

Higgs Pair Production via Vector Boson Fusion at the LHC

30th April 2014

Andrea Massironi Northeastern University

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects DIS2014

Layout

- Vector Boson Fusion di-Higgs production
 - Goal of the analysis
 - LHC @13 TeV
- New physics
 - Direct search for new physics
 - Resonant di-Higgs production
 - Indirect search for new physics
 - Strong Double Higgs production
 - Parton level analysis
 - Hadron level analysis
- Results

Vector Boson Fusion di-Higgs searches

- Higgs pair production is one of the most crucial processes for future LHC runs
 - stringent tests of our understanding of electroweak symmetry breaking
- In the SM, the dominant process is **gluon fusion**, with 33 fb at 14 TeV
 - direct sensitivity to the **Higgs trilinear coupling c**₃
- Higgs pair production in **Vector-Boson Fusion** (VBF) is small in the SM, 2 fb at 14 TeV
 - provides direct information on the HVV and HHVV coupling
- Higgs pair production can be substantially enhanced in various BSM scenarios
 - Production of an on-shell resonance decaying into two Higgs bosons
 - Modification of the couplings and indirect search of new physics

di-Higgs decays

Final states considered

- Highest BR H→bb
- Clean and QCD-free final state H→WW→lvlv

Three analyses

Resonant VBF di-Higgs search

Non-resonant VBF di-Higgs search at parton level

Non-resonant VBF di-Higgs search at hadron level

Resonant Higgs pair production

- Direct search [0]
 - If new particles have masses within LHC reach
 - On-shell decay into a Higgs boson pair
 - Couplings to gauge bosons play an important role
 - Benchmark: KK-graviton ($\widetilde{k} = 0.1$) [1,2]

Alexander Belayaev, Olivier Bondu, Andrea Massironi, Alexandra Oliveira, Rogerio Rosenfeld, Veronica Sanz

$G \rightarrow HH$

- ullet Production cross-section: VBF production $\sim 1/10$ of gluon fusion production
- Branching ratio: di-Higgs is one of the higest BR (~25%)

Selections

- Parton level analysis, with jets algorithm run on top of partons
- Exploit boosted topology from $H \rightarrow bb$ decays

$$G \rightarrow HH \rightarrow bbbb$$
 analysis

- Objects:
 - Jet $p_T > 30 \text{ GeV}$
 - Jet $|\eta| < 4.7$

• Invariant mass of 2 jets: $m_{ij} > 400 \text{ GeV}$

- $M_{\rm HH} > 250 \; {\rm GeV}$
- $p_{\scriptscriptstyle T}^{\scriptscriptstyle HH} > 60 \; GeV$
- $\Delta \eta_{\rm HH} < 2$

Caveat

- No selections concerning H→bb and G→HH→bbbb invariant mass are applied
 - To be addressed in a dedicated study after showering and hadronization (ongoing study...)
 - Very conservative result

Boosted jets

- The higher the G mass the higher is the probability for the two Higgs to be boosted and the two b-jets to be merged
 - We recover an uniform analysis efficiency combining different categories

Disclaimer

- Feasibility study to establish more competitive channels and search strategies
- Analysis performed at parton level, no showering and hadronization effects are taken into account
- Perfect b-tag efficiency is considered withing experimental acceptance volume
- Simple cut based analysis performed

 Complete studies, with showering effects, reconstruction effects and possible additional final states are ongoing

Yields

- Yields with 3 ab-1 at 13 TeV
- High signal yields
- ullet Still big background contamination, but it can be reduced by means of m_{bb} and m_{4b} selections

	$pp \to Gr(HH)jj$	σ *eff (pb)	Nevents (3000/fb)	
	σ (pb)			
1450 GeV	6.91E-06	8.17E-07	2.45E+00	
1250 GeV	1.86E-05	2.14E-06	6.41E+00	
1050 GeV	7.87E-05	9.13E-06	2.74E+01	
850 GeV	2.63E-04	3.00E-05	9.01E+01	
650 GeV	1.28E-03	1.40E-04	4.20E+02	
450 GeV	8.87E-03	8.80E-04	2.64E+03	
400 GeV	1.41E-02	1.20E-03	3.60E+03	
300 GeV	1.55E-02	6.42E-04	1.93E+03	
260 GeV	5.72E-03	1.27E-04	3.80E+02	

- Indirect search [0]
 - Effective lagrangian up to dimension 6 operators [3,4]
 - Modification of coupling parameters
 - $\mathbf{c}_{\mathbf{v}} \mathbf{g}_{\mathsf{HVV}}^{\mathsf{SM}} \mathsf{HVV} \rightarrow \mathsf{partially}$ constrained through single Higgs searches
 - $\mathbf{c}_{2V} \mathbf{g}_{HHVV}^{SM} HHVV \rightarrow$ the only process to measure it is via VBF HH
 - $\mathbf{c_3} \, \mathbf{g}_{\text{HHH}}^{\text{SM}} \, \text{HHH}$ \rightarrow accessible also via gluon fusion HH
 - SM: $c_v = c_{2v} = c_3 = 1$

The Cover of the C

Olivier Bondu, Roberto Contino, Maxime Gouzevitch, Andrea Massironi, Alexandra Oliveira, Juan Rojo

$$0.5 < c_v < 1.5$$

$$0.0 < c_{_{2V}} < 2.0$$

$$0.0 < c_3 < 2.0$$

mmo-*-

NEW CALL

Selections

- Objects:
 - Light and b jet and $p_T > 25 \text{ GeV}$
 - Light (b) jet $|\eta| < 4.5$ (2.5) and lepton $|\eta| < 2.5$

- VBF topology:
 - Invariant mass of 2 jets: $m_{jj} > 500 \text{ GeV}$
 - High separation: $\Delta R_{jj} > 4.0$

Two analyses:

- 4b + 2j
 - Tighter VBF cuts to suppress QCD background
 - $m_{ij} > 800 \text{ GeV}$
 - $m_{bb} \sim 125 \text{ GeV} \pm 15\%$ for both the bb pairs

Main backgrounds:

- QCD 4b + 2j
- Z(bb) + 2b + 2j

- 2b + 2l2v + 2j
 - Exploit H → WW kinematic
 - Invariant mass of di-lepton system $m_{\parallel} < 70 \text{ GeV}$
 - Transverse mass of di-W system $m_T < 125 \text{ GeV}$
 - $m_{bb} \sim 125 \text{ GeV} \pm 15\%$

- WW + 2b + 2j
 - Mainly dominated by **tt** + **2j**

High energy regime

- For $(c_v c_{2v}) \neq 0$ the VV \rightarrow HH cross section grows with the partonic energy
 - Modification from SM prediction → high energies
- 4b + 2j
 - $m_{4h} > 1000 \text{ GeV}$
- 2b + 212v + 2j
 - \bullet m_{llbb} > 500 GeV
 - $p_{T}^{bb} > 200 \text{ GeV}$

Yields

- After all the selections applied
 - Selections efficiency quite high ~ 25% for non-SM VBF HH signal
 - Good sensitivity for non-SM VBF HH signal and coupling
 - HL-LHC is needed: L = 3 ab⁻¹

$$4b + 2j$$

Sample	$N_{ m ev} = \sigma_{IV} \cdot \mathcal{L}$ (3 ab ⁻¹)
SM	6.788
$c_V = 0.5$	587.5
$c_V = 1.5$	2039
$c_{2V} = 0$	1160
$c_{2V} = 2$	982.5
$c_3 = 0$	10.21
$c_3 = 2$	5.385
4bjj	355.5
Zbbjj o 4bjj	< 7

$$2b + 2l2v + 2j$$

Sample	$N_{ m ev} = \sigma_{III} \cdot \mathcal{L}_{(3 \ ab^{-1})}$
SM	0.1
$c_V = 0.5$	1.4
$c_V = 1.5$	45.2
$c_{2V} = 0.0$	10.3
$c_{2V} = 2.0$	8.1
$c_3 = 0.0$	0.2
$c_3 = 2.0$	0.1
WWbbjj	_
$t\bar{t}jj \to WWbbjj$	< 6.2

- Parton level events showered and hadronized with Pythia8
- Jet clustering using **FastJet** with the anti-kT algorithm with **R=0.4**
- Final states:
 - 4b2i
 - 2b2τ2j
 - 2b2W2j (in progress)
- Realistic b-tagging and τ-tagging, including mistag rate
- Only hadronic decays of τ used in the analysis.
- 14 TeV and 100 TeV hadron colliders are used as benchmarks

Olivier Bondu, Roberto Contino, Andrea Massironi, Juan Rojo

$$0.0 < c_{2V} < 2.0$$

-4.0 < $c_3 < 6.0$

$$-4.0 < c_3 < 6.0$$

• c_{2V} and c_3 estimated by means of a likelihood fit [5]:

$$\sigma = c_V^4 \sigma_{SM} \left(1 + A \delta_{c_{2V}} + B \delta_{c_3} + C \delta_{c_{2V}} \delta_{c_3} + D \delta_{c_{2V}}^2 + E \delta_{c_3}^2 \right)$$

$$\delta_{c_{2V}} \equiv 1 - \frac{c_{2V}}{c_V^2}$$
 , $\delta_{c_3} \equiv 1 - \frac{c_3}{c_V}$

• Scale-invariant resonance tagging, which provides a smooth matching between boosted and resolved kinematics [6]

$$4b + 2j$$

- At HL-LHC deviations from the SM value of c_{2V} can be probed at the level of 20%
- The most stringent constraints come from the boosted region with $M_{HH} > 1.5$ TeV, where jet substructure is crucial
- The sensitivity to c_3 is worse than in gg \rightarrow HH since in the threshold region the backgrounds are much larger than signal

$$4b + 2j$$

• Sensitivity at 100 TeV is only slightly better than at 14 TeV: increase in signal rates compensated by stronger growth of the QCD background

- HL-LHC constrains from the $2b2\tau2j$ final state are less severe on c_{2y} than those from 4b:
 - deviations from the SM down to 40-50%
 - reduced sensitivity comes from the small number of signal events
 - At 100 TeV the sensitivity on the 2b2τ2j final state is improved thanks to the increase in signal cross-section

NIEN CANE

Conclusions

Vector Boson Fusion di-Higgs production

• Goal of the analysis \rightarrow new physics at LHC @ 13 TeV

Direct search for new physics

- Resonant di-Higgs production
- KK-graviton as a benchmark
- VBF $G \rightarrow HH \rightarrow bbbb$ final state considered
 - High signal yields

Indirect search for new physics

- Strong Double Higgs production
- Sensitivity to c_{2V} (HHVV vertex) \rightarrow only accessible via VBF HH
 - Parton level analysis:
 - VBF HH \rightarrow bbbb / WW(lvlv)bb final state considered
 - Hadron level analysis:
 - VBF HH \rightarrow bbbb / $\tau\tau$ bb final state considered
 - $angle \sim 20\%$ sensitivity to c_{2V} with HL-LHC

backup

Strong double Higgs production

• Cross section for signal with different coupling modification and different final states

Model	Final state	Cross section [fb]	$N_{\mathrm{ev}} \; (\mathcal{L} = 3 \mathrm{ab}^{-1})$	
SM (no cut)	$hhjj \\ hhjj$	0.83	2500	
SM		0.12	360	
SM	hhjj o 4bjj	0.049	150	
$c_V = 0.5$		0.54	1600	
$c_V = 1.5$		2.72	8100	
$c_{2V} = 0$		1.23	3700	
$c_{2V} = 2$		0.78	2300	
$c_3 = 0$		0.14	420	
$c_3 = 2$		0.042	130	
SM $c_V = 0.5$ $c_V = 1.5$ $c_{2V} = 0$ $c_{2V} = 2$ $c_3 = 0$ $c_3 = 2$	$hhjj o l^+ l^- ot\!$	$8.6 \cdot 10^{-4}$ $2.0 \cdot 10^{-3}$ $9.8 \cdot 10^{-2}$ $1.9 \cdot 10^{-2}$ $1.1 \cdot 10^{-2}$ $2.4 \cdot 10^{-3}$ $7.4 \cdot 10^{-4}$	2.6 6 290 54 33 7 2.2	

Transverse mass $H \rightarrow WW \rightarrow lvlv$

- ullet Transverse mass used in H o WW o lvlv analysis
 - Due to lack of information from neutrinos, invariant mass cannot be reconstructed
 - Transverse mass under the hypothesis $m_{ll} \sim m_{vv}$

$$m_T(WW) \equiv \left(\left(\sqrt{m_{ll}^2 + |\vec{p}_{Tll}|^2} + \sqrt{m_{ll}^2 + |\vec{p}_{Tmiss}|^2} \right)^2 - |\vec{p}_{Tll} + \vec{p}_{Tmiss}|^2 \right)^{1/2}$$

KK-Graviton

- KK-graviton $\Delta \eta_{ii}$ distribution
 - KK-graviton vertices with vector bosons implies no high- $\Delta\eta_{ii}$ distribution
 - Related spin 2 resonances

KK-Graviton efficiencies

• Cut flow efficiencies

G 1	1 ' .					
Sample	basic cuts	jet merging				
	(eqs. 7,6)	(akt5)	$M_{jj} > 400 \text{ GeV}$	$M_{HH} > 250 \text{ GeV}$	$p_T^{HH} > 60 \mathrm{GeV}$	$\Delta \eta_{HH} < 2$
1450 GeV	0.53	0.49	0.44	0.44	0.41	0.35
1250 GeV	0.52	0.47	0.43	0.43	0.40	0.35
1050 GeV	0.52	0.48	0.44	0.44	0.40	0.35
850 GeV	0.51	0.47	0.42	0.42	0.39	0.34
650 GeV	0.51	0.43	0.39	0.39	0.36	0.33
450 GeV	0.54	0.38	0.34	0.34	0.32	0.30
400 GeV	0.55	0.33	0.29	0.29	0.28	0.26
300 GeV	0.58	0.17	0.14	0.14	0.13	0.12
260 GeV	0.60	0.09	0.07	0.07	0.07	0.07
$SM H(b\bar{b})H(b\bar{b})$ jj	0.41	0.38	0.36	0.36	0.30	0.12
$Z(bar{b})\;bar{b}\;\mathrm{jj}$	0.50	0.36	0.14	0.10	7.91E-02	4.55E-02
$Z(bar{b})Z(bar{b})$ jj	0.62	0.51	0.17	0.12	9.66E-02	6.61E-02
$bar{b}\ bar{b}$ jj	0.70	0.20	0.11	6.73E-02	5.49E-02	4.55E-02

References

- [0] Les Houches 2013: Proceedings in preparation
- [1] L. Randall and R. Sundrum, Phys.Rev.Lett. 83 (1999) 3370–3373, [hep-ph/9905221]
- [2] A. L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang, JHEP 0709 (2007) 013
- [3] R. Contino et al, arxiv:1002.1011
- [4] H. Georgi et al, Phys.Lett. B145, 216
- [5] R. Contino et al, arxiv:1309.7038
- [6] Gouzevitch, Oliveira, Rosenfeld, JR, Salam, Sanz, arxiv:1303.6636