{0}\pi^{0}e^{\pm}v$ / $K_{e4}(00)$ / branching fraction

*	* Use $K^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm}$ channel for normalization						n
*	N Ivya b a a	٦.	امسمنه	(45210)	مو ما سیرم	٦.	10.0

* Number of signal (65210), number of normalization (93.5 \times 10⁶) and number of background (650) events

* Br(K $^{\pm}$ \rightarrow π^0 π^0 π^{\pm})= (1.761 \pm 0.022)% - source of external error

*trigger efficiency: $\varepsilon(\text{Ke4})=96.06\%$ and $\varepsilon(\text{K}3\pi)=97.42\%$

Systematic Uncertainty (% to Br value)	
Acceptance	0.15
Form Factor	0.17
Background	0.25
Trigger cut	0.04
Radiative effects	0.20
Simulation statistics	0.09
Trigger efficiency	0.03
Total	0.40

PDG 2012: $(2.2 \pm 0.4) \, 10^{-5}$ 18% rel.err.

Preliminary:

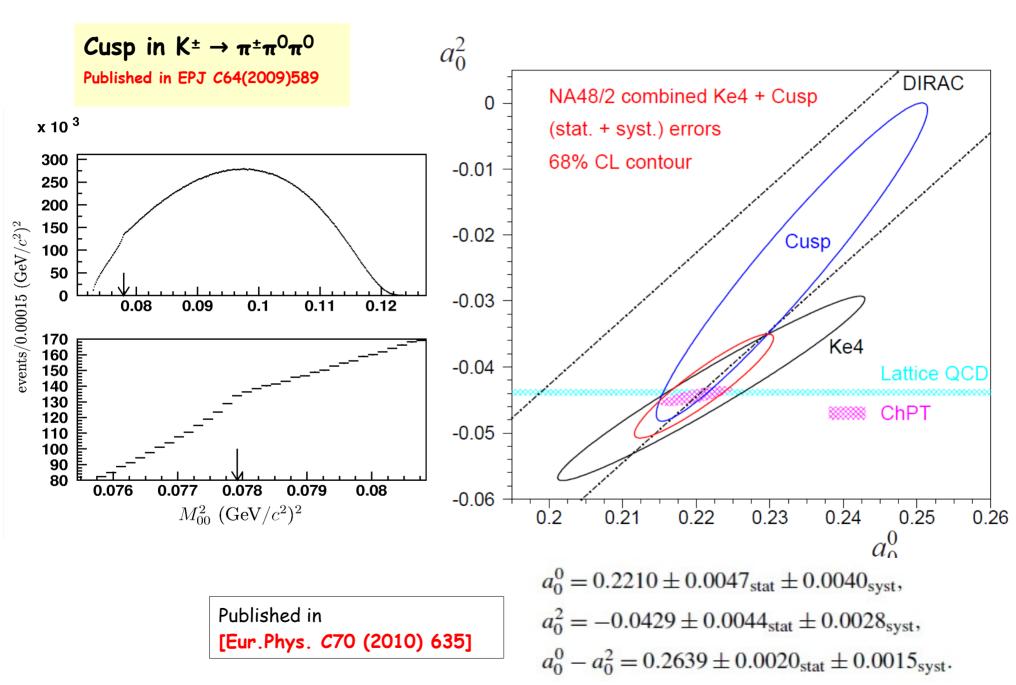
$$BR(K_{e4}(+-)) = (2.552\pm0.010_{stat.}\pm0.010_{syst.}\pm0.032_{ext.}) \times 10^{-5} = (2.552\pm0.035) \times 10^{-5}$$

1.4% rel.err.

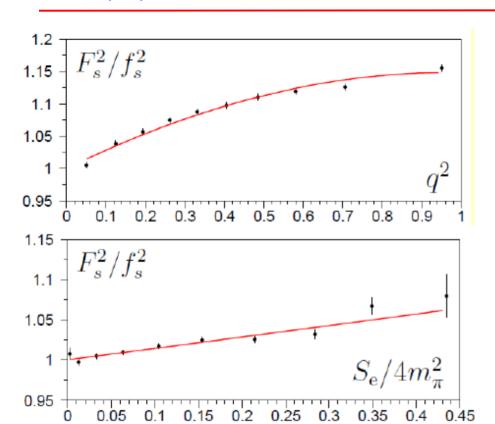
Absolute form factor value (no radiative corr. for $|V_{us}| = 0.2252 \pm 0.0009$ from PDG 2012)

$$(1+\delta_{EM})$$
 F_s $(q2=0,Se=0) = 6.079\pm0.012_{stat}\pm0.027_{syst}\pm0.046_{ext}$

```
* 1.11 millons of reconstructed K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}v /K_{e4}(+-) / and ~65000 of K^{\pm} \rightarrow \pi^{0}\pi^{0}e^{\pm}v /K_{e4}(00) / decays (2003+2004 data).
```


* Improved branching fractions:

```
Br Ke4(+-) = (4.257 \pm 0.035) \times 10^{-5} [Phys.Lett. B715 (2012) 105] (3 times better/PDG)
Br K<sub>e4</sub>(00) = (2.552 \pm 0.035) \times 10^{-5} [preliminary] (13 times better/PDG)
```


* $K_{e4}(00)$ F_s form factor is compatible with the $K_{e4}(+-)$ one above $2m_{\pi^+}$ threshold. Deficit below can be due to $(\pi\pi)$ final state charge exchange scattering.

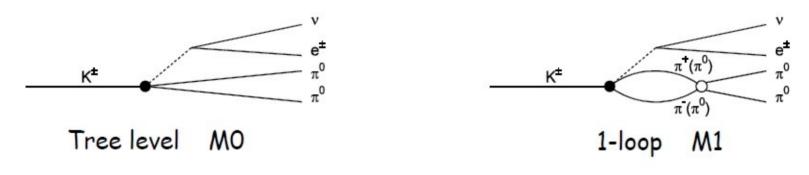
Spares

$\pi\pi$ scattering lengths measurement from phase shift δ (M $_{\pi\pi}$) = $\delta_{\rm s}$ - $\delta_{\rm p}$

Ke4(+-)

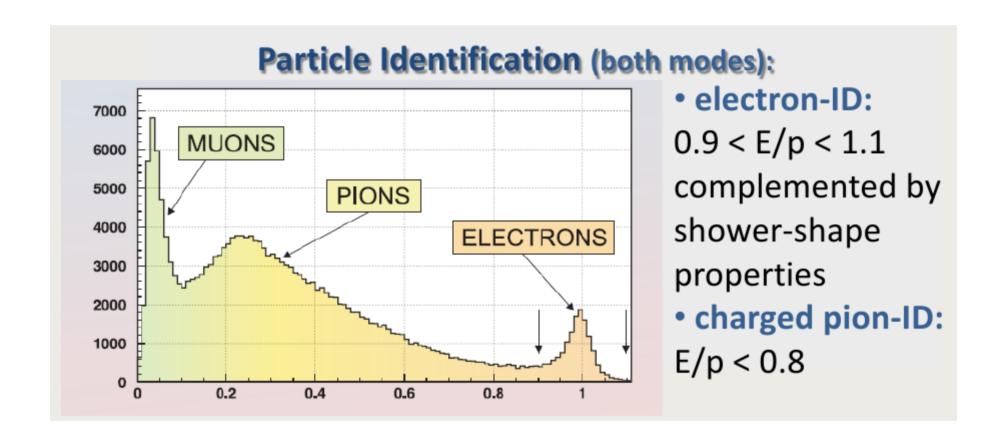
0.15

$$\Gamma(K_{e4})/\Gamma(K_{3\pi}) = \frac{N_s - N_b}{N_n} \cdot \frac{A_n \, \varepsilon_n}{A_s \, \varepsilon_s}$$


$$BR(K_{e4}) = \frac{N_s - N_b}{N_n} \cdot \frac{A_n \varepsilon_n}{A_s \varepsilon_s} \cdot BR(K_{3\pi})$$

$$BR(K_{e4}) = \tau_{K^{\pm}} \cdot (|V_{us}| \cdot f_s)^2 \cdot \int d\Gamma_5 / (|V_{us}| \cdot f_s)^2$$

$$d\Gamma_5 = \frac{G_F^2 |V_{us}|^2}{2\hbar (4\pi)^6 m_K^5} \rho(S_\pi, S_e) J_5(S_\pi, S_e, \cos \theta_\pi, \cos \theta_e, \phi) dS_\pi dS_e d\cos \theta_\pi d\cos \theta_e d\phi$$


$K_{e4}(00)$ Form Factor interpretation by analogy

1-loop calculation for 3π decays: Cabibbo, PRL 93(2004)121801


```
Above threshold: |M|^2 = |MO + i M1|^2 = MO^2 + M1^2
Below threshold: |M|^2 = |MO + M1|^2 = MO^2 + M1^2 + 2 MO M1
q2 = S\pi/4m\pi +^2 -1 \ \sigma\pi = \sqrt{(4m\pi +^2/S\pi -1)} = \sqrt{(|q2|/(1+q2))}
```

```
M0 = unperturbed amplitude: Fs = fs (1+ a q2 + b q4 + c Se/4m\pi+2) M1 = scattering amplitude: - 2/3 (a0-a2) fs \sqrt{(|q2|/(1+q2))}
```

