



# Kinematical constraint revisited and nonlinear evolution at large values of coupling constant Krzysztof Kutak



Supported by grant: LIDER/02/35/L-2/10/NCBiR/2011

#### The BFKL equation and its solution



 $\partial_Y \mathcal{F}(Y,\rho) = \frac{1}{2} \lambda' \partial_\rho^2 \mathcal{F}(Y,\rho) + \frac{1}{2} \lambda' \partial_\rho \mathcal{F}(Y,\rho) + (\lambda + \lambda'/8) \mathcal{F}(Y,\rho).$ 

#### The kinematical constraint effects



#### Stasto model for resummed BFKL with kinematical constraint and DGLAP effects

$$\begin{split} f(x,k^2) &= f_0(x,k^2) \\ &+ \bar{\alpha}_s k^2 \int_x^1 \frac{dz}{z} \int_0^\infty \frac{dl^2}{l^2} \left[ \frac{f(x/z,l^2)\theta(l-kz)\theta(k/z-l) - f(x/z,k^2)}{|l^2 - k^2|} + \frac{f(x/z,k^2)}{\sqrt{4l^4 + k^4}} \right] \\ &+ \frac{f(x/z,k^2)}{\sqrt{4l^4 + k^4}} \right] \end{split}$$

$$\chi_{k.c.}(\gamma, \omega) = 2\psi(1) - \psi(1 - \gamma + \omega/2) - \psi(\gamma + \omega/2).$$

 $\chi_{eff}(\gamma, \omega) = \bar{\alpha}_s \chi_{k.c.}(\gamma, \omega) (1 + A\omega)$ 



The leading order in AdS/CFT Brower, Polchinski, Strassler

$$j = 1 + \omega = 2 - \frac{c_0}{\sqrt{\bar{\alpha}_s}}, \qquad c_0 = 1/\pi$$

Stasto, '07

Crucial behaviour vanishing eigenvalue when  $\omega \rightarrow 1$ 

Contains DGLAP anaomalous Dimension at LO in  $\ln Q^2$ 



Higher orders: Costa, Goncalves, Penedones' 12 Kotokov, Lipatov '13 Janik '14

#### Stasto model for BFKL with kinematical constraint and DGLAP effects

Kutak, Surowka, '13

$$\begin{split} f(x,k^2) &= f_0(x,k^2) \\ &+ \bar{\alpha}_s k^2 \int_x^1 \frac{dz}{z} \int_0^\infty \frac{dl^2}{l^2} \left[ \frac{f(x/z,l^2)\theta(l-kz)\theta(k/z-l) - f(x/z,k^2)}{|l^2 - k^2|} + \frac{f(x/z,k^2)}{\sqrt{4l^4 + k^4_4}} \right] \\ & \qquad \text{we choose the symmetric form of k.c.} \end{split}$$

$$\chi_{k.c.}(\gamma,\omega) = 2\psi(1) - \psi(1 - \gamma + \omega/2) - \psi(\gamma + \omega/2).$$

$$f(x,k^2) = \frac{1}{2\pi i} \int d\gamma(k^2)^{\gamma} \frac{1}{2\pi i} \int d\omega x^{-\omega} \frac{\omega \overline{f}_0(\omega,\gamma)}{\omega - \bar{\alpha}_s \chi_{k.c.}(\gamma,\omega,\gamma)}$$

$$\omega = \operatorname{Re}\left(\chi_{eff\,k.c.}(1/2 + i\nu,\omega)\right) \qquad \chi_{eff}(\gamma,\omega) = \bar{\alpha}_s \chi_{k.c.}(\gamma,\omega)\left(1 + A\omega\right)$$



e 7

$$f(x,k^2) = \frac{1}{2\pi i} \int d\gamma (k^2)^{\gamma} f(x_0,\gamma) \left(\frac{x}{x_0}\right)^{-\bar{\alpha}_s \chi(\gamma)}.$$



#### BFKL equation at strong coupling

Fit function 
$$\chi_{eff\infty}(\omega, 1/2 + i\nu) = \sum_{n=-M}^{N} A_n \nu^n$$
  
 $\chi_{eff\infty}(\omega, 1/2 + i\nu) = P_{10}(\nu)\theta(\nu + 0.683)\theta(0.683 - \nu) - \theta(-\nu - 0.683) - \theta(\nu - 0.683)$   
Works very well:  $\chi_{eff\infty}(\omega, 1/2 + i\nu) = 1.02795 - 2.04635\nu^2 \equiv \lambda_{st} - \frac{1}{2}\lambda'_{st}\nu^2$ 

$$\partial_Y \Phi(Y,\rho) = \frac{1}{2} \lambda_{st}' \partial_\rho^2 \Phi(Y,\rho) + \frac{1}{2} \lambda_{st}' \partial_\rho \Phi(Y,\rho) + (\lambda_{st} + \lambda_{st}'/8) \Phi(Y,\rho) \quad \lambda_{st}' = 4.08, \ \lambda_{st} = 1.02$$

### Gluon density at the large coupling values



#### WW density at the large coupling values



Nonlinear nonlinear equation valid at strong coupling limit

$$\partial_Y \Phi(Y,\rho) = \frac{1}{2} \lambda'_{st} \partial^2_{\rho} \Phi(Y,\rho) + \frac{1}{2} \lambda'_{st} \partial_{\rho} \Phi(Y,\rho) + (\lambda_{st} + \lambda'_{st}/8) \Phi(Y,\rho) - \frac{\bar{\alpha}_s}{\pi R^2} \Phi^2(Y,\rho)$$

# Saturation scale at large values of couplng constant

$$\mathcal{F}_{\mathcal{BK}}(Y,\rho) = \frac{N_c}{4\pi\alpha_s}\partial_{\rho}^2\Phi(Y,\rho)$$



 $\partial_{\rho} \mathcal{F}_{BK}(Y,\rho)|_{\rho=\ln Q^2_x(Y)} = 0$ 



Similar behaviour as in Mueller, Shoshi, Xiao '10

## **Outlook**

•Entropy at large coupling

•Full range in running coupling effect

•Just for curiosity check the cross section for inclusive production

•Perhaps formulate directly in momentum space