Searches for third generation squarks with the ATLAS detector

Steve Muanza CPPM, CNRS-IN2P3 & AMU

On Behalf of the ATLAS Collaboration

April 30, 2014
Introduction

SUSY predicts a partner with $\Delta S = 1/2$ for all SM particles

<table>
<thead>
<tr>
<th>Spin</th>
<th>Interaction Eigenstates</th>
<th>Mass Eigenstates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\begin{pmatrix} e^* \bar{\nu}_e \ \tilde{e}_R \end{pmatrix}_L$</td>
<td>$\begin{pmatrix} u^* \bar{\nu}_u \ \tilde{u}_R \end{pmatrix}_L$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} \mu^* \bar{\nu}_\mu \ \tilde{\mu}_R \end{pmatrix}_L$</td>
<td>$\begin{pmatrix} \tau^* \bar{\nu}_\tau \ \tilde{\tau}_R \end{pmatrix}_L$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} \tilde{e}^* \tau \end{pmatrix}_L$</td>
<td>$\begin{pmatrix} \tilde{\mu}^* \tau \end{pmatrix}_L$</td>
</tr>
<tr>
<td></td>
<td>$\tilde{\tau}^* \tau$</td>
<td>$\tilde{\tau}^* \tau$</td>
</tr>
</tbody>
</table>

Sleptons

| 1/2 | $\begin{pmatrix} \tilde{e}_R \\ \tilde{\nu}_e \\ e_R^* \bar{\nu}_e \end{pmatrix}_L$ | $\begin{pmatrix} \tilde{\mu}_R \\ \tilde{\nu}_\mu \\ \mu_R^* \bar{\nu}_\mu \end{pmatrix}_L$ |
| | $\begin{pmatrix} \tilde{\tau}_R \\ \tilde{\nu}_\tau \\ \tau_R^* \bar{\nu}_\tau \end{pmatrix}_L$ | $\begin{pmatrix} \tilde{\tau}_R \\ \tilde{\nu}_\tau \\ \tau_R^* \bar{\nu}_\tau \end{pmatrix}_L$ |

Leptons

| 0 | $\begin{pmatrix} \tilde{u}_R \tilde{d}_R \\ \tilde{d}_R \end{pmatrix}_L$ | $\begin{pmatrix} \tilde{c}_R \tilde{s}_R \\ \tilde{s}_R \end{pmatrix}_L$ |
| | $\begin{pmatrix} \tilde{c}_R \tilde{s}_R \\ \tilde{s}_R \end{pmatrix}_L$ | $\begin{pmatrix} \tilde{t}_R \tilde{b}_R \\ \tilde{b}_R \end{pmatrix}_L$ |

Squarks

| 1/2 | $\begin{pmatrix} u_R \tilde{d}_R \\ \tilde{d}_R \end{pmatrix}_L$ | $\begin{pmatrix} c \tilde{s}_R \\ \tilde{s}_R \end{pmatrix}_L$ |
| | $\begin{pmatrix} c \tilde{s}_R \\ \tilde{s}_R \end{pmatrix}_L$ | $\begin{pmatrix} t \tilde{b}_R \\ \tilde{b}_R \end{pmatrix}_L$ |

Quarks

| 0 | $\Phi_u = \begin{pmatrix} \phi_u^0 \\ \phi_u^0 \end{pmatrix}$ | $h^0 = A^0$ |
| | $\Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^0 \end{pmatrix}$ | $H^0 = H^\pm$ |

Higgs Doublet Fields

| 1/2 | $\Phi_u = \begin{pmatrix} \phi_u^0 \\ \phi_u^0 \end{pmatrix}$ | $\tilde{\chi}_{1,2,3,4}^0$ |
| | $\Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^0 \end{pmatrix}$ | $\tilde{\chi}_{1,2}^\pm$ |

Higgsinos

| 1 | $\begin{pmatrix} B^0 \tilde{W}^+_{1,2} \tilde{g} \end{pmatrix}$ | $\begin{pmatrix} \tilde{\chi}_{1,2}^\pm \tilde{g} \end{pmatrix}$ |

Bino, Wino, Gluinos

| 3/2 | $\begin{pmatrix} Z^0 \tilde{W}^\pm \tilde{g} \end{pmatrix}$ | $\begin{pmatrix} \tilde{\chi}_{1,2}^\pm \tilde{g} \end{pmatrix}$ |

Neutralinos, Charginos, Gluinos

| 2 | $\begin{pmatrix} \tilde{G}_{3/2} \end{pmatrix}$ | $\begin{pmatrix} G_{\mu\nu} \end{pmatrix}$ |

Gravitino, Graviton
Natural SUSY

- It requires sparticles with dominant contributions to M_h radiative corrections to be relatively light

<table>
<thead>
<tr>
<th>$	ilde{g}$</th>
<th>\tilde{W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{b}_L</td>
<td>\tilde{b}_R</td>
</tr>
<tr>
<td>\tilde{t}_L</td>
<td>\tilde{t}_R</td>
</tr>
<tr>
<td>\tilde{H}</td>
<td>decoupled SUSY</td>
</tr>
<tr>
<td>natural SUSY</td>
<td></td>
</tr>
</tbody>
</table>

- In this context one expects
 - not too heavy gluinos
 - stop/sbottom as lightest squark

Present talk reports on recent ATLAS analyses (or updates)

- Dataset: $\int \mathcal{L} dt = (20.3 \pm 0.6) fb^{-1}$ of p+p collisions at $\sqrt{s} = 8$ TeV in 2012
- All limits at the 95% C.L.
Gluino Mediated Production

- Start with the highest cross section process
- Hypothesis: gluino lighter than $1^{st}/2^{nd}$ generation squarks
- Large b-jet multiplicity and large $E_T \Rightarrow$ low SM background
Direct Production

- Also look for direct production in case gluinos are out of reach
- Lower cross sections, still higher than those of EWK gauginos
- Lower b-jet multiplicity
Analysis

"Search for supersymmetry at $\sqrt{s} = 8$ TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector"

- Ref: arXiv:1404.2500 [hep-ex], subm. to JHEP
- See ATLAS talk by T. Gillam

Inclusive Search Topology

- $\ell^\pm \ell^\pm + [1 - 3]b - jets + \not{E}_T$, ($\ell^\pm = e^\pm/\mu^\pm$)
- $\ell^\pm \ell^\pm + [0]b - jets + \not{E}_T$
- $3\ell^\pm + [1 - 3]b - jets + \not{E}_T$
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations

$M_T = \sqrt{2p_T(\ell^\pm)E_T[1 - \cos\Delta\phi(\ell^\pm , E_T)]}$

Distr. in $e^\pm \mu^\pm + [0]b - jet + E_T$
inclusive topology
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models
Limits & Interpretations: Complete Models

$M_{\text{eff}} = E_T + \sum_{\text{leptons}} p_T + \sum_{\text{jets}} p_T$

Distr. in $e^\pm e^\pm + [1-3]b$-jet + E_T

inclusive topology

STEVE MUANZA
CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t \bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations

- $M_T = \sqrt{2p_T (\ell^\pm) E_T [1 - \cos \Delta \phi (\ell^\pm, E_T)]}$
- Distr. in $e^\pm \mu^\pm + [0] b - jet + E_T$
 inclusive topology

- $M_{\text{eff}} = E_T + \sum_{\text{leptons}} p_T + \sum_{\text{jets}} p_T$
- Distr. in $e^\pm e^\pm + [1 - 3] b - jet + E_T$
 inclusive topology
Limits & Interpretations

- $M_T = \sqrt{2p_T(\ell^\pm)E_T[1 - \cos\Delta\phi(\ell^\pm, E_T)]}$
- Distr. in $e^\pm\mu^\pm + [0]b - jet + E_T$ inclusive topology
- $M_{\text{eff}} = E_T + \sum_{\text{leptons}} p_T + \sum_{\text{jets}} p_T$
- Distr. in $e^\pm e^\pm + [1 - 3]b - jet + E_T$ inclusive topology

![Graph showing data and SM comparison](attachment:graph.png)
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Background

- **MC estimate of physics background:**
 - ttW, ttZ, WW, WZ

- **Data-driven estimate of instrumental background:**
 - hadron faking isolated ℓ^\pm
 - non-isolated ℓ^\pm from heavy flavor hadron decay faking isolated ℓ^\pm
 - e^\pm from $\gamma - \text{conversion}$
 - e^\pm with mis-measured charge

Limits Derivation

- Signal exclusion fit simultaneously all SRs (maximizes sensitivity to SUSY scenario)
- No excess observed in data wrt SM expectations in any analyses
- Limits are calculated using the CL$_S$ prescription
Gluino Mediated Production

\[M_{\tilde{g}} << M_{\tilde{t}_1} \]
Gluino Mediated Production

- \(M_{\tilde{g}} > M_{\tilde{t}_1} \)
- \((M_{\tilde{\chi}_1^\pm}, M_{\tilde{\chi}_1^0}) = (118, 60) \text{ GeV} \)

Limits & Interpretations: Simplified Models
Limits & Interpretations: Complete Models

Gluino Mediated Production

\[\tilde{g} \rightarrow \tilde{t}_{\perp} \tilde{\chi}_{\perp} \]

\[m_{\tilde{t}_{\perp}} > m_{\tilde{\chi}_{\perp}} \]

\[m_{\tilde{g}} > M_{\tilde{t}_1} \)

(\(M_{\tilde{\chi}_1^\pm}, M_{\tilde{\chi}_1^0} \) = (118, 60) \text{ GeV})

- 2 same-charge leptons/3 leptons + jets
- Expected limit (\(\pm 1 \sigma_{\text{exp}} \))
- Observed limit (\(\pm 1 \sigma_{\text{obs}} \))

All limits at 95% CL

\[L \, dt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \]

- 0 lepton, 7-10 jets, \(\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \)
- 0 lepton, \(\geq 3 \) bjets, \(\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1} \)
Gluino Mediated Production

\[M_{\tilde{g}} \ll M_{\tilde{t}_1} \]

\[M_{\tilde{g}} > M_{\tilde{t}_1} \]
\[\left(M_{\tilde{\chi}^\pm_1}, M_{\tilde{\chi}^0_1} \right) = (118, 60) \text{ GeV} \]
Gluino Mediated Production

- \(m_{\tilde{g}} << M_{\tilde{t}_1} \)

- \(\tilde{g} \rightarrow t + c + \tilde{\chi}^0_1 \)
 \(M_{\tilde{t}_1} - M_{\tilde{\chi}^0_1} = 20 \text{ GeV} \)
Gluino Mediated Production

- $M_{\tilde{g}} << M_{\tilde{t}_1}$

- $M_{\tilde{g}} > M_{\tilde{t}_1}$
 $\left(M_{\tilde{\chi}^\pm_1}, M_{\tilde{\chi}^0_1} \right) = (118, 60) \text{ GeV}$

- $\tilde{g} \rightarrow t + c + \tilde{\chi}^0_1$
 $M_{\tilde{t}_1} - M_{\tilde{\chi}^0_1} = 20 \text{ GeV}$
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t \bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Gluino Mediated Production

- $M_{\tilde{g}} << M_{\tilde{t}_1}$

- $M_{\tilde{g}} > M_{\tilde{t}_1}$
 $(M_{\tilde{\chi}^\pm_1}, M_{\tilde{\chi}^0_1}) = (118, 60)$ GeV

- $\tilde{g}\tilde{g} \to \tilde{t}_1 + \tilde{t}$
 $	ilde{t}_1 \to b + s (R_P)$

Limits & Interpretations: Simplified Models

Limits & Interpretations: Complete Models

ATLAS

2 same-charge leptons/3 leptons + jets

$L dt = 20.3$ fb$^{-1}$, \sqrt{s}=8 TeV

Observed limit $(\pm 1\, \sigma_{\text{theor}})$

Expected limit $(\pm 1\, \sigma_{\text{exp}})$

All limits at 95% CL
Gluino Mediated Production

- \(M_{\tilde{g}} << M_{\tilde{t}_1} \)

- \(M_{\tilde{g}} > M_{\tilde{t}_1} \)
 \((M_{\tilde{\chi}^\pm_1}, M_{\tilde{\chi}^0_1}) = (118, 60) \) GeV

- \(\tilde{g} \rightarrow t + c + \tilde{\chi}^0_1 \)
 \(M_{\tilde{t}_1} - M_{\tilde{\chi}^0_1} = 20 \) GeV

- \(\tilde{g} \rightarrow \tilde{t}_1 + \tilde{t} \)
 \(\tilde{t}_1 \rightarrow b + s \ (R_P) \)
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + \not{E}_T$
7. Search with c-jets+\not{E}_T
8. Search with 3b-jets+\not{E}_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models
Limits & Interpretations: Complete Models

Gluino Mediated Production

- $M_{\tilde{g}} < M_{\tilde{t}_1}$

- $M_{\tilde{g}} > M_{\tilde{t}_1}$
 $(M_{\tilde{\chi}_1^\pm}, M_{\tilde{\chi}_1^0}) = (118, 60) \text{ GeV}$

- $\tilde{g} \rightarrow t + c + \tilde{\chi}_1^0$
 $M_{\tilde{t}_1} - M_{\tilde{\chi}_1^0} = 20 \text{ GeV}$
Direct Sbottom Pair Production

\[\tilde{b}_1 \rightarrow t + \tilde{\chi}_1^\pm \]

\[M_{\tilde{\chi}_1^0} = 60 \text{ GeV} \]
Direct Sbottom Pair Production

\[\tilde{b}_1 \rightarrow t + \tilde{\chi}_1^\pm \]

\[M_{\tilde{\chi}_1^\pm} = 2M_{\tilde{\chi}_1^0} \]
Direct Sbottom Pair Production

\[\tilde{b}_1 \rightarrow t + \tilde{\chi}_1^\pm \]
\[M_{\tilde{\chi}_1^0} = 60 \text{ GeV} \]

\[\tilde{b}_1 \rightarrow t + \tilde{\chi}_1^\pm \]
\[M_{\tilde{\chi}_1^\pm} = 2M_{\tilde{\chi}_1^0} \]
Direct Sbottom Pair Production

\[\tilde{b}_1 \rightarrow t + \tilde{\chi}^\pm_1 \]

\[M_{\tilde{\chi}^0_1} = 60 \text{ GeV} \]
Minimal Supergravity

- $\tan \beta = 30$, $A_0 = -2m_0$
- $\mu > 0$
Minimal Supergravity

- $\tan\beta = 30$, $A_0 = -2m_0$
- $\mu > 0 (b\bar{R}P)$

ATLAS

$\tan(\beta)=30$, $A_0=-2m_0$, $\mu > 0$

MSUGRA/CMSSM: $\tan(\beta)=30$, $A_0=-2m_0$, $\mu > 0$

- $L dt = 20.3$ fb$^{-1}$, $\sqrt{s}=8$ TeV
- 2 same-charge leptons/3 leptons + jets
- Observed limit ($\pm 1 \sigma_{\text{exp}}$)
- Expected limit ($\pm 1 \sigma_{\text{exp}}$)
- All limits at 95% CL
Minimal Supergravity

- $\tan \beta = 30$, $A_0 = -2m_0$
 - $\mu > 0$

- $\tan \beta = 30$, $A_0 = -2m_0$
 - $\mu > 0$ (bR_P)
Minimal Supergravity

- $\tan\beta = 30, \ A_0 = -2m_0, \ \mu > 0$

Limits & Interpretations: Simplified Models

Limits & Interpretations: Complete Models

Searches for third generation squarks with the ATLAS detector
Gauge Mediated SUSY Breaking

- $M_{mess} = 250$ TeV, $N_5 = 3$
- $\mu > 0$, $C_{grav} = 1$
Gauge Mediated SUSY Breaking

Limits & Interpretations: Simplified Models

Limits & Interpretations: Complete Models

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
Universal Extra Dimensions

Non SUSY Model
Universal Extra Dimensions

2 same-charge leptons/3 leptons + jets

Observed limit

Expected limit (±1σExp)

All limits at 95% CL

ATLAS

$\int L \cdot dt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}$
"Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector"

Inclusive Search Topology

$2b - jets + 0\ell^{\pm} + \not E_T$
The document outlines various search strategies for third generation squarks, including:

1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

The diagram illustrates a process involving partons p and b leading to particles \tilde{b}, \tilde{t}, and $\tilde{\chi}^0$, with b decay products shown.
• $\tilde{\chi}_1^\pm \rightarrow SoftTrack(s) + E_T$

$M_{\tilde{\chi}_1^\pm} - M_{\tilde{\chi}_1^0} = 5 \text{ GeV}$
Limits & Interpretations: Simplified Models

\[\tilde{\chi}_1^{\pm} \rightarrow \text{SoftTrack}(s) + E_T \]
\[M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = 5 \text{ GeV} \]
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models

- $\tilde{\chi}_1^\pm \to Soft Tracks + E_T$
- $M_{\tilde{\chi}_1^\pm} - M_{\tilde{\chi}_1^0} = 20 \text{ GeV}$

Stop pair production, $\tilde{t} \to b \tilde{\chi}_1^\pm$, $m(\tilde{\chi}_1^\pm) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$

All limits at 95% CL
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models

- $\tilde{\chi}_1^\pm \rightarrow \text{SoftTrack}(s) + E_T$

 $M_{\tilde{\chi}_1^\pm} - M_{\tilde{\chi}_1^0} = 5$ GeV

- $\tilde{\chi}_1^\pm \rightarrow \text{SoftTracks} + E_T$

 $M_{\tilde{\chi}_1^\pm} - M_{\tilde{\chi}_1^0} = 20$ GeV

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
Limits & Interpretations: Simplified Models

- \tilde{\chi}_1^{\pm} \rightarrow SoftTrack(s) + \not{E}_T
 \quad M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = 5 \text{ GeV}

- \tilde{\chi}_1^{\pm} \rightarrow SoftTracks + \not{E}_T
 \quad M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = 20 \text{ GeV}
Analysis

"Search for direct production of the top squark in the all-hadronic $t\bar{t} + \not{E}_T$ final state in 21 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector"

Ref: ATLAS-CONF-2013-024

Inclusive Search Topology

$t\bar{t} \to jets + 0\ell^{\pm} + \not{E}_T$

Event Selection

- Trigger: $\not{E}_T > 80$ GeV
- Offline:
 - Main Variables: M_T and \not{E}_T
 - Tau Veto
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models
Searches for third generation squarks with the ATLAS detector

Steve Muanza CPPM, CNRS-IN2P3 & AMU
Analysis

"Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector"

Ref: ATLAS-CONF-2013-068

Inclusive Search Topology

- $2c - jets + E_T$

Event Selection

- Trigger: $E_T > 80$ GeV
- Offline:
 - Very Low ΔM: tag an ISR-jet → mono-jet selection
 - Low ΔM: tag a c-jet
c-tagging

- **Trigger**: $E_T > 80$ GeV
- **Offline**:
 - MVA: Tracks I.P. and properties of 2ndary vertices
 - Performance: $\epsilon_c = 20\%$, $R_b \approx 5$, $R_{LF} \approx 140$

Limits & Interpretations: Simplified Models

Search for third generation squarks with the ATLAS detector
c-tagging

- **Trigger:** $E_T > 80$ GeV
- **Offline:**
 - MVA: Tracks I.P. and properties of 2ndary vertices
 - Performance: $\epsilon_c = 20\%$, $R_b \approx 5$, $R_{LF} \approx 140$

Limits & Interpretations: Simplified Models

- $t\bar{t}$ production, $t\rightarrow c + \chi^0_1$
- Expected limit (±1σ)
- Observed limit (±1σ)

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
Analysis

"Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector"

- Ref: ATLAS-CONF-2013-061

Inclusive Search Topology

- $[0−1]\ell^{±} + jets + 3b − jets + E_T$

Event Selection

- Main Variables: M_{eff} and $E_T/\sqrt{H_T}$
Direct Sbottom Pair Production

\[BR(\tilde{b}_1 \rightarrow b + \tilde{\chi}_2^0) = 1 \]
\[BR(\tilde{\chi}_2^0 \rightarrow h + \tilde{\chi}_1^0) = 1 \]
Direct Sbottom Pair Production

0 and 1 lepton + 3 b-jets channels

\(m(\tilde{b}^0) = 60 \text{ GeV} \)

\(\tilde{b}^0 \to b + \tilde{\chi}^0_1 \)

\(\tilde{b}^0 \to b + \tilde{\chi}^0_2 \) forbidden

All limits at 95% CL

ATLAS Preliminary

- Expected limit ±1\(\sigma_{\text{exp}} \)
- Observed limit ±1\(\sigma_{\text{SUSY}} \)

\(L = 20.1 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \)
Gluino Mediated Sbottom Pair Production

\[BR(\tilde{g} \rightarrow \tilde{b}_1 + \tilde{b}) = 1 \]
\[\text{on-shell } \tilde{b}_1 \]
\[BR(\tilde{b}_1 \rightarrow b + \tilde{\chi}^0_1) = 1 \]
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Gluino Mediated Sbottom Pair Production

$BR(\tilde{g} \rightarrow b + \tilde{b} + \tilde{\chi}_1^0) = 1$

off-shell \tilde{b}_1

![Graph showing Gluino Mediated Sbottom Pair Production](image)

Searches for third generation squarks with the ATLAS detector
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Limits & Interpretations: Simplified Models

- **Limits & Interpretations: Complete Models**

Gluino Mediated Sbottom Pair Production

- $BR(\tilde{g} \to \tilde{b}_1 + \bar{b}) = 1$
 - on-shell \tilde{b}_1
 - $BR(\tilde{b}_1 \to b + \tilde{\chi}_1^0) = 1$

- $BR(\tilde{g} \to b + \bar{b} + \tilde{\chi}_1^0) = 1$
 - off-shell \tilde{b}_1

Searches for third generation squarks with the ATLAS detector
1. Introduction

2. **Motivation**

3. **Search Strategy**

4. **Multilepton Search**

5. **Search with 2 b-jets and No Leptons**

6. **Search with All Hadronic $t\bar{t} + E_T$**

7. **Search with c-jets + E_T**

8. **Search with 3b-jets + E_T**

9. **Direct Stop Pair Production (1)**

10. **Direct Stop Pair Production (2)**

11. Conclusion

12. Summary

Gluino Mediated Sbottom Pair Production

- $BR(\tilde{g} \rightarrow \tilde{b}_1 + \tilde{b}) = 1$

 on-shell \tilde{b}_1

- $BR(\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0) = 1$

 off-shell \tilde{b}_1

ATLAS Preliminary

0 lepton + 3 b-jets channel

$\tilde{g} \rightarrow b\bar{b} + \tilde{\chi}_1^0$, $m(\tilde{g}) > m(\tilde{b}_1)$

$L^{\text{int}} = 20.1$ fb$^{-1}$, $\sqrt{s} = 8$ TeV

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic \(t\bar{t} + E_T \)
7. Search with \(c\)-jets + \(E_T \)
8. Search with 3b-jets + \(E_T \)
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Gluino Mediated Stop Pair Production

\[
BR(\tilde{g} \rightarrow t + \tilde{\chi}^0_1) = 1,

BR(\tilde{t}_1 \rightarrow b + \tilde{\chi}^\pm_1) = 1

BR(\tilde{\chi}^\pm_1 \rightarrow W^\pm + \tilde{\chi}^0_1) = 1

(M_{\tilde{\chi}^\pm_1}, M_{\tilde{\chi}^0_1}) = (120, 60) \text{ GeV}
\]
Gluino Mediated Stop Pair Production

- \(BR(\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0) = 1 \)
- \(M_{\tilde{\chi}_1^0} = 60 \text{ GeV} \)

![Graph showing exclusion limits](image)
Gluino Mediated Stop Pair Production

- $BR(\tilde{g} \rightarrow t + \tilde{\chi}_1^0) = 1$
- $BR(\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^\pm) = 1$
- $BR(\tilde{\chi}_1^\pm \rightarrow W^\pm + \tilde{\chi}_1^0) = 1$
- $(M_{\tilde{\chi}_1^\pm}, M_{\tilde{\chi}_1^0}) = (120, 60)$ GeV

- $BR(\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0) = 1$
- $M_{\tilde{\chi}_1^0} = 60$ GeV
Gluino Mediated Stop Pair Production

- \(BR(\tilde{g} \to t + \tilde{\chi}_1^0) = 1 \),
- \(BR(\tilde{t}_1 \to b + \tilde{\chi}_1^\pm) = 1 \)
- \(BR(\tilde{\chi}_1^\pm \to W^\pm + \tilde{\chi}_1^0) = 1 \)
- \((M_{\tilde{\chi}_1^\pm}, M_{\tilde{\chi}_1^0}) = (120, 60) \text{ GeV} \)

- \(BR(\tilde{t}_1 \to t + \tilde{\chi}_1^0) = 1 \)
- \(M_{\tilde{\chi}_1^0} = 60 \text{ GeV} \)
Gluino Mediated Stop Pair Production (cont’d)

- \(BR(\tilde{g} \rightarrow t + \bar{t} + \tilde{\chi}^0_1) = 1 \)
- off-shell \(\tilde{t}_1 \)
Gluino Mediated Stop Pair Production (cont’d)

- \(BR(\tilde{g} \rightarrow b + \tilde{t} + \tilde{\chi}_1^\pm) = 1 \)
- \(M_{\tilde{\chi}_1^\pm} - M_{\tilde{\chi}_1^0} = 2 \text{ GeV} \)
Gluino Mediated Stop Pair Production (cont’d)

- $BR(\tilde{g} \rightarrow t + \tilde{t} + \tilde{\chi}_1^0) = 1$
 off-shell \tilde{t}_1

- $BR(\tilde{g} \rightarrow b + \tilde{t} + \tilde{\chi}_1^{\pm}) = 1$
 $M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = 2$ GeV

$$M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = 2 \text{ GeV}$$
Gluino Mediated Stop Pair Production (cont’d)

- $BR(\tilde{g} \rightarrow t + \tilde{t} + \tilde{\chi}_1^0) = 1$
 - off-shell \tilde{t}_1

- $m_{\tilde{g}} = 400, 600, 800, 1000, 1200, 1400$ [GeV]
- $m_{\tilde{t}_1}$

- $d + b + \chi_1^0$, forbidden

Figure: ATLAS Preliminary

- Expected limit $\pm \sigma_{exp}$
- Observed limit $\pm \sigma_{SUSY}$
- $0\ell + 3$ b-jets, 4.7 fb$^{-1}$, 7 TeV
- All limits at 95% CL

- $m(\tilde{\chi}_1^0) - m(\tilde{\chi}_1^0) = 2$ GeV
- $\tilde{\chi}_1^0 \rightarrow f + \tilde{\chi}_1^0$
Minimal Supergravity

ATLAS Preliminary

- Expected limit ±1σ_{exp}
- Observed limit ±1σ_{SUSY Theory}

All limits at 95% CL

0 and 1 lepton + 3 b-jets channels

mSUGRA/CMSSM: tan(β)=30, A_0=−2m_0, μ>0

L^{int} = 20.1 fb⁻¹, \(\sqrt{s}=8\) TeV

m_{12} [GeV] vs m_0 [GeV]

Stau LSP

Limits & Interpretations: Simplified Models
Limits & Interpretations: Complete Models

Steve Muanza CPPM, CNRS-IN2P3 & AMU
Searches for third generation squarks with the ATLAS detector
Analysis

"Search for the direct pair production of top squarks decaying to a b quark, a tau lepton, and weakly interacting particles, in $\sqrt{s} = 8$ TeV pp collisions using 20 fb$^{-1}$ of ATLAS data"

Ref: ATLAS-CONF-2014-014

Inclusive Search Topology

$\ell^{\pm}\ell^{\mp} + \not{E}_T$

Event Selection

Main variable: M_{T2}

$M_{T2}(p_T^{vis_1}, p_T^{vis_2}, p_T) = \min_{p_T^{invis_1} + p_T^{invis_2} = p_T} \max[M_T(p_T^{vis_1}, p_T^{invis_1}), M_T(p_T^{vis_2}, p_T^{invis_2})]$
Analysis

"Search for the direct pair production of top squarks decaying to a b quark, a tau lepton, and weakly interacting particles, in $\sqrt{s} = 8$ TeV pp collisions using 20 fb$^{-1}$ of ATLAS data"

Ref: ATLAS-CONF-2014-014

Inclusive Search Topology

$\ell^\pm\ell^\mp + \not{E_T}$

Event Selection

$M_{T2}(p_T^{vis_1}, p_T^{vis_2}, p_T') = \min_{p_T^{invis_1} + p_T^{invis_2} = p_T'} \max [M_T(p_T^{vis_1}, p_T^{invis_1}), M_T(p_T^{vis_2}, p_T^{invis_2})]$

Re-interpretation of the "3 b-jets" analysis
New selection for small \tilde{t}_1 and $\tilde{\nu}_1^\pm$ masses
Analysis

"Search for the direct pair production of top squarks decaying to a b quark, a tau lepton, and weakly interacting particles, in $\sqrt{s} = 8$ TeV pp collisions using 20 fb$^{-1}$ of ATLAS data"

- Ref: ATLAS-CONF-2014-014

Inclusive Search Topology

$\ell^\pm \ell^\mp + \mathcal{E}_T$

Event Selection

- Main variable: M_{T2}
- Re-interpretation of the "3 b-jets" analysis
- New selection for small \tilde{t}_1 and $\tilde{\tau}_1^\pm$ masses
Event Selection (cont’d)

ATLAS Preliminary

Data/MC

Events / bin

$\int L \, dt \sim 20.3 \, fb^{-1}$, $\sqrt{s} = 8$ TeV

CRTb: different flavour

SM Background
Z+jets
$t\bar{t}$
Single top
Reducible
others

$m_{\tilde{t}_1, \tilde{t}_2} = (337, 305) \, GeV$
$m_{\tilde{t}_1, \tilde{t}_2} = (153, 117) \, GeV$

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $t\bar{t} + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

Gauge Mediated SUSY Breaking

- $BR(\tilde{t}_1 \rightarrow b + \nu + \tilde{\tau}_1^{\pm}) = 1$
- $BR(\tilde{\tau}_1^{\pm} \rightarrow \tau^{\pm} + \tilde{G}_{3/2}) = 1$
Gauge Mediated SUSY Breaking

\[BR(\tilde{t}_1 \rightarrow b + \nu + \tilde{\tau}^\pm) = 1 \]
\[BR(\tilde{\tau}_1^\pm \rightarrow \tau^\pm + \tilde{G}_{3/2}) = 1 \]
Analysis

"Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in $\sqrt{s} = 8$ TeV pp collisions with the ATLAS detector"

- Ref: arXiv:1403.5222 [hep-ex], subm. to EJPC
- Motivation: In case direct $\tilde{t}_1 \tilde{t}_1$ searches have limited sensitivities due to compressed scenarios, consider production of $\tilde{t}_2 \tilde{t}_2$

Inclusive Search Topology

- $Z(\rightarrow \ell^\pm \ell'^\mp) + 2b - jets + \not\! E_T$
Gauge Mediated SUSY Breaking

- $BR(\tilde{t}_2 \rightarrow Z + \tilde{t}_1) = 1$
Gauge Mediated SUSY Breaking

- $BR(\tilde{t}_2 \rightarrow Z + \tilde{t}_1) = 1$

Figure:

- $BR(\tilde{t}_2 \rightarrow Z + \tilde{t}_1) = 1$

Diagram:

- $BR(\tilde{t}_2 \rightarrow Z + \tilde{t}_1) = 1$

Graph:

- $BR(\tilde{t}_2 \rightarrow Z + \tilde{t}_1) = 1$
Natural Gauge Mediated SUSY Breaking

- $\tilde{\chi}^0_1 \rightarrow Z + \tilde{G}_{3/2}$
- or $\tilde{\chi}^0_1 \rightarrow h + \tilde{G}_{3/2}$
Natural Gauge Mediated SUSY Breaking

\[\tilde{\chi}_1^0 \rightarrow Z + \tilde{G}_{3/2} \]

or \[\tilde{\chi}_1^0 \rightarrow h + \tilde{G}_{3/2} \]
Conclusion

- Several searches for 3rd generation squarks presented
- No excess observed in data wrt SM expectations
Conclusion

- No excess observed in data wrt SM expectations
- Improved or new exclusion limits
Conclusion

- Several searches for 3rd generation squarks presented
- Improved or new exclusion limits
- Several interpretations of these results in different SUSY scenarios
Conclusion

- Several searches for 3rd generation squarks presented
- No excess observed in data wrt SM expectations

- Several interpretations of these results in different SUSY scenarios
- Summary plot
Conclusion

- Several searches for 3rd generation squarks presented
- No excess observed in data wrt SM expectations
- Improved or new exclusion limits

Summary plot
Conclusion (cont’d)

ATLAS Preliminary

- **Observed limits**
- **Expected limits**

All limits at 95% CL

CDF 2.6 fb⁻¹ [1203.4171]*

Steve Muanza CPPM, CNRS-IN2P3 & AMU

Searches for third generation squarks with the ATLAS detector
Searches for third generation squarks with the ATLAS detector
1. Introduction
2. Motivation
3. Search Strategy
4. Multilepton Search
5. Search with 2 b-jets and No Leptons
6. Search with All Hadronic $\ell\ell + E_T$
7. Search with c-jets+E_T
8. Search with 3b-jets+E_T
9. Direct Stop Pair Production (1)
10. Direct Stop Pair Production (2)
11. Conclusion
12. Summary

ATLAS SUSY Limits

ATLAS SUSY Searches* + 95% CL Lower Limits
Status: Moriond 2014

<table>
<thead>
<tr>
<th>Model</th>
<th>e, µ, τ, γ, Jets E_T^{vis}</th>
<th>$L [fb^{-1}]$</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_{\tilde{g}}$ (GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_{\tilde{b}}$ (GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_{\tilde{t}}$ (GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_{\tilde{e}}$ (GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$m_{\tilde{\chi}}$ (GeV)</td>
</tr>
</tbody>
</table>

[Legend and further details of the table can be added here, but the focus is on the Introduction and Motivation sections.]

Searches for third generation squarks with the ATLAS detector

Steve Muanza CPPM, CNRS-IN2P3 & AMU