Leptoproduction of vector meson from the small x to the valence region

Adrien Besse

Irfu - SPhN

DIS2014, Warsaw

Leptoproduction of vector meson

Hard exclusive vector meson leptoproduction from small x to the valence region

- Important exclusive process for at least two communities :
 - Small-x community (k_T -factorization, dipole models)
 - GPD community (Collinear factorization framework)
- Comparison between the two descriptions

Probing the non-perturbative physics of the nucleon and the meson

- Information on the nucleon Generalized Parton Distributions (GPDs) :
 - intrinsically non-forward amplitudes : $|t|_{\min} \sim \frac{4 m^2 \xi^2}{1 \xi^2}$ \Rightarrow Skewness effects
 - DVMP ⇒ scan the flavor content of the nucleon (via quark diagram contributions)

$$ho = rac{1}{\sqrt{2}}(uar{u} - dar{d}), \quad \phi = sar{s}, \quad \omega = rac{1}{\sqrt{2}}(uar{u} + dar{d}), \cdots$$

- Small x : Information on the dipole cross-section $\hat{\sigma}(x, \underline{r})$:
 - Saturation effects and transverse distribution of gluons
 - Skewness factor (Shuvaev, Golec-Biernat, Martin, Ryskin, '99)
- Information on the wavefunction or the distribution amplitudes of the vector meson (VM)

Observables and kinematic ranges

- Spin density matrix elements (SDME) linked to the helicity amplitudes : (Schilling Wolf, '73) & (Dielh, '07)
 - small x HERA (H1 and ZEUS)
 - mid-x region: COMPASS, HERMES, E665, NMC
 - valence region: CLAS

Part I : DVMP within k_T -factorization and dipole models

Sudakov Basis

• Light-cone vectors p_1 and p_2 :

$$p_1^2 = p_2^2 = 0$$
$$2 p_1 \cdot p_2 = s$$

• We can choose:

• Euclidean notation : $\underline{k}^2 = -k_{\perp}^2$

- ∢ ⊒ >

•
$$k = \alpha p_1 + \beta p_2 + k_\perp$$

- Writing $g_{\mu\nu}=\frac{p_{2\mu}p_{1\nu}+p_{1\mu}p_{2\nu}}{s/2}+g_{\perp\mu\nu}$
- Eikonal approximation :

$$p_1 \qquad p_1 + k \sim p_1$$

$$\gamma^{\mu} g_{\mu\nu} \rightarrow \frac{\not p_2}{p_1 \cdot p_2} p_{1\nu} + \cdots$$

 Next-to-Eikonal approximation at small-x in pA gluon production See talk (T. Altinoluk)

Impact factor representation of the helicity amplitudes

$$\mathcal{M}_{\lambda_V \lambda_\gamma} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 (\underline{k}^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \to V(\lambda_V)}(\underline{k}) \Phi^{P \to P}(-\underline{k})$$

•
$$k = \alpha p_1 + \beta p_2 + k_\perp$$

Impact factor representation of the helicity amplitudes

$$\mathcal{M}_{\lambda_V \lambda_\gamma} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 (\underline{k}^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \to V(\lambda_V)}(\underline{k}) \Phi^{P \to P}(-\underline{k})$$

$$\begin{split} \mathcal{M}_{\lambda_{V}\lambda_{\gamma}}(s,t) &= \frac{is}{(2\pi)^{2}} \int \frac{d^{2}\underline{k}}{\underline{k}^{2}} \Phi^{\gamma^{*} \to V}(\underline{k}, \underline{\Delta} - \underline{k}) \int \frac{d^{2}\underline{k}'}{\underline{k}'^{2}} \Phi^{p \to p}(-\underline{k}', -\underline{\Delta} + \underline{k}') \\ &\times \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{s}{s_{0}}\right)^{\omega} G_{\omega}(\underline{k}, \underline{k}', \underline{\Delta}) \\ &\equiv is \int \frac{d^{2}\underline{k}}{\underline{k}^{2}(\underline{\Delta} - \underline{k})^{2}} \Phi^{\gamma^{*} \to V}(\underline{k}, \underline{\Delta} - \underline{k}) \mathcal{F}(\underline{x}, \underline{k}, \underline{\Delta}) \end{split}$$

Regge theory point of view

- Pomeron $I\!\!P$ exchange in t-channel
- Pomeron contains the s-dependence
- Fits (Donnachie, Landshoff, '92) of experimental data \Rightarrow Pomeron intercept $\alpha_P(0) = 1.08 \Leftrightarrow \sigma_{tot} \propto s^{0.08}!$
- Pomeron couplings to hadrons:

Double Pomeron exchange in central meson production See talk (P. Lebiedowicz)

BFKL resummation

• Resummation in $\alpha_s \ln(s)$:

6

$$= \alpha_s \sum_n (\alpha_s \ln(s))^n$$

- BFKL equation Balitsky, Fadin, Kuraev, Lipatov, '77, '78
- LO BFKL solution = LLx Hard QCD Pomeron leads to $\sigma_{tot} \sim s^{\alpha_P 1}$ with $\alpha_P > 1$ Pomeron intercept
- Probing BFKL dynamics in Mueller-Navelet jets See talks. (B. Ducloué), (R. Maciula), (G. Safronov)
- NLLx evolution \Rightarrow NLLx impact factors : Heavy quark NLLx impact factors : See talk (M. Deak))

Saturation and pQCD evolution equations

QCD evolution equations

- Q² evolution driven by DGLAP equation Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, '72, '77
- small x evolution driven by BFKL equation in the diluted regime and BK-JIMWLK equation in the dense regime (Balitsky-Kovchegov '96, Jalilian-Marianlancu-McLerran-Weigert-Leonidov-Kovner, 97', '99, '01).
- Low-x evolution equations: See talks : (K. Kutak) (gluon evolution at strong coupling), (G. Beuf) (Improv. Kinematics), (Y. Mulian) (NLO JIMWLK)
- Dipole model approach, a convenient scheme to introduce saturation effects

Color dipole factorization scheme

 Impact parameter space representation of the amplitudes in the infinite momentum frame

Nikolaev, Zakharov, '91, Mueller, '90

- Initial Ψ_i and final Ψ_f states wave functions.
- Universal dipole/target scattering amplitude $\mathcal{N}(x, \underline{r}, \underline{b})$:
 - DIS structure functions, DIS diffractive, exclusive processes...
 - See talk (H. Mäntysaari): initial condition for the dipole scattering amplitude from DIS

• Amplitude for DVMP (Kowalski, Motyka, Watt, '06):

$$\mathcal{M}_{\lambda_V \lambda_\gamma}(Q^2, x, t) = is \int dy \int d\underline{r} \int d^2\underline{b} \, \Psi^*_{\lambda_V}(y, \underline{r}) \, \Psi_{\lambda_\gamma}(y, \underline{r}) \, e^{-i(\underline{b} - \bar{y}\underline{r}) \cdot \Delta} \mathcal{N}(x, \underline{r}, \underline{b})$$

Next talk: dipole models with <u>b</u>-dependence (A. Rezaeian) • In the limit $\underline{\Delta} = 0$, i.e. $|t| = |t|_{min}$,

$$\mathcal{M}_{\lambda_V \lambda_\gamma}(Q^2, x) = is \int dy \int d\underline{r} \, \Psi^*_{\lambda_V}(y, \underline{r}) \, \Psi_{\lambda_\gamma}(y, \underline{r}) \, \hat{\sigma}(x, \underline{r})$$

• Dipole cross-section and unintegrated gluon density at Born level

$$\hat{\sigma}(x,\underline{r}) = \frac{N^2 - 1}{4} \frac{4\pi\alpha_s}{N} \int d^2\underline{k} \frac{1}{(\underline{k}^2)^2} \mathcal{F}(x,\underline{k}) \left(1 - e^{-i\underline{k}\cdot\underline{r}}\right) \left(1 - e^{i\underline{k}\cdot\underline{r}}\right)$$

• Skewness effects can be taken into account in dipole cross-section model (Shuvaev, Golec-Biernat, Martin, Ryskin, '99)

< ロ > < 同 > < 三 > < 三 >

Factorization of the wavefunctions and models

 Vector meson wavefunction: need to be modeled See talk (M. Djuric) on nucleon and meson holographic wavefunctions in ADS Models of dipole cross-section

- Small-x evolution
 - Initial condition for the dipole cross-section at a given rapidity from DIS structure functions
 - Evolution with rc-BK equation (Balitsky, '07)

See talk (H. Mäntysaari) for details

• DGLAP evolution (Bartels, Golec-Biernat, Kowalski, '02)

$$\hat{\sigma}(x,\underline{r}) = \sigma_0 \left(1 - \exp\left\{ -\frac{\pi^2 \underline{r}^2 \alpha_s(\mu^2(\underline{r}^2)) xg(x,\mu^2(\underline{r}^2))}{3\sigma_0} \right\} \right)$$

See talk (Kowalski) for details

Part II : Modified perturbative approach and connection to dipole models

< < >> < <</>

Description of exclusive processes within Collinear factorization approach

- Description of DVMP, DVCS, TCS, ... in the Bjorken limit
- Collinear factorization proven for LT amplitude M_V, {0+;0+}
 (Collins, Frankfurt, Strikman, '97, Radyushkin, '97)
- Set of GPDs, $H(x,\xi,t)$, $E(x,\xi,t)$, $\tilde{H}(x,\xi,t)$, $\tilde{E}(x,\xi,t)$

Quark and Gluon contributions:

$$\mathcal{M}_{V}^{g} = \int dx \int dy \int \frac{d^{2}\ell}{(2\pi)^{2}} \bigvee_{x + \xi} \bigvee_{x +$$

• Neglect then $\frac{\ell_{\perp}^2}{y\bar{y}Q^2}$ terms in numerator in the MPA spirit

- \bullet Fourier transform in transverse space \rightarrow impact parameter space
- Sudakov form factor (Sterman, Li , '92) (Resums soft gluon emmisions from the quark-antiquark dipole)

•
$$k = \alpha p_1 + \beta p_2 + k_\perp$$

Impact factor representation of the helicity amplitudes

$$\mathcal{M}_{\lambda_V \lambda_\gamma} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 (\underline{k}^2)^2} \Phi^{\gamma^*(\lambda_\gamma) \to V(\lambda_V)}(\underline{k}) \Phi^{P \to P}(-\underline{k})$$

Results in the two different approaches in the limit $t \sim 0$

• MPA result for the helicity amplitude $\gamma_L^* N(p) \rightarrow V_L N(p')$ (A.B. in preparation):

$$\mathcal{I}m \, \mathcal{M}^{g}_{V,\{0+,0+\}} = -\int_{0}^{1} dy \int d^{2}\underline{r} \sum_{f} C^{f}_{V} \left(\hat{\Psi}_{V}(y,-\underline{r}) \hat{\Psi}^{f}_{\gamma^{*}_{L}}(y,\underline{r})
ight)
onumber \\ imes \left(\frac{\pi \sqrt{2\pi}}{N_{c} \, y \overline{y}} \alpha_{s} \frac{H^{g}(\boldsymbol{\xi},\boldsymbol{\xi},0)}{2\boldsymbol{\xi}}
ight)$$

• k_T -factorization result for the helicity amplitude $\gamma_L^* N(p) \rightarrow V_L N(p')$: (A.B., Szymanowski, Wallon, '13)

$$\begin{split} \mathcal{I}m\,\mathcal{M}^{g}_{V,\{0+,0+\}} &= -\int dy \int d^{2}\underline{r} \sum_{f} C^{f}_{V} \left(\hat{\Psi}_{V}(y,-\underline{r}) \hat{\Psi}^{f}_{\gamma^{*}_{L}}(y,\underline{r}) \right) \\ & \times \left(\frac{s\,\hat{\sigma}(x,\underline{r})}{2\sqrt{2\pi}} \right) \end{split}$$

• At small $-x: \xi \approx x/2$

Interpretation

• Forward dipole cross-section (Frankfurt, Radyushkin, Strikman, '97) :

$$\hat{\sigma}(x,\underline{r}) = \frac{\pi^2}{N_c} \underline{r}^2 \alpha_s x g(x)$$
 (color transparency)

• Comparing the results for DVMP:

$$\begin{split} \hat{\sigma}(x,\underline{r}) \leftrightarrow \frac{\pi^2}{N_c} \left(\frac{4}{y\bar{y}Q^2}\right) \, \alpha_s H^g(\xi,\xi,0) &= \frac{\pi^2}{N_c} \underline{r}_0^2 \, \alpha_s H^g(\xi,\xi,0) \\ \text{with } \underline{r}_0^2 &= \frac{4}{y\bar{y}Q^2} \end{split}$$

Analogy between the results

- Evaluating the average $<\underline{r}_0^2>$ over the amplitude $\Rightarrow \sqrt{<\underline{r}_0^2>}\sim \frac{4.9}{Q}$
- When does the average size of dipole $< r_0^2 >$ enter the saturation region ?

• $< r_0^2 > \sim$ independent on the normalization of the wavefunctions.

Contribution from gluons and quarks

- Within MPA : real and imaginary parts of gluon and quark contributions
- Replacement

(extracting the flavor dependence of the overlap of wavefunction):

$$\sum_{f} e_{f} C_{V}^{f} \ \hat{\sigma}(x,\underline{r})$$

$$\longleftrightarrow \sum_{f} e_{f} C_{V}^{f} \ \frac{\pi^{2}}{N_{c}} \left(\frac{4}{y\bar{y}Q^{2}}\right) \alpha_{s} \left\{ \int_{0}^{1} dx \frac{2\xi H^{g}(\xi,\xi,t) + 2\,x\,C_{F}\,\xi H_{\mathsf{singlet}}^{f}(\xi,\xi,t)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)} \right\}$$

• Same $\underline{r}_0^2 = \frac{4}{y \bar{y} Q^2}$ for quark and gluon contribution.

Model dependences

- Models and parameters from (Kroll, Goloskokov, '08) for :
 - GPDs with evolution approximated by the DGLAP evolution
 - Wavefunctions model (Gaussian ansatz)

$$\hat{\Psi}_V(y,\underline{r}) \propto \text{Leading twist DA } imes \exp\left(-rac{\underline{r}^2}{4a_V^2}yar{y}
ight)$$

 Kroll&Goloskokov GPD model based on double distribution ansatz (Musatov, Radyushkin, '00)

$$H(x,\xi) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\delta(\beta + \xi\alpha - x) \,f(\beta,\alpha,t')$$

• Sea quark contribution (via interference term) not negligeable in MPA approach with GK GPDs based on (CTEQ6M, '02) fits ($10^{-4} < x < 0.5$ and $4 < Q^2 < 40~{\rm GeV^2}$)

Ratio $\sigma_L(\phi)/\sigma_L(\rho)$

Data fitted from H1 (Aaron et al., '10)

- Red curve : $\sim |\mathcal{I}m \, \mathcal{M}^g_{\phi}|^2 / |\mathcal{I}m \, \mathcal{M}^g_{\rho}|^2$
- Black curve : $\sim |\mathcal{M}^g_\phi|^2 / |\mathcal{M}^g_\rho|^2$
- No additional factor from the normalization of the ϕ and ρ wavefunctions
- Quark GPD contributions \Rightarrow decreases the ratio of $\sigma_L(\phi)/\sigma_L(\rho)$

From small x region to valence region

- Results for $\mathcal{M}_{V,\{0,+;0+\}}$ in MPA exhibits the factorization of the overlap of the wavefunctions as in the dipole model picture allowing to link the MPA result to the dipole cross-section.
- Perspectives:
 - Other Helicity amplitudes : $\mathcal{M}_{V,\{++,++\}}, ...$
 - PARTONS (PARtonic Tomography Of Nucleon Software) project (collaborations between CPhT, IPN, Irfu, LPT):
 - Software to extract of GPDs from observables with uncertainties on parameters
 - with systematic comparison between theoretical GPD related predictions and data
 - experimental results and theoretical predictions databases
 - Preliminary work on the DVMP observables
 - Descriptions of other helicity amplitudes with Natural (N) and Unatural parity exchange (U) \Rightarrow Sensitivity to other GPDs such as $\mathcal{M}_{V,\{++,++\}}^U \sim \tilde{H}$,

$$\begin{split} \mathcal{M}^N_{V,\{\mu+,\mu+\}} &\sim H(x,\xi,t') \qquad \mathcal{M}^U_{V,\{++,++\}} \sim \tilde{H}(x,\xi,t') \\ \mathcal{M}^N_{V,\{\mu-,\mu+\}} &\sim E(x,\xi,t') \qquad \mathcal{M}^U_{V,\{+-,++\}} \sim \tilde{E}(x,\xi,t') \end{split}$$

related to SDME and spin asymmetries.

Implementation of NLO GPD evolutions

Thanks to my collaborators for encouraging discussions on this work

P. Kroll C. Lorcé C. Mezrag H. Moutarde S. Munier B. Pire F. Sabatié L. Szymanowski S. Wallon

Large Q^2 limit check

- $\sigma_L \propto \left| \int dy \int d^2 \underline{r} \left(\Psi_V^* \Psi_\gamma \right) (y, \underline{r}) \, \hat{\sigma}(x, r) \right|^2$
- Expect to find same numerical values at large Q^2 using :
 - a dipole cross-section model (here GBW model, (Golec-Biernat, Wüsthof, '98)): $\hat{\sigma}(x,r) = \sigma_0(1 e^{-r^2/(4R_0(x)^2)})$
 - a dipole cross-section model with $\underline{r}^2 \rightarrow \underline{r}_0^2 = \frac{4}{u \bar{u} Q^2}$

Transversely polarized cross-section

- \bullet Helicity amplitude $\mathcal{M}_{\mathit{V},\{++,++\}}$ within MPA .. under study
- The overlap of wavefunctions appearing within k_T -factorization $\Psi_V^*(y,\underline{r})\Psi_{\gamma^*}(y,\underline{r})$:

Expected to be sensitive to the Sudakov form factor suppression

Factorization of helicity amplitudes

Twist 2:

•
$$\gamma_L^* \rightarrow \rho_L \ (\equiv T_{00})$$

• $\gamma_T^* \rightarrow \rho_L \ (\equiv T_{01})$
Ginzburg, Panfil, Serbo, '85

-

• Twist 3, in the limit $t \sim 0$:

• $\gamma_T^* \to \rho_T \ (\equiv T_{11})$

Anikin, Ivanov, Pire, Szymanowski, Wallon, '10

Factorization of helicity amplitudes

Twist 2:

•
$$\gamma_L^* \rightarrow \rho_L \ (\equiv T_{00})$$

• $\gamma_T^* \rightarrow \rho_L \ (\equiv T_{01})$
Ginzburg, Panfil, Serbo, '85

• Twist 3, in the limit $t \sim 0$:

• $\gamma_T^* \to \rho_T \ (\equiv T_{11})$

Anikin, Ivanov, Pire, Szymanowski, Wallon, '10