Nuclear matter effects on J/ψ production in Cu+Au and U+U collisions in PHENIX
Heavy Ion collisions and QGP

- The hot, dense state of nuclear matter, **Quark Gluon Plasma**
 - deconfined, color charged state of quarks and gluons
 - experimentally achievable with heavy ion collisions
- High temperature and/or baryon density

Lattice QCD predictions:
- \(T_c \approx 170 \text{ MeV} \)
- \(\varepsilon_c \approx 1 \text{ GeV/fm}^3 \) (>5x Nuclear hadron matter)
Heavy quarks & Heavy ion collisions

• “If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents cc binding in the deconfined interior of the interaction region.”

• The color (Debye) screening modifies the particle potential due to the charge density of the surrounding medium

• Quarkonium potential in the medium becomes shallower
 – With increasing T different $q\bar{q}$ states “sequentially melt”
 – J/ψ becomes unbound \rightarrow suppression in QGP!

\[
V(r) = \sigma r - \frac{\alpha}{r}
\]

\[
V(r, T) = \frac{\sigma}{\mu} \left[1 - e^{-\mu r} \right] - \frac{\alpha}{r} e^{-\mu r}
\]
What can modify J/ψ production?

Phenix has good capabilities to measure J/ψ and probe quarkonia deconfinement and other mechanisms which modify its production.

- Two main sources:
 - Cold nuclear matter effects (CNM)
 - due to the nuclear target (no QGP, systems like d+Au)
 - Hot nuclear matter effects (HNM)
 - modification in the created QGP

- Strategy:
 - Measure (then parametrize) CNM effects in p(d)+A
 - A+A collisions will have both CNM+HNM effects
 - “Remove” CNM effects
 - Learn about QGP mechanisms which modify charmonium
J/ψ measurements in Phenix

- Central arms: electrons
 - J/ψ → e+/e-
 - |η|<0.35, Δφ = π
 - p_e>0.2 GeV/c

- Forward rapidity arms: muons
 - J/ψ → μ+/μ-
 - 1.2 <|η|<2.2, Δϕ = 2π
 - p_μ > 1 GeV/c

- Broad contribution to the world's J/ψ measurements
 - Large energy range: $\sqrt{s_{NN}} = 39\text{-}200$ GeV
 - Broad range of collision species p+p, d+Au, Cu+Cu, Cu+Au, Au+Au, U+U
J/ψ in cold nuclear matter

- d+Au “cold” and asymmetric system
 - Rapidity dependent suppression
- Compared to pp

Quantify suppression in A+B collisions as the ratio of yields in that system to the yield expected from binary scaled* pp collisions

\[R_{AB} = \frac{dN_{AB}/dp_T}{\langle N_{coll} \rangle \times dN_{pp}/dp_T} \]

* Binary scaling means the number of hard collisions each nucleon suffers
Phenix d+Au

- d+Au “cold” and asymmetric system
 - Rapidity dependent suppression
 - Compared to pp
- More suppressed at forward (d-going) rapidity
- CNM effects
 - Modification of gluon densities in nucleus → Nuclear modification of pdfs in nuclear target (EPS09)
 - Gluon saturation → Color Glass Condensate

![Graph showing J/ψ in cold nuclear matter](PHENIX, PRL 107,142301 (2011))

\[
R_{AB} = \frac{dN_{AB}/dp_T}{\left\langle N_{\text{coll}} \right\rangle \times dN_{pp}/dp_T}
\]
J/ψ in cold nuclear matter

- CNM effects
 - Complex admixture of different mechanisms
 - Strongly dependent on rapidity

- Open questions:
 - Can we factorize them?
 - Are there HNM effects in p(d)+Au?
 - Collective phenomenon seen
 - Do they affect J/ψ production?

- Initial parton energy loss

- Gluon shadowing / antishadowing

- Nuclear transverse momentum broadening

- cc-bar breakup in the target nucleus

- Gluon saturation
Heavy ion collisions & Hot Nuclear Matter

• HI collision
 – How to control the properties of the created state

Spectators \rightarrow nucleons outside overlap volume
characteristic nuclear size

Participants (N_{part}) \rightarrow nucleons inside overlap volume
Hot, dense region
Heavy ion collisions & Hot Nuclear Matter

- HI collision
 - How to control the properties of the created state
 - Collision centrality
 - System size
 - e.g. Cu+Cu vs Au+Au
 - Center of mass energy
Heavy ion collisions & Hot Nuclear Matter

- HI collision
 - How to control the properties of the created state
 - Collision centrality
 - System size
 - e.g. Cu+Cu vs Au+Au
 - Center of mass energy
 - e.g. Cu (63 nucleons) vs Au (197 nucleons)
Global particle production & Hot Nuclear Matter

- Charged particle density – measure of the initial energy density of the created state
 - Increases with increasing collision energy.
 - There is an increase for more central collisions at all collision energies.
 - Decreases at higher rapidity.
J/ψ production & Hot Nuclear Matter

• Au+Au measurements in Phenix
 − Energy dependence
 − Rapidity dependence
J/ψ energy dependence

Phenix Au+Au

● Forward rapidity
 - Suppression with respect to pp collisions
 - Suppression increases slightly with increasing energy density (N_{part})
 - Very little, if any, energy dependence

HNM effect

Competing effects of dissociation and regeneration (corrected for CNM)
J/ψ energy dependence

- Forward rapidity
 - Suppression with respect to pp collisions
 - Suppression increases slightly with increasing energy density (N_{part})
 - Very little, if any, energy dependence

- HNM effect
 - Competing effects of dissociation and regeneration (corrected for CNM)

Model: Zhao and Rapp, PRC 82,064905 (2010)
J/ψ energy dependence

- At LHC
 - Suppression is much reduced

ALICE. PRL 109.072301 (2012)
J/ψ energy dependence

- At LHC
 - Suppression is much reduced

- Recombination (coalescence) important at LHC
 - Smaller R_{AA} at low p_T at RHIC energy
 - Larger v_2 at LHC

Zhao and Rapp, Nucl.Phys.A859 (2011)

ALICE, PRL 109,072301 (2012)

ALICE, arXiv:1311.0214
J/ψ rapidity dependence

- Stronger suppression at forward/backward rapidity
 - Does not increase with increasing energy density as seen in charge particle multiplicity

- HNM effects
 - Coalescence
 - CNM effects?
J/ψ in hot nuclear matter

- HNM effects
 - complex admixture of different mechanisms
 - strongly depend on rapidity

- Open questions:
 - Can we factorize CNM effects?

- Study new systems
 - Cu+Au at 200 GeV
 - U+U at 193 GeV
Cu+Au: asymmetric system

- Forward/Backward asymmetry
 - Along the beam axes
- Adds more variation to the initial state
 - Initial asymmetry → translates into asymmetric distribution of final particle density

- J/ψ expectations in Cu+Au
 - Similar to d+Au
 - CNM effects asymmetric
 - Similar to A+A → added HNM effects
 - But possibly asymmetric
J/ψ in Au+Au vs Cu+Au

- Au+Au collisions
 - Strong suppression
 (with respect to binary scaled pp collisions)
J/ψ in Au+Au vs Cu+Au

- Cu+Au: Au-going direction
 - Same suppression as in Au+Au at same N_{part}

arXiv:1404.1873
J/ψ in Au+Au vs Cu+Au

Phenix Cu+Au

Forward rapidity

- Cu+Au: **Cu-going direction**
 - Less suppression than in Au+Au at same N_{part}

arXiv:1404.1873
Cu+Au CNM effects

go to asymmetric in rapidity

Forward CNM effects (Cu-going)
- gluon modification
 - \(J/\psi \) probes gluons at high-\(x \) in Cu, low -\(x \) in Au
- dynamical processes
 - \(E_{\text{loss}} \), \(J/\psi \) short crossing proper time in Au
 - c\(\bar{c} \) breakup by nucleon collisions, long crossing proper time in Cu

Backward (Au-going)
- Reversed CNM effects

Ratio ~ 20% for non-peripheral data
Cu+Au CNM effects

- CNM calculation
 - only includes shadowing
 - Uses EPS09 nPDF and 4 mb effective cross section at all rapidities
 - Shadowing effect comparable with data
 - Has same sign as data

- Not considering other mechanisms, e.g. color screening, which will increase the ratio

U+U: larger system

- New RHIC energy density record in U+U collisions
 \[e_B = 6.15 \text{ GeV/fm}^2/\text{c}. \]

- Moderate increase from central Au+Au to very central U+U (20%)
 - Some expected up to 55% for tip-tip orientation

- PRL 94, 132301 (2005)
J/ψ in U+U predictions

- The higher energy density (15-20% expected in this model)
 - should lead to stronger suppression due to color screening
- Larger N_{coll} (than in Au)
 - Should lead to increased charm by statistical coalescence
- Both effects in opposite direction

- CNM: gluon shadowing is expected to be similar for U+U and Au+Au

$$N_{\text{coll}}^{\text{stat}} \propto N_c^2$$

N_{coll} – number of binary nucleon-nucleon collisions
Weaker suppression in central collisions in U+U?
Higher coalescence?
Conclusions

- Phenix has measured the J/ψ production in two new collision systems
 - Cu+Au
 - adds variation in the studied initial geometry.
 - shows significantly stronger J/ψ suppression in the Cu-going direction, consistent with the direction and magnitude expected from differences in EPS09 shadowing between Cu and Au.
 - U+U
 - a larger system than Au+Au.
 - J/ψ suppression seems to be slightly less than Au+Au at the same rapidity for central data.
Backup
There is now a long history of studying charmonium in A+A collisions.

<table>
<thead>
<tr>
<th>$\sqrt{s_{\text{NN}}}$ (GeV)</th>
<th>Species</th>
<th>Rapidity</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3</td>
<td>Pb+Pb, In+In</td>
<td>$0 < y < 1$</td>
<td>NA50,NA60</td>
</tr>
<tr>
<td>19.4</td>
<td>S+U</td>
<td>$0 < y < 1$</td>
<td>NA38</td>
</tr>
<tr>
<td>64.39</td>
<td>Au+Au</td>
<td>$-2.2 < y < -1.2$</td>
<td>PHENIX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.2 < y < 2.2$</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>U+U</td>
<td>$2.2 <</td>
<td>y</td>
</tr>
<tr>
<td>200</td>
<td>Au+Au, Cu+Cu</td>
<td>$2.2 <</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
<td>y</td>
</tr>
<tr>
<td>200</td>
<td>Cu+Au</td>
<td>$-2.2 < y < -1.2$</td>
<td>PHENIX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.2 < y < 2.2$</td>
<td></td>
</tr>
<tr>
<td>2760</td>
<td>Pb+Pb</td>
<td></td>
<td>ALICE</td>
</tr>
</tbody>
</table>
Heavy quarks & Heavy ion collisions

• Heavy quarks are produced during the collision of two nuclei – important probe

• Any modification in their production with respect to pp
 – Signal a deconfined state, QGP
 (Matsui & Satz PLB 178, 416(1986))
 Different charmonium states have different binding energy
 Suppression of given state – QGP
 “thermometer”

• In this talk
 – Look at how J/ψ production is modified in heavy ion collisions in Phenix
Quarkonium binding and dissociation

review by L. Kluberg and H. Satz, arXiv:0901.3831

- Cornell confining potential for qq-bar at separation distance \(r \)
 - \(\sigma=0.2 \text{ GeV}^2 \) (string tension), \(\alpha \sim \pi/12 \)

- In vacuum (\(T=0 \)), the free energy of the cc-bar is \(F_0 \) and the distance for string breaking is \(r_0 \)

- With increasing \(T \)
 - Early string break up, until reaching \(T_c \)

- In the QGP, the Debye screening radius \(r_D(T) \) decreases with increasing \(T \).
 - for \(r_D(T) < r(\text{cc-bar}) \) the system becomes unbound → suppression compared to charmonium production without QGP.

\[
V(r) = \sigma r - \frac{\alpha}{r}
\]

\[
F(r) \sim \sigma r
\]

\[
F_0 = 2(M_D - m_c) \sim 1.2 \text{ GeV};
\]

\[
r_0 \sim 1.2 \text{ GeV}/\sigma \sim 1.5 \text{ fm},
\]

\[
V(r, T) = \frac{\sigma}{\mu} \left[1 - e^{-\mu r} \right] - \frac{\alpha}{r} e^{-\mu r}
\]

\(r_D \sim 1/\mu \)

<table>
<thead>
<tr>
<th>state</th>
<th>(J/\psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass [GeV]</td>
<td>3.10</td>
</tr>
<tr>
<td>(\Delta E) [GeV]</td>
<td>0.64</td>
</tr>
<tr>
<td>(\Delta M) [GeV]</td>
<td>0.02</td>
</tr>
<tr>
<td>(r_0) [fm]</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Color screening
Screening-like dissociation
Vacuum string breaking
Free energy of qq-bar pair

The screening radius can be computed using potential models or solving QCD on the lattice.

Color screening free energy
\[F_1(T) = U(T) - T S(T) \]

\(J/\psi \) is bound by 640 MeV.

\(J/\psi \) disappears for \(T > 1.6 T_c \).