



# W/Z + HEAVY FLAVOR AT ATLAS

Georges Aad on behalf of the ATLAS Collaboration

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

DIS2014, Warsaw

# INTRODUCTION

- W/Z production presents a standard candle to test the SM and to tune QCD models, MC and PDFs
- Productions including heavy flavor known with limited precision
  - Large uncertainties from both the theoretical and the experimental sides
- All results shown for 4.6 fb<sup>-1</sup> of data collected in 2011 at  $\sqrt{s} = 7$  TeV
- In this talk:
  - Quick reminder of the W+b cross section results
  - Present in more details the recent W+c measurements (and the sensitivity for the s-PDF)
- New Z+b measurement in preparation (not public yet)





# W PRODUCTION WITH B-QUARKS

JHEP 06 (2013) 084 arXiv:1302.2929

2014-04-16

Georges Aad - DIS2014

### W + B-JETS PRODUCTION

- Important measurement to constrain QCD with HF
  - Also an important background for many analyses namely  $WH(H \rightarrow bb)$
- Measurement based on a template fit of the b-tag weight of jets
  - Exactly one b-tag jet required (reject t-tbar)
- Main backgrounds
  - Top production; very hard to separate single top events
  - W+light or c-jets
  - Multijet production
  - Z and diboson production



## W + B-JETS RESULTS

- Measurement corrected to a fiducial region with at least one b-jet
  - No separation between topologies with one or two b-jets
- Compatible with predictions in the one and two jets bins
- Also differential in jet p<sub>T</sub>
  - Small tension at high p<sub>T</sub>
    - to be confirmed with larger statistics







arXiv:1402.6263 Accepted in JHEP

Georges Aad - DIS2014

2014-04-16

# W+C PRODUCTION

- Production of a W boson in association with a single c-quark
  - Measurement directly sensitive to the s-quark PDF
  - Also large background for many processes with a lepton and heavy flavor jets in the final state
- Carried out at Tevatron and CMS
  - PDF interpretation not straightforward (need to control c fragmentation, scale, ...)
  - Only recently included in PDF fits
- s-quark PDF not well constrained in the phase space relevant for the LHC ( $Q^2 \approx 100^2 \text{ GeV}^2$  and  $x \approx [0.001 0.1]$ )
  - Constraints from low energy fix target experiments
- ATLAS measurements
  - Cross sections
  - Differential cross sections in lepton  $|\eta|,$  jet multiplicity and D meson  $p_{\rm T}$
  - Ratio of W<sup>+</sup> and W<sup>-</sup> cross sections produced with a c-quark





2014-04

### REMINDER

- ATLAS already performed a PDF fit which is indirectly sensitive to the s-quark PDF
  - Fit using W/Z differential cross section measurements
  - Fit suggesting high s-density compared to "usual" PDF values
  - s-quark density comparable to the d-quark sea density





## **ANALYSIS OVERVIEW**

- Analysis based on the charge correlation between the c-quark and the W boson to suppress backgrounds
- Tag c-quark production with 2 methods
  - Soft muon decay in a c-jet
  - Reconstruction of D(\*) charged mesons (no jets required)
- Both methods have access to the c-quark charge
- SS events subtracted from OS events to select a relatively pure Wc sample







OS-SS WD\*

 $D^* \rightarrow D^0 \pi \rightarrow (K\pi)\pi$ 

Data

W+c

W+cc̄/bb̄

W+liaht

Multijet

Others

175

Top



 $\Delta m = m(D^*) - m(D^0) [MeV]$ 

#### SELECTION AND BACKGROUNDS

- The W side selection
  - High-p<sub>T</sub> isolated lepton
  - MET and W transverse mass cuts
- The c-quark side selection
  - Wc-jet
    - Exactly one c-jet in the event tagged by the presence of a soft muon
    - p<sub>T</sub>(jet)>25 GeV, |η(jet)|<2.5</li>
  - WD(\*)
    - Reconstruct secondary vertices and fit the invariant mass
    - p<sub>T</sub>(D(\*))>8 GeV, |η(D(\*))|<2.2</li>
- Backgrounds
  - W+light-jet and Multijet (especially c-cbar)  $\rightarrow$  Main backgrounds
  - Wcc and Wbb  $\rightarrow$  totally cancel in OS-SS
  - t-tbar → nearly OS/SS symmetric (largely cancels in OS-SS)
  - Single top and diboson  $\rightarrow$  (OS/SS asymmetric but small)
  - Z production  $\rightarrow$  only relevant in the Wc-jet muon channel



2014-04

# WC-JET ANALYSIS

- Cut and count OS-SS events
- A variety of background estimation methods
  - Multijet and W+light backgrounds estimated using data driven methods
  - Z+jets normalized to the Z peak in data for the muon channel
  - Other smaller backgrounds are estimated from MC





## WD(\*) ANALYSIS

- Exclusive reconstruction of D/D\* mesons in different channels  $D^+ \rightarrow K\pi\pi$ 
  - $D^* \rightarrow D^0 \pi \rightarrow (K\pi) \pi$
  - $D^* \rightarrow D^0 \pi \rightarrow (K \pi \pi^0)$
  - $D^* \rightarrow D^0 \pi \rightarrow (K\pi\pi\pi) \pi$

Form vertices from charged tracks with correct charge combination and fit the invariant mass (in  $p_T$  bins)

- Signal templates from control region with semileptonic B decays
- Measure WD/W ratio and then multiply by the W cross section



# CROSS SECTIONS

- Measurements corrected to particle level in a fiducial region
  - Extrapolation reduced as much as possible
- Special care taken to evaluate c-quark fragmentation and c-hadron decay related properties and their uncertainties
- Electron and muon channels averaged as well as the different decay channels for the D\* analysis
- c-jet, D and D\* cross sections kept separated
  - +/- ratio for D and D\* are averaged (same phase space)

| Requirement                  | Cut                                      |                             |
|------------------------------|------------------------------------------|-----------------------------|
| Lepton transverse momentum   | $p_{\rm T}^\ell > 20 {\rm GeV}$          | Measurements corrected      |
| Lepton pseudorapidity        | $ \eta^\ell  < 2.5$                      | to a common fiducial        |
| Neutrino transverse momentum | $p_{\mathrm{T}}^{\nu} > 25 \mathrm{GeV}$ | region concerning the       |
| W transverse mass            | $m_{\mathrm{T}}^W > 40 \mathrm{GeV}$     | W-boson side                |
| D meson transverse momentum  | $p_{\rm T}^{D^{(*)}} > 8 \mathrm{GeV}$   | Different fiducial cuts for |
| D meson pseudorapidity       | $ \eta^{D^{(*)}}  < 2.2$                 | WC-Jet/D(*) on the C-side   |
| c-jet transverse momentum    | $p_{\rm T}^{jet} > 25 {\rm GeV}$         | probing different regions   |
| c-jet pseudorapidity         | $ \eta^{jet}  < 2.5$                     | J of phase space            |



# SYSTEMATICS WD(\*)

**Total systematics of** the order of 4-5%

Tracking efficiency dominating the reco systematics

D/D\* decay BR dominating the acceptance correction systematics

| Relative systematic uncertainty in $\%$            | WD  | $WD^*$ |
|----------------------------------------------------|-----|--------|
| Lepton trigger and reconstruction <sup>*</sup>     | 0.4 | 0.4    |
| Lepton momentum scale and resolution <sup>*</sup>  |     | 0.2    |
| Lepton charge misidentification                    |     | 0.1    |
| $E_{\rm T}^{\rm miss}$ reconstruction <sup>*</sup> | 0.4 | 0.4    |
| W background estimation                            | 1.3 | 1.3    |
| Background in $WD^{(*)}$ events                    | 0.7 | 0.6    |
| W efficiency correction                            | 0.6 | 0.6    |
| Tracking efficiency                                | 2.1 | 2.2    |
| Secondary vertex reconstruction efficiency         |     | 0.4    |
| $D^*$ isolation efficiency                         | -   | 2      |
| Fitting procedure                                  | 0.8 | 0.5    |
| Signal modelling                                   | 1.4 | 1.9    |
| Statistical uncertainty on response                |     | 0.2    |
| Branching ratio                                    | 2.1 | 1.5    |
| Extrapolation to fiducial region                   |     | 0.8    |
| Integrated luminosity <sup>*</sup>                 |     | 1.8    |
| Total                                              | 4.3 | 4.8    |





\* Correlated with Wc-jet

## SYSTEMATICS WC-JET

#### \* Correlated with WD(\*)

Relative systematic uncertainty in % $W(e\nu)c$ -jet  $W(\mu\nu)c$ -jet 0.7Lepton trigger and reconstruction<sup>\*</sup> 0.8Lepton momentum scale and resolution  $\!\!\!\!^*$ 0.50.6Lepton charge misidentification 0.2Jet energy resolution<sup>\*</sup> 0.10.12.1 Jet energy scale 2.4  $E_{\rm T}^{\rm miss}$  reconstruction<sup>\*</sup> 0.80.3Background yields 4.01.9 Soft-muon tagging 1.4 1.4 *c*-quark fragmentation 2.01.6 *c*-hadron decays 2.83.0 Signal modelling 0.20.9 1.4 1.4 Statistical uncertainty on response Integrated luminosity<sup>\*</sup> 1.8 1.8 Total 6.55.3

No large correlated systematics between the Wc-jet and the WD(\*) analyses (mainly Lumi)  $\rightarrow$  complementary; significant gain from combination

#### Large systematics from c fragmentation and decay

Total systematics of

the order of 5-6%

JES dominating the reco

uncertainties

Largest systematics from

background yields (mostly

stat from data control

regions and MC

#### CROSS SECTION RESULTS

- Inner error bars: PDF uncertainties
- Total error bars: total theory uncertainties
  - Scale uncertainties: 4-9%
- PDF sets with relatively large s-quark density describe better the different measurements





#### DIFFERENTIAL MEASUREMENTS

- Differential measurements in lepton pseudorapidity to increase sensitivity to different PDF sets
- Measurements limited by statistical uncertainties
- Could not discriminate between different shapes from different sets
  - Main discrimination from total normalization
  - Need additional statistics (8 TeV data)



2014-04-1

#### RESULTS COMPATIBILITY

- Compatible results in the different channels
  - Assuming extrapolation using aMC@NLO(CT10)
- Quantify compatibility with different PDF sets (with aMC@NLO)
  - Chi2 fit with systematics as nuisance parameters
- Fit performed simultaneously for all channels
  - All correlations taken into account



$$\chi^{2} = \sum_{k,i} w_{k}^{i} \frac{\left[\mu_{k}^{i} - m^{i} \left(1 + \sum_{j} \gamma_{j,k}^{i} b_{j} + \sum_{j} (\gamma^{\text{theo}})_{j,k}^{i} b_{j}^{\text{theo}}\right)\right]^{2}}{(\delta_{\text{sta},k}^{i})^{2} \Delta_{i}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2} + \sum_{j} b_{j}^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2} \delta_{j}^{k} + (\delta_{\text{unc},k}^{i} m^{i})^{2} + \sum_{j} (b_{j}^{2} + b_{j}^{2} + b_{j$$

Method developed in Eur. Phys. J. C 63 (2009) 625–678, arXiv:0904.0929 [hep-ex] and implemented in HeraFitter

2014-04-16

#### **COMPARISON WITH PREDICTIONS**

|                                                   | CT10    | MSTW2008 | HERAPDF1.5 | ATLAS-epWZ12 | NNPDF2.3 | NNPDF2.3coll |
|---------------------------------------------------|---------|----------|------------|--------------|----------|--------------|
| $W^+\overline{c}$ -jet ( $\chi^2/\mathrm{ndof}$ ) | 3.8/11  | 6.1/11   | 3.5/11     | 3.1/11       | 8.5/11   | 2.9/11       |
| $W^-c$ -jet ( $\chi^2/ndof$ )                     | 9.0/11  | 10.3/11  | 8.3/11     | 6.3/11       | 10.5/11  | 6.1/11       |
| $W^+D^-$ ( $\chi^2/\mathrm{ndof}$ )               | 3.6/4   | 3.7/4    | 3.7/4      | 3.4/4        | 3.8/4    | 3.4/4        |
| $W^-D^+$ ( $\chi^2/\mathrm{ndof}$ )               | 3.7/4   | 4.6/4    | 3.3/4      | 2.0/4        | 4.7/4    | 1.6/4        |
| $W^+D^{*-}$ ( $\chi^2/\mathrm{ndof}$ )            | 2.9/4   | 6.0/4    | 2.2/4      | 1.7/4        | 8.1/4    | 1.6/4        |
| $W^-D^{*+}$ ( $\chi^2/\mathrm{ndof}$ )            | 3.0/4   | 4.4/4    | 2.4/4      | 1.6/4        | 4.2/4    | 1.4/4        |
| $N_{ m exp}$                                      | 114     | 114      | 114        | 114          | 114      | 114          |
| $N_{ m theo}$                                     | 28      | 22       | 16         | 20           | 40       | 40           |
| Correlated $\chi^2$ (exp)                         | 0.8     | 1.8      | 0.9        | 1.1          | 2.2      | 1.0          |
| Correlated $\chi^2$ (theo)                        | 6.2     | 1.9      | 2.6        | 0.1          | 7.4      | 0.2          |
| Correlated $\chi^2$ (scale)                       | 0.6     | 2.5      | 1.1        | 0.0          | 2.7      | 0.0          |
| Total $\chi^2/ndof$                               | 33.6/38 | 41.3/38  | 28.0/38    | 19.2/38      | 52.1/38  | 18.2/38      |

PDFs with small uncertainties and tension in the nominal values Scale nuisance parameter shifted by more than 2 sigma (~20%) to compensate PDFs with compatible nominal values and large uncertainties Measurement helps constraining these PDFs

Reduced scale uncertainties needed to better discriminate PDF sets



# S-QUARK PDF

- Hera PDF implements the s-density as a single parameter with a single uncertainty
  - The actual parameter is the ratio to dbar-density
- Leave the corresponding nuisance parameter free in the fit
  - "pseudo-fit" of the s-density



- Results fully compatible with the ATLAS-epWZ PDF which includes ATLAS W/Z data
- Results pointing to SU(3) flavor symmetry in the proton
  - No visible effect from the s-quark mass
- Tension with CMS data (next talk) but uncertainties are large
  - More data for a definitive conclusion



2014-04-

#### +/- RATIO RESULTS

- W+cbar/W-c ratio sensitive to s-sbar asymmetry (suggested by NuTeV data)
  - Also sensitive to s/d density fraction (expect more W<sup>-</sup> due to the d valence)
- Systematics cancel in the ratio (statistically dominated)
  - Need more data (8 TeV?) to be sensitive to % level s-sbar asymmetry



2014-04-

Georges Aad - DIS2014

# **CONCLUSIO**N

- Wb measurements compatible with theory predictions
  - Small tension at high  $\boldsymbol{p}_{T}$  to be confirmed
- ATLAS Wc analysis supports previously enhanced s-density suggested by ATLAS W/Z data
  - Independent cross section measurements using different techniques and covering different phase spaces (Wc-jet and WD(\*)) in excellent agreement
- Wc measurements interpretation in terms of PDFs diluted by large theory uncertainties
  - Some work needed on this front as well
- Large statistical uncertainty for the +/- ratio and differential measurements for the Wc analysis
  - Need more data (8 TeV) to take advantage of shape differences
  - In addition, need a good control of s/dbar to be sensitive to the s-sbar asymmetry suggested by NuTeV data
- Tension between Wc ATLAS and CMS measurements
  - But uncertainties still large, still compatible





Georges Aad - DIS2014

2014-04-16

#### ADDITIONAL MEASUREMENTS

Disclaimer: no prediction uncertainties, qualitative comparison to MC nominal values



aMC@NLO+HERWIG++ does not seem to reproduce the jet multiplicity very well Alpgen+Pythia doing much better



Small tension at high pT between data and aMC@NLO+HERWIG++ Need more data to confirm



#### WD(\*) SIGNAL TEMPLATES





## **CROSS SECTIONS**

|                             | $W^+\overline{c}$ -jet | $W^-c$ -jet | $W^+D^-$ | $W^-D^+$ | $W^{+}D^{*-}$ | $W^{-}D^{*+}$ |
|-----------------------------|------------------------|-------------|----------|----------|---------------|---------------|
| cross section [pb]          | 33.62                  | 37.26       | 17.79    | 22.44    | 21.15         | 22.08         |
| stat uncertainty [pb]       | 0.89                   | 0.82        | 1.94     | 1.77     | 0.87          | 0.82          |
| uncorr syst uncertainty[pb] | 0.35                   | 0.39        | 0.04     | 0.04     | 0.04          | 0.04          |
| corr syst uncertainty[pb]   | 1.80                   | 1.89        | 0.76     | 0.96     | 0.98          | 1.03          |
| syst uncertainty[pb]        | 1.84                   | 1.93        | 0.76     | 0.96     | 0.98          | 1.03          |
| total uncertainty[pb]       | 2.04                   | 2.10        | 2.08     | 2.02     | 1.31          | 1.31          |
| Correlation matrix          |                        |             |          |          |               |               |
| $W^+\overline{c}	ext{-jet}$ | 1                      | 0.76        | 0.05     | 0.06     | 0.09          | 0.10          |
| $W^-c$ -jet                 | 0.76                   | 1           | 0.05     | 0.07     | 0.10          | 0.10          |
| $W^+D^-$                    | 0.05                   | 0.05        | 1        | 0.17     | 0.18          | 0.19          |
| $W^-D^+$                    | 0.06                   | 0.07        | 0.17     | 1        | 0.24          | 0.25          |
| $W^{+}D^{*-}$               | 0.09                   | 0.10        | 0.18     | 0.24     | 1             | 0.58          |
| $W^{-}D^{*+}$               | 0.10                   | 0.10        | 0.19     | 0.25     | 0.58          | 1             |



#### **CROSS SECTION RESULTS**







#### **RESULTS COMPATIBILITY**



2014-04-16

#### DIFFERENT ATLAS R\_S RESULTS





Georges Aad - DIS2014



#### ATLAS VS CMS

#### arXiv: 1310.1138 JHEP 1402 (2014) 013





#### CMS FIT





#### Z+B-JETS

- Measurement performed with 2010 data at 7 TeV (36 pb<sup>-1</sup>)
- Per jet inclusive cross section measurement
- Statistically limited to be able to test different models

