charged current on longitudinally polarised nucleons at an EIC
Overview

- Charged current DIS with polarised nucleons
- CC DIS and electron-ion collider (EIC)
- Event simulation with radiative corrections
- Detector effects and kinematic reconstruction
- Asymmetry results

PRD 88 114025 (2013)
Both allow **flavour separation**

CC differs in:
- no **fragmentation functions**
- accesses higher Q^2
- different flavour combinations

Want to do both because they
- offer **complementary information**
- access different **kinematic regimes**
SIDIS vs. charged current DIS

- Both allow **flavour separation**
- CC differs in:
 - no **fragmentation functions**
 - accesses higher Q^2
 - different flavour combinations

Want to do both because they
- offer **complementary information**
- access different **kinematic regimes**
Structure functions

\[
\frac{d^2 \Delta \sigma^{W,-,N}}{dx dy} = \frac{2 \pi \alpha_{em}^2}{xyQ^2} \eta \left[2Y_+ x g_1^{W,-,N} - Y_+ g_4^{W,-,N} + y^2 g_L^{W,-,N} \right]
\]

where

\[
g_L \equiv g_4 - 2xg_5
\]

CC structure functions

\[
g_1^{W,-,p}(x) = \Delta u(x) + \Delta \bar{d}(x) + \Delta c(x) + \Delta \bar{s}(x),
\]

\[
g_5^{W,-,p}(x) = -\Delta u(x) + \Delta \bar{d}(x) - \Delta c(x) + \Delta \bar{s}(x)
\]

NLO corrections are modest

- How can we measure polarised CC DIS?
 - need a **new machine**

![Graph showing proton and neutron structure functions with NLO corrections and DSSV predictions.](image)
Charged current DIS at an EIC
Electron-Ion Collider (EIC)

- High energy **electron-hadron** collider
- Assume **eRHIC** baseline performance here
 - Beams: p^\uparrow, “n^\uparrow” (He3) & nuclei
 - 10-20 GeV **electrons**
 - up to 250 GeV **protons**
 - luminosity: $\sim 10^{33}$ cm$^{-2}$ s$^{-1}$

Use **10 fb$^{-1}$** (~ 1 year of running) as a realistic “chunk” of data for our study

See talks by E. Aschenauer & JH Lee & P. Nadel-Turonski
High energy electron-hadron collider

Assume RHIC baseline performance here

- Beams: $p \uparrow$, $n \uparrow$ (He3) & nuclei
 - 10-20 GeV electrons
 - up to 250 GeV protons
 - luminosity: $\sim 10^{33}$ cm$^{-2}$ s$^{-1}$

Electron-Ion Collider (EIC)

Use 10 fb$^{-1}$ (~1 year of running) as a realistic "chunk" of data for our study

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all
CC DIS cross section

EIC energies

\[\sigma^{CC} \ [\text{pb}] \]
NLO, \(0.01 \leq y \leq 0.95 \)

\[Q_{\text{min}}^2 \ [\text{GeV}^2] \]

\(\sigma \) depends little on \(Q_{\text{min}}^2 \) for \(Q_{\text{min}}^2 < M_W^2 \)

Still feasible at lower electron energy

\[Q^2 \frac{d\sigma^{CC}}{dQ^2} \ [\text{pb}] \]
NLO, \(0.01 \leq y \leq 0.95 \)

20 \times 250 \text{ GeV}:
- \(e^+p \)
- \(e^-n \)

10 \times 250 \text{ GeV}:
- \(e^+p \)
- \(e^-n \)

\(n \sim 2x \) lower than \(p \)
\(u(x) < d(x) \)
Kinematic coverage

Higher energy better for
- cross section and
- kinematic reach

Most $\sigma > 100 \text{ GeV}^2$

Limit ourselves to here for this study

Up to $x100$ range in Q^2 at given x → QCD evolution
Event simulation with radiative corrections
DJANGOH

- **DIS event generator**
 - includes QED and QCD radiative effects
 - LUND string fragmentation: full final state

- Widely used at HERA
- This analysis uses a new version
 - Add **polarised nucleons**

http://wwwthep.physik.uni-mainz.de/~hspiesb/djangoh/djangoh.html
Radiative corrections

\[r_\sigma = d^2 \sigma^{W^-, p}_{\mathcal{O}(\alpha^3_{em})} / d^2 \sigma^{W^-, p}_{\mathcal{O}(\alpha^2_{em})} - 1 \]

\[r_A = A^W_{L, p} \left| \mathcal{O}(\alpha^3_{em}) / A^W_{L, p} \right|_\mathcal{O}(\alpha^2_{em}) - 1 \]

Can expect to be important at low \(x \) where \(A^W_L \) is small.
Detector effects and kinematic reconstruction
Jacquet-Blondel method
Jacquet-Blondel method

Reconstruct kinematics from hadronic final state

\[y_{JB} = \frac{\sum_i (E_i - p_{z,i})}{2E_e} \]

\[Q^2_{JB} = \frac{p_{T,h}^2}{1 - y_{JB}} \]

\[x_{JB} = \frac{Q^2_{JB}}{y_{JB} S} \]

(\(p_{T,h} = |\sum_i \tilde{p}_T,i| \))

Requires sufficient detector resolution and acceptance

- How well can we do with an EIC?
Geant4 simulation of eRHIC detector
High resolution tracking detector is vital

See talk by A. Kiselev

Geant4 simulation of eRHIC detector
High resolution tracking detector is vital

See talk by A. Kiselev

Geant4 simulation of eRHIC detector

eRHIC detector simulation
Detector performance

- ECal: $\sigma_E/E = 12\% / \sqrt{E}$, $-1 < \eta < 4.5$
- ECal: $\sigma_E/E = 1.8\% / \sqrt{E}$, $-4.5 < \eta < -1$
- HCal: $\sigma_E/E = 38\% / \sqrt{E}$, $2 < \eta < 4.5$

Smear Monte Carlo events with these parameterisations

Better ECal in electron-going direction
Kinematic reconstruction

\[y_{JB} = \frac{\sum_i (E_i - p_{z,i})}{2E_e} \]

\[x_{JB} = \frac{Q^2_{JB}}{y_{JB} S} \]

\[Q^2_{JB} = \frac{p^2_{T,h}}{1 - y_{JB}}, \quad p_{T,h} = |\sum_i \vec{p}_{T,i}| \]

\[\frac{N_{gen} - N_{out}}{N_{gen} - N_{out} + N_{in}} \]

Kinematic construction
under control
Asymmetry results
Large A_L^W at large $x \sim 80\%$

NLO effects small

$\sigma(A_L^W)/A_L^W$ small

- $<\sim 5\%$ for p
- $<\sim 8\%$ for n
- $\sim 25\%$ at x limits

Sensitive to “helicity retention”
Impact on global analyses

- Constrain u, d & anti-q helicities

- Flavour constraint independent of fragmentation

- Important cross check on SIDIS

 ▶ low Q^2, higher twist effects
Impact on global analyses

- Constrain u, d & anti-q helicities
- Flavour constraint independent of fragmentation
- Important cross check on SIDIS
 - low Q^2, higher twist effects
Summary

- **Large A_{LW}** in CC DIS
 - yields information complementary to SIDIS
- **EIC** is **ideal laboratory** to study it
 - Proposed detector is **well suited** to the measurement
- Similar studies may give insights into:
 - **Unpolarised PDFs** at high x & high Q^2
 - **Strangeness**, using CC SIDIS with charm