Understanding b-initiated processes at the LHC

Maria Ubiali
(DAMTP and Cavendish Laboratory, University of Cambridge)

Work in collaboration with
F. Maltoni (Louvain), G. Ridolfi (Genova)
+ M. Kraemer (Aachen), M. Flechl (CERN), M. Lim (Cambridge)
The bottom quark is the only quark such that

\[\Lambda_{QCD} \ll m \ll M (m_W, m_t, m_H, m_Z) \]

b-quark phenomenology plays a crucial role at the LHC, from flavor physics to Higgs characterization and measurements as a window to New Physics.

A deeper understanding is crucial for to achieve rigorous predictions for this class of processes, which appear as both BSM signals and irreducible background at the LHC.
Outline

- Bottom production at the LHC
- 4F and 5F schemes
- Questions and Puzzles
- The investigation
- Results and generalization
- Conclusions and outlook
b production at the LHC

- Bottom quarks can enter in processes at the LHC

- Dominant strong production (gluon splitting) can take place in the initial or final state. E.g. bottom-initiated Higgs production

t-channel kinematics

Initial state

s-channel kinematics

Final state
b production at the LHC

- Bottom quarks can enter in processes at the LHC

- Dominant strong production (gluon splitting) can take place in the initial or final state. E.g. bottom-initiated Higgs production

\[\alpha_S^2 \log^2 \frac{\hat{s}}{m_b^2} \]
These logs for $m_b << \hat{s}$, might be large, possibly spoiling perturbation theory

$$\alpha_S(\hat{s}) \log \frac{\hat{s}}{m_b^2} \approx 1$$

A way out is to define a 5 flavor QCD effective field theory where the effects of such logs are resummed using DGLAP equations into fragmentation functions and b-pdf’s, in the final and initial state respectively.

$$\sum_{n=1}^{\infty} \left(\alpha_S \log \frac{\mu_F^2}{m_b^2} \right)^n$$
From 4F to 5F scheme

Take for simplicity a process with one bottom in the initial state (Single top)
From 4F to 5F scheme

Start from 4F and integrate over t-channel propagator

\[
\frac{1}{t - m_b^2} \sim \frac{1}{p_T^2 + m_b^2}
\]

\[
t = (p_b - p_g)^2, \quad p_T^2 = p_T,\bar{b}
\]

Contribution to the cross-section

\[
\int_{0}^{p_T,\text{max}} \frac{d p_T^2}{p_T^2 + m_b^2} = \log \left(\frac{p_T,\text{max}}{m_b^2} \right)
\]

Coefficient of the logarithm in the collinear limit

Splitting function

\[P_{g \rightarrow q\bar{q}} \times \]

matrix elements with splitting removed
From 4F to 5F scheme

* When logs are dominant

\[
\frac{d\sigma(qg \to q't\bar{b})}{d \log p_T^{2,\text{max}}} \sim \left(\frac{\alpha_s}{4\pi}\right) \left[\int \frac{dx}{x} P_{g\to q\bar{q}g} \right] \times \hat{\sigma}(qb \to q't)
\]

* But the first part resembles the evolution equation for a quark:

\[
\frac{dq}{d \log \mu^2} \sim \left(\frac{\alpha_s}{4\pi}\right) \int \frac{dx}{x} [P_{g\to q\bar{q}g} + P_{q\to qgq}]
\]

* So when logarithms dominate, can replace this description by

\[
\sigma(qg \to q't\bar{b}) \sim \sigma(q\tilde{b} \to q't) \quad \tilde{b}(x) \sim \left(\frac{\alpha_s}{2\pi}\right) \log \left(\frac{\mu^2}{m_b^2}\right) \left[\int \frac{dz}{z} P_{g\to q\bar{q}g} \right]
\]

- DGLAP evolution of b-PDF = resummation of full tower of leading logs
- Only the first logarithm goes to the PDF, following logs moved to higher orders
4F versus 5F scheme

At all orders 5F and 4F descriptions should agree; order by order they differ:

4F

- It does not resum possibly large logs, yet it does have them explicitly
- Computing higher orders is more difficult
- Mass effects are there at any order
- MC at LO and NLO no problem

5F

- It does resum initial state large logs into b PDFs leading to more stable predictions
- Computing higher orders is easier
- pT of bottom enter at higher orders
- Implementation in MC depend on the gluon splitting model in the parton showers
Questions #1

How the issue was historically raised

Factor of 10 difference??? Is this the effects of the logs? How can that be?
Questions #1

Two important ingredients helped in bringing predictions closer:

- Inclusion of higher order corrections

 - [Harlander and Kilgore, 2003]

 - [Dittmaier, Krämer, Spira '04]

 - [Dawson, Jackson, Reina, Wackeroth '04]

 - [Hirschi et al. 1103.0621]

- Scale choices: better agreement when smaller than naive choices M_H.

M. Kraemer, 2010
However:

✴ Why the agreement is so good around $M_H = 100$ GeV and the uncertainty band comparable?

✴ Why the agreements gets worse at large M_H? The logs should have more space to develop at smaller M_H / \sqrt{S} ...

✴ How is the smaller scale choice $M_H / 4$ justified?

✴ Is this behavior only proper of $b\bar{b} \rightarrow$ Higgs or it is general?
 Differences at natural scales M_t become smaller at lower scales, $\mu \sim M_t/4$. Why?

* At LHC both scale dependences are rather mild. 4F is as good as 5F. Where is the need for resummation?

* Differences are smaller at the LHC than Tevatron. Why? The logs should have more space to develop at the LHC...

Questions #2

To answer last question take t-channel single top production

J. Campbell et al, JHEP 0910 (2009) 042
Differences at natural scales M_t become smaller at lower scales, $\mu \sim M_t/4$. Why?

At LHC both scale dependences are rather mild. 4F is as good as 5F. Where is the need for resummation?

Differences are smaller at the LHC than Tevatron. Why? The logs should have more space to develop at the LHC...

What happens for a heavier top?

F. Maltoni, G. Ridolfi, M. Ubiali, JHEP 1207 (2012) 022
Questions #3

What about other more exclusive observables?

- This observable is NLO only in the 4F calculation.
- A 4F calculation is much more EXP handy and useful in actual analyses.
- Slightly softer in 4F (2 → 3), particularly at the Tevatron

J. Campbell et al, PRL 102 (2009) 182003
Single top, t-channel hadro-production: Acceptance for spectator b-quark (second-hardest jet)

At the LHC 5F and 4F results are much close to each others for all pT, while at Tevatron the difference is much larger: why?
All these apparent puzzles can be merged into a simple and consistent picture by taking into account two main results:

F. Maltoni, G. Ridolfi, M. Ubiali, JHEP 1207 (2012) 022

\[\tilde{b}^{O(\alpha_s^2)}(x, \mu) \]

Similar result obtained by R. Thorne [1402.3536] and F. Olness et al [0812.3371]

The resummation effects of the initial state logs into the b-PDFs are important only at large x!

Larger effect at large-x:

\[x \approx \frac{M^2}{S_{\text{had}}} \]
Single top production in 5F scheme @ LHC14

- $m_T = 172$ GeV
- $m_T = 400$ GeV
- $m_T = 800$ GeV

The resummation effects of the initial state logs into the b-PDFs are important only at large x!

The heavier the particle, the larger is the impact of resummation

\[
\langle x \rangle = 10^{-2}
\]

\[
\langle x \rangle = 5 \cdot 10^{-2}
\]

\[
\langle x \rangle = 10^{-1}
\]
The possibly large ratios $\frac{M^2}{m_b^2}$ are always accompanied by universal phase space factors

$$\log \left(\frac{M^2}{m_b^2} h(z) \right), \quad z = \frac{M^2}{\hat{s}}$$

$$= \log \left(\frac{\tilde{\mu}^2}{m_b^2} \right), \quad \tilde{\mu}^2 = M^2 < h(z) >$$

For the LHC processes that we have considered, the larger the mass the stronger the suppression. The opposite happens for DIS processes: $\tilde{\mu} < M_t$
How is determine \(h(z) \) determined? Take the simplest case

\[
\sigma^{5F}(\tau) = \left(\frac{\pi \sqrt{2}}{3} G_F \tau \right) \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ug} \left(\frac{\tau}{z}, \mu_F^2 \right) \frac{\alpha_S}{2\pi} P_{qg}(z) \log \frac{\mu_F^2}{m_b^2} + \ldots
\]

\[
\sigma^{4F}(\tau) = \left(\frac{\pi \sqrt{2}}{3} G_F \tau \right) \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ug} \left(\frac{\tau}{z} \right) \frac{\alpha_S}{2\pi} P_{qg}(z) L_{DY} + O(m_b^0)
\]

\[
z = \frac{M_W^2}{s}
\]

Take collinear limit

\[
\hat{\sigma}^{4F}(z) = \int_{t_-}^{t_+} dt \frac{d\hat{\sigma}}{dt}(s, t, \alpha_S).
\]

\[
\hat{\sigma}^{4F}(z) = \frac{\alpha_s}{2\pi} \left(\pi \frac{\sqrt{2}}{3} G_F \right) z^2 + \frac{(1 - z)^2}{2} \log \left[\frac{M_W^2}{m_b^2} \right] + O(m_b^0),
\]

\[
L_{DY} \equiv \log \left[\frac{M_W^2}{m_b^2} \right]
\]
The distribution of \((1-z)^2/z\) and \(t\) tend to suppress \(L_{DY}\) and suppression is stronger the larger is the mass of the produced particle

\[
\log \frac{\tilde{\mu}_F^2}{m_b^2} = \frac{\int_1^{1/z} \frac{dz}{z} \mathcal{L}_{ug} \left(\frac{\tau}{z} \right) P_{qq}(z) \log \left[\frac{M_W^2}{m_b^2} \left(\frac{1-z}{z} \right)^2 \right]}{\int_1^{1/z} \frac{dz}{z} \mathcal{L}_{ug} \left(\frac{\tau}{z} \right) P_{qq}(z)}
\]

- \(M_W = 80\) GeV, \(\tilde{\mu}_F \simeq [0.4, 0.5] M_W\)
- \(M_W = 400\) GeV, \(\tilde{\mu}_F \simeq [0.3, 0.4] M_W\)
- \(M_W = 800\) GeV, \(\tilde{\mu}_F \simeq [0.25, 0.35] M_W\)
We have shown that theoretical results obtained in 4F and 5F schemes can be consistently understood.

We have suggested a physically-motivated scale at which predictions should be compared.

A substantial and justified agreement between 4F and 5F calculations for a given process means that both calculations can be used in different contexts.

1. The resummation effects of the initial state logs into the b-PDFs are important only at large x!

2. The possibly large ratios M^2/m_b^2 are always accompanied by universal phase space factors that lead to their suppression.

\[
Q^2(z) = (M^2 + Q^2) \frac{(1 - z)^2}{z} \frac{1}{1 - \frac{zQ^2}{M^2+Q^2}}
\]

\[
z = \frac{M^2 + Q^2}{s + Q^2}
\]

\[
Q \to \infty L_{DY} = \log \left[\frac{M^2}{m_b^2} \frac{(1 - z)^2}{z} \right]
\]

\[
M \to 0 L_{DIS} = \log \left[\frac{Q^2}{m_b^2} \frac{1 - z}{z} \right]
\]

Answers - summary
Charged Higgs production

- Consider Charged Higgs production in 2 Higgs Doublet Model
- Heavy Charged Higgs boson with a mass larger than a top quark would be produced in association with a top quark
Improved comparison between 4F and 5F by using motivated factorization scale in the 5F prediction instead of ad-hoc scale

Substantial agreement between predictions and reduced theoretical uncertainty

All sources of theoretical uncertainties are kept into account: PDFs, scale variation

Matched predictions with Santander matching [Harlander et al, 1112.3478]

Needed?

$$\sigma_{\text{matched}} = \frac{\sigma_{4F} + w\sigma_{5F}}{1 + w}$$

$$w = \log \frac{M_H}{M_b} - 2$$
Findings generalized to the case of two b’s in the initial state, \(bb>H\) and \(bb>Z\): a detailed comparison is interesting both for SM and BSM.

Similar logarithms and stronger suppression at the LHC.

\[L_{\text{UNIV}}^2 = \log^2 \frac{Q_2(z)}{m_b^2} \]
Two b’s in the initial state

Findings generalized to the case of two b’s in the initial state, \(bb>H\) and \(bb>Z\): a detailed comparison is interesting both for SM and BSM.

Similar logarithms and stronger suppression at the LHC.

\[
L_{\text{UNIV}}^2 = \log^2 \frac{Q^2(z)}{m_b^2}
\]

plots by M. Lim
Two b’s in the initial state

- Findings generalized to the case of two b’s in the initial state, $\text{bb} > \text{H}$ and $\text{bb} > \text{Z}$: a detailed comparison is interesting both for SM and BSM
- Similar logarithms and stronger suppression at the LHC
- Top quark at 100 TeV collider is like the bottom quark at LHC

$$L_{\text{UNIV}}^2 = \log^2 \frac{Q^2(z)}{m_b^2}$$

- Relevant also for t initiated Higgs production at future high energy colliders
- Plots by J Rojo
Conclusions

- We have developed a simple method to assess the size of potentially large collinear logs in processes initiated by bottom quarks.
- Quantitative estimate of the impact of resummation for some key LHC processes: $b+V$ production, single top.
- Study applies also to DIS b production.
- Do we need b PDFs at the LHC? Not so desperately as one may think due to small-x fraction of momentum carried by partons and to suppressed scale of collinear logs.
- Application to Charged Higgs production [M Flechl, R. Klees, M. Kraemer, MU].
- Results generalized to two b's in the initial state and initial top at future colliders [with M. Lim].
- What about fragmentation functions? An analogous study for final state gluon splitting at high-p_T, in particular 4F versus 5F approaches is going to be delivered soon [F. Demartin, F. Maltoni, G. Ridolfi, MU].
- Next step is to look into more exclusive observables and modeling into MC event generators.
Back-up
Importance of resummation

\[b_{\text{pdf}} \text{ has all the logs resummed} \]

\[
\int dx_1 dx_2 \, q(x_1, \mu_F^2) b(x_1, \mu_F^2) \hat{\sigma}(qb \rightarrow q't) = \int dx_1 dx_2 \, q(x_1, \mu_F^2) \tilde{b}(x_1, \mu_F^2) \hat{\sigma}(qb \rightarrow q't)
\]

\[
\tilde{b}(x, \mu_F) \sim \frac{\alpha_s}{2\pi} \log \frac{\mu^2}{m_b^2} \int_x^1 \frac{dy}{y} P_{qg} \left(\frac{x}{y} \right) g(y, \mu_f)
\]

\text{btilde is just the first log that one gets from a LO 4F calculation. The b-pd}f\text{ resums the full tower of such logs that come from higher orders in the 4F calculation.}
Importance of resummation

\[\tilde{b}^{(1)}(x, \mu^2) = \frac{\alpha_S}{2\pi} \log \frac{\mu^2}{m_b^2} \int_x^1 \frac{dz}{z} P_{qq}(z) g \left(\frac{x}{z}, \mu^2 \right) / b^{(1)}(x, \mu^2) \]

Comparison between the first log which the one included in the LO 4F calculation of single-top, and the full resummed result given by the AP equations.

The various curves correspond to different Bjorken x's.

At small x the effect is positive, in other words b~ is a kind of bad overestimate.

At large x resummation effects are manifest.

LO approximation does not look good enough.
Importance of resummation

\[\tilde{b}^{(2)}(x, \mu^2) = \int_x^1 \frac{dz}{z} \left[\sum^{4F,(2)} \left(\frac{x}{z}, \mu^2 \right) \left(\frac{\alpha_S}{4\pi} \right)^2 a_{\Sigma,b}(z, \mu^2/m_b^2) \right] \]

\[+ \int_x^1 \frac{dz}{z} g^{4F,(2)} \left(\frac{x}{z}, \mu^2 \right) \left[\left(\frac{\alpha_S}{4\pi} \right) a_{g,b}(z, \mu^2/m_b^2) + \left(\frac{\alpha_S}{4\pi} \right)^2 a_{g,b}(z, \mu^2/m_b^2) \right] \]

Comparison between the first log^2 + log which are included in the NLO 4F calculation of single-top, and the full resummed result given by the AP equations at NLO.

The various curves correspond to different Bjorken x's.

At small x also now the resummation is visible yet is very small.

At large x resummation effects are manifest.

NLO approximation does look reasonably behaved.
Importance of resummation

- Can I understand this behaviour (at least roughly)?

I write the DGLAP equation for the b-pdf:

\[
\frac{d}{d \log \mu^2} b(N, \mu^2) = \frac{\alpha_S(\mu^2)}{2\pi} \left[\gamma_{qq}^{(0)}(N)b(N, \mu^2) + \gamma_{qg}^{(0)}(N)g(N, \mu^2) \right],
\]

\[b(N, m_b^2) = 0 \quad \text{boundary condition}\]

whose solution at LO can be easily written as:

\[b(N, \mu^2) = \gamma_{qq}^{(0)}(N)g(N, m_b^2) \left\{ \frac{\alpha_S(m_b^2)}{2\pi} \log \frac{\mu^2}{m_b^2} + \sum_{k=2}^{\infty} A_k(N) \frac{1}{k!} \left[\frac{\alpha_S(m_b^2)}{2\pi} \log \frac{\mu^2}{m_b^2} \right]^k \right\},\]

\[A_k(N) = \left[\gamma_{qq}^{(0)}(N) - \beta_0 \right] \left[\gamma_{qq}^{(0)}(N) - 2\beta_0 \right] \cdots \left[\gamma_{qq}^{(0)}(N) - (k-1)\beta_0 \right].\]

The logarithms resummed in the b-PDF are larger:

1. as \(\mu \) gets larger with respect to \(m_b \)
2. at large \(N \) \(\Leftrightarrow \) large \(x \)
Collinear log @ DIS

\[\sigma_b(\mu^2) = \int_{y_{\text{min}}}^{y_{\text{max}}} dy \int_{Q_{\text{min}}}^{Q_{\text{max}}} dQ^2 \frac{2\pi \alpha_l \alpha_h}{y(M^2 + Q^2)^2} \left\{ [1 + (1 - y)^2] F_2^b(x, Q^2, m_b^2) - y^2 F_L^b(x, Q^2, m_b^2) + [1 - (1 - y)^2] F_3^b(x, Q^2, m_b^2) \right\} \]

\[y = \frac{Q^2}{xS} \]
Collinear log @ DIS

Take the expression for the 4F process $\gamma^* + g \to b + \bar{b}$ at small t:

$$\frac{d\sigma_2}{dt} = \frac{\pi \alpha_e e_b^2 \alpha_S C_F}{16} \left[-\frac{4z}{Q^2(t - m_b^2)} \frac{z^2 + (1 - z)^2}{2} \right] + \text{non-singular terms}$$

Integrating over t gives:

$$\int_{t_-}^{t_+} dt \frac{d\sigma_2}{dt} = \frac{\pi \alpha_e e_b^2 \alpha_S C_F}{4Q^2} zP_{qg}(z) \log \frac{1 + \beta}{1 - \beta} t_\pm = m_b^2 - \frac{s + Q^2}{2}(1 \pm \beta); \quad \beta = \sqrt{1 - \frac{4m_b^2}{s}}$$

$$= \left(\frac{\pi^2 \alpha_e e_b^2 C_F}{2Q^2} \right) \frac{\alpha_S}{2\pi} zP_{qg}(z) \left[\log \frac{m_b^2}{s} + O \left(\frac{m_b^2}{s} \right) \right],$$

i.e., doing it properly, one sees that the naively expected $\log Q^2/m_b^2$ is actually:

$$L_{\text{DIS}} \equiv \log \left[\frac{Q^2}{m_b^2} \frac{1 - z}{z} \right] = \log \frac{M_{b\bar{b}}^2}{m_b^2}$$
Collinear log @ DIS

\[L_{\text{DIS}} \equiv \log \left[\frac{Q^2}{m_b^2} \frac{1 - z}{z} \right] = \log \frac{M_{b\bar{b}}^2}{m_b^2} \]

The typical values for \((1-z)/z\) lead to an enhancement of the log at HERA and \(\sim 1\) at the LHeC.