Gluonic Excitations and Jefferson Lab Hall D Justin Stevens (GlueX Collaboration) DIS 2014

### Mesons in the quark model



**Conventional Meson** 

- \* Quark model provides a description of the observed spectrum of light quark mesons
- Mesons are grouped in nonets of given spin with different light quark flavor content
- \* Allowed quantum numbers for  $q\bar{q}$ :







vector mesons



## Hybrid mesons and gluonic excitations

- \* Excited gluonic field coupled to  $q\bar{q}$  pair
- Rich spectrum of hybrid mesons predicted by Lattice QCD
- \* "Constituent gluon" with  $J^{PC} = 1^{+-}$  and mass = 1-1.5 GeV
- \* Some have "exotic"  $J^{PC}$  which cannot be formed by  $q\bar{q}$ :

$$J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}...$$





\* Most experimental searches for hybrids limited to the  $\pi_1$  state

\* Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons



\* Most experimental searches for hybrids limited to the  $\pi_1$  state

\* Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons

### Exotic decays

|           | Approximate | $J^{PC}$ | Total Width    | (MeV) |
|-----------|-------------|----------|----------------|-------|
|           | Mass (MeV)  |          | $\mathbf{PSS}$ | IKP   |
| $\pi_1$   | 1900        | $1^{-+}$ | 80 - 170       | 120   |
| $\eta_1$  | 2100        | $1^{-+}$ | 60 - 160       | 110   |
| $\eta_1'$ | 2300        | $1^{-+}$ | 100-220        | 170   |
| $b_0$     | 2400        | $0^{+-}$ | 250-430        | 670   |
| $h_0$     | 2400        | $0^{+-}$ | 60-260         | 90    |
| $h_0'$    | 2500        | $0^{+-}$ | 260-490        | 430   |
| $b_2$     | 2500        | $2^{+-}$ | 10             | 250   |
| $h_2$     | 2500        | $2^{+-}$ | 10             | 170   |
| $h_2'$    | 2600        | $2^{+-}$ | 10 - 20        | 80    |



Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent

### Exotic decays

|           | Approximate | $J^{PC}$ | Total Widt     | th (MeV) | Relevant Decays                                                               | Final States                                                                       |
|-----------|-------------|----------|----------------|----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|           | Mass (MeV)  |          | $\mathbf{PSS}$ | IKP      |                                                                               |                                                                                    |
| $\pi_1$   | 1900        | $1^{-+}$ | 80 - 170       | 120      | $b_1\pi^\dagger, ho\pi^\dagger,f_1\pi^\dagger,a_1\eta,\eta^\prime\pi^\dagger$ | $\omega\pi\pi^{\dagger},3\pi^{\dagger},5\pi,\eta3\pi^{\dagger},\eta'\pi^{\dagger}$ |
| $\eta_1$  | 2100        | $1^{-+}$ | 60 - 160       | 110      | $a_1\pi,f_1\eta^{\dagger},\pi(1300)\pi$                                       | $4\pi,\eta4\pi,\eta\eta\pi\pi^\dagger$                                             |
| $\eta_1'$ | 2300        | $1^{-+}$ | 100-220        | 170      | $K_1(1400)K^\dagger,K_1(1270)K^\dagger,K^*K^\dagger$                          | $KK\pi\pi^{\dagger},KK\pi^{\dagger},KK\omega^{\dagger}$                            |
| $b_0$     | 2400        | $0^{+-}$ | 250-430        | 670      | $\pi(1300)\pi,h_1\pi$                                                         | $4\pi$                                                                             |
| $h_0$     | 2400        | $0^{+-}$ | 60-260         | 90       | $b_1 \pi^\dagger, h_1 \eta, K(1460) K$                                        | $\omega\pi\pi^{\dagger},\eta3\pi,KK\pi\pi$                                         |
| $h_0'$    | 2500        | $0^{+-}$ | 260-490        | 430      | $K(1460)K,K_1(1270)K^\dagger,h_1\eta$                                         | $KK\pi\pi^{\dagger},\eta3\pi$                                                      |
| $b_2$     | 2500        | $2^{+-}$ | 10             | 250      | $a_2\pi^\dagger,a_1\pi,h_1\pi$                                                | $4\pi,\eta\pi\pi^{\dagger}$                                                        |
| $h_2$     | 2500        | $2^{+-}$ | 10             | 170      | $b_1\pi^\dagger, ho\pi^\dagger$                                               | $\omega\pi\pi^{\dagger},3\pi^{\dagger}$                                            |
| $h_2'$    | 2600        | $2^{+-}$ | 10 - 20        | 80       | $K_1(1400)K^\dagger,K_1(1270)K^\dagger,K_2^*K^\dagger$                        | $KK\pi\pi^{\dagger}, KK\pi^{\dagger}$                                              |

- Predictions for the spectrum of hybrids from lattice, but decay predictions are model dependent
- Candidates for π<sub>1</sub> state observed at multiple experiments (COMPASS, E852, etc.) Recent review by Meyer and Van Haarlem (arXiv:1004:5516)
- Mapping the hybrid spectrum requires: large statistics samples of many particle final states in strange and non-strange decay modes

## Jefferson Laboratory: 12 GeV Upgrade

- \* Upgrade maximum electron beam energy from 6 to 12 GeV: provides access to higher mass states
- Significant upgrades to existing Halls A, B, and C





- Designed for light quark hybrid meson \* spectroscopy
- Linearly polarized bremsstrahlung photon beam on LH<sub>2</sub> target
- High statistics samples of multiparticle final states provided by large acceptance detector for both charged and neutral particles



diamond

wafer

electron

beam



## Calorimetry



- \* FCAL: Installed and first
  cosmic signals!
  - # 2800 Pb-glass blocks
- \* BCAL: Built and Installed
  - \* Pb/Scintillating-fiber calorimeter

### **Forward Calorimeter (FCAL)**



## Calorimetry



- \* FCAL: Installed and first
  cosmic signals!
  - # 2800 Pb-glass blocks
- \* BCAL: Built and Installed
  - \* Pb/Scintillating-fiber calorimeter

### **Barrel Calorimeter (BCAL)**





### Tracking



#### # FDC: Built and Installed

- # u/v cathode strip planes on either side of anode wires
- CDC: Built and Installed
  - # 28 straw tube layers

### **Forward Drift Chamber (FDC)**







### Tracking



#### \* FDC: Built and Installed

- # u/v cathode strip planes on either side of anode wires
- CDC: Built and Installed
  - # 28 straw tube layers



#### **Central Drift Chamber (CDC)**





### Particle Identification



- Start Counter: Under construction
  - Thin scintillator surrounding target
  - ∗ ~300 ps resolution
- \* TOF: Built and Installed
  - # 2 scintillator planes
  - \* 70 ps resolution; provides ~4 $\sigma$  π/K separation up to p ~ 2 GeV/c

### **Time of Flight (TOF)**



# $\gamma p \rightarrow (n) \pi^+ \pi^- \pi^+$ : Event selection



- Simulate inclusive photoproduction with PYTHIA-based generator
  - Large MC datasets (~10 billion events) produced in "data challenges" for background studies
- Many "handles" available to select the channel of interest: kinematic fit, particle ID, missing mass, etc.
- Can combine all variables into single classifier using multivariate analysis (eg. Boosted Decision Trees, Neural Networks, etc.)
- \* Simulated performance:  $\gamma p \rightarrow (n) \pi^+ \pi^- \pi^+$ 
  - # Purity of 95%, with ~20% efficiency
- Many other topologies currently being studied, including strange final states for high intensity running

# $\gamma p \rightarrow (n) \pi^+ \pi^- \pi^+$ : Partial Wave Analysis



- Exclusive (n)π<sup>+</sup>π<sup>-</sup>π<sup>+</sup> is ~2% of the total hadronic cross section
- Simulate production of known resonances and exotic hybrid (1<sup>-+</sup>) signal with 1.6% relative strength
- Yields correspond to ~3.5 hours of GlueX data taking
- Benchmark test of GlueX sensitivity to small amplitudes using detector full simulation and reconstruction



### GlueX timeline



- Spring/Summer 2014: complete installation
- \* Fall 2014: expect first commissioning beam in Hall D!
- \* 2015-2016: initial "low intensity" physics running
- \* 2017: begin high intensity running and possible PID upgrades

## Approved experiments in Hall D

- # GlueX: meson and baryon spectroscopy
- \* PrimeX: precision  $\eta \rightarrow \gamma \gamma$  decay width



### Summary

- \* The GlueX experiment in Hall D at JLab is designed to search for and study hybrid mesons for which a rich spectrum is predicted by Lattice QCD
- \* Detector construction and installation is nearing completion: first beam to Hall D this fall!
- \* Expect first physics data in 2015 and full intensity running in 2017
- \* Additional Hall D approved experiments provide important low energy tests of QCD

# Backup

# Kinematic Fitting: $\gamma p \rightarrow (n)\pi^+\pi^-\pi^+$

- \* Kinematics over-constrained by measured incident photon energy
- \* Constraints from four momentum conservation, invariant masses, and primary/secondary vertices
- \* For example, in this case have 10 conserved quantities and 6 unknowns (missing neutron p and vertex position)



#### Missing Mass

Measured quantities pre- and post-Kinematic Fit

 $\pi^+\pi^-\pi^+$  Mass

### Multivariate Analysis

- \* Common in HEP analyses to search for rare signals in high background environments
- Include all variables possibly relevant to separating signal and background in a way that incorporates correlations between variables to obtain a single classifier variable
- \* So far used mainly Boosted Decision Tree (BDT), but others available
- \* Conveniently packaged in ROOT via (TMVA): <u>http://tmva.sourceforge.net</u>



- To train a classifier we need a sample of known signal (AmpTools) and background (bggen) events
- Build a single Decision Tree (DT) by splitting the data multiple times to produce highly pure signal or background "leaves", and classify them based on signal fraction above some threshold
- Single DTs are sensitive to fluctuations in the training data, but we can "boost" them by increasing the weights of incorrectly classified events in the previous DT
- Build many DTs with these modified weights, and combine them to form a single BDT classifier

### **BDT: Event Selection Procedure**

- Includes many variables, such as charged track particle ID (TOF and dE/dx), kinematic fit confidence level, and excess calorimeter energies
- \* Combine into a single "classifier" response to select events for an amplitude analysis

