



# Charmed Spectroscopy at LHCb



April 28 – May 2, 2014 University of Warsaw, Warsaw, Poland Liang Zhong
Tsinghua University
On behalf of the LHCb
collaboration



#### Outline



- The LHCb detector
- Charmed meson  $D_I$  spectroscopy
- Search for the doubly charmed baryon  $\Xi_{cc}^+$
- Summary



#### The LHCb detector



Single arm forward detector, optimized for heavy flavour physics







• Charmed meson  $D_J$  spectroscopy [JHEP 09 (2013) 145, LHCb-PAPER-2013-026]



## Introduction



- ullet  $D_I$  meson spectroscopy provides tests of the quark model
  - Only few states observed
- BaBar experiment found four new states which need to be confirmed



• LHCb study the  $D_J$  mesons in  $D^+\pi^-$ ,  $D^0\pi^+$  and  $D^{*+}\pi^-$  final states using  $1 {
m fb}^{-1}$  pp collision data



# $D^{*+}\pi^-$ mass spectra





- Clear signal of  $D_1(2420)^0$  and  $D_2^*(2460)^0$
- Complex structures in the mass range 2600 2800 MeV
- No significant structure in the wrong sign  $(D^{*+}\pi^+)$  sample



# $D^{*+}\pi^{-}$ angular distributions



- Extract spin-parity of  $D_J$  in the angular distribution of  $D^{*+}\pi^-$  using the helicity angle  $\theta_H$ 
  - Natural Parity:  $J^P = 0^+, 1^-, 2^+...$ 
    - Angular distribution:  $\propto \sin^2 \theta_H$
  - Unnatural Parity:  $J^P = 0^-, 1^+, 2^-...$ 
    - Angular distribution:  $\propto 1 + h \cos^2 \theta_H$



Enhanced Unnatural Parity Sample:  $|\cos \theta_H| > 0.75$ 



Natural Parity Sample:  $|\cos \theta_H| < 0.5$ 





#### **Enhanced Unnatural Parity Sample**



- Contributions from Natural Parity states highly suppressed
  - $-D_2^*(2460)^0$  contribution consistent with zero

JHEP 09 (2013) 145

- Clear  $D_1(2420)^0$  signal
- Three new structures observed:  $D_J(2580)^0$ ,  $D_J(2740)^0$  and  $D_I(3000)^0$





#### Natural Parity Sample



- Expect contribution from Natural Parity states and Unnatural Parity states

  JHEP 09 (2013) 145
  - Clear  $D_1(2420)^0$  and  $D_2^*(2460)^0$  signal
- Two new structures observed:  $D_I^*(2650)^0$  and  $D_I^*(2760)^0$





#### Angular distribution(I)





•  $D_I^*(2650)^0$  and  $D_I^*(2760)^0$  found to have natural parity



#### Angular distribution(II)





•  $D_J(2580)^0$ ,  $D_J(2740)^0$  and  $D_J(3000)^0$  found to have unnatural parity



# $D^{+/0}\pi^{-/+}$ mass spectra



- Only natural parity resonances could contribute due to parity conservation:  $D_2^*(2460)^{0/+}$ ,  $D_I^*(2650)^{0/+}$ ,  $D_I^*(2760)^{0/+}$
- Cross-feed from higher excited states  $D_J \to \pi^+ D^{*+/0} (\to D^{+/0} \pi^0 / \gamma)$



Require a broad structure around 3000 MeV to fit the spectra



#### Discussion



- We observe four new states:  $D_J^*(2650)^0$  ,  $D_J^*(2760)^{0/+}$  ,  $D_J(2580)^0$  and  $D_J(2740)^0$  JHEP 09 (2013) 145
  - Partially agree with BaBar results [PR D82 (2010) 111101]



• Broad structure around 3000 MeV in the  $D^{*+}\pi^-$  and  $D\pi$  mass spectra could be superposition of several states





# Search for the doubly charmed baryon $\Xi_{cc}^+$ [JHEP 1312 (2013) 090, LHCb-PAPER-2013-049]



# Doubly charmed baryon $\Xi_{cc}^+$



•  $\Xi_{cc}^+$  predicted by quark model and expected to decay weakly.

- Various theoretical predictions
  - $-m(\Xi_{cc}^{+})\sim[3500,3700]\text{MeV}/c^{2}$
  - $-\tau(\Xi_{cc}^+)\sim[100,250]$  fs
  - Cross section at LHC :  $\mathcal{O}(10^2)$  nb
- SELEX claimed the observation of  $\Xi_{cc}^+$  in  $\Lambda_c^+ K^- \pi^+$  and  $pD^+ K^-$  [PRL 89 (2002) 112001, PLB 628 (2005) 18]
  - $-m(\Xi_{cc}^{+}) = 3519 \text{ MeV}/c^{2}$
  - $\tau(\Xi_{cc}^+) < 33 \text{ fs } @ 90\%C.L.$
- Not confirmed by FOCUS, BaBar or Belle







# $\Xi_{cc}^{+}$ search at LHCb (I)



JHEP 1312 (2013) 090

- Search for  $\Xi_{cc}^+$  through  $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ ,  $\Lambda_c^+ \to p K^- \pi^+$ 
  - Dataset: 0.65 fb<sup>-1</sup> of 2011 data at  $\sqrt{s} = 7$  TeV
  - Relevant triggers only online for half the year
- Measure the cross section ratio relative to the control  $\Lambda_c^+$

$$R = \frac{\sigma(\Xi_{cc}^+) \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$$

- Assuming  $\mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+) \approx \mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) \approx 5\%$ , the expected value of R at LHCb is of order  $10^{-5} 10^{-4}$ .
- Analysis performed in a blind approach



# $\Xi_{cc}^{+}$ search at LHCb (II)



16

- Construct  $\delta m$  quantity for better resolution
  - $\delta m = m(\Lambda_c^+ K^- \pi^+) m(\Lambda_c^+) m(K^-) m(\pi^+) \quad ^{\text{JHEP 1312 (2013) 090}}$
- Signal yield fit using two methods
- No significant signal observed







#### Upper limits for R



- Upper limits depends on efficiency, which varies with  $\Xi_{cc}^+$  mass and lifetime
  - The efficiency given as a function of  $\delta m$ , for 5 different lifetime hypotheses



JHEP 1312 (2013) 090



#### Summary



- LHCb has made important progress on charm spectroscopy
- In the sector of the  $D_J$  spectroscopy four new states observed.
- No significant signal observed in  $\Xi_{cc}^+$  search
- Results will be updated with larger dataset





# backup



# $D^+\pi^-$ mass spectra





- Clear signal of  $D_2^*(2460)$
- Cross-feed from  $D_1(2420)^0$  or  $D_2^*(2460) \to \pi^- D^{*+} (\to D^+ \pi^0 / \gamma)$ 
  - Could also cross-fed by higher unknown resonances
- Weak structures around 2600 and 2750 MeV
- No significant structure in wrong sign  $D^+\pi^+$  mass spectra



# $D^0\pi^+$ mass spectra





- Clear signal of  $D_2^*(2460)$
- Cross-feed from

$$D_1(2420)^+ \text{ or } D_2^*(2460)^+ \to \pi^+ D^{*0} (\to D^0 \pi^0 / \gamma)$$

- Could also cross-fed by higher unknown resonances Weak structures around 2600 and 2750 MeV
- The wrong sign  $D^0\pi^-$  mass spectra shows cross-feeds from:  $D_1(2420)^0$  or  $D_2^*(2460)^0 \to \pi^-D^{*+}(\to D^0\pi^+)$



# Unnatural Parity Sample and Total Sample







- Unnatural Parity Sample: fix all resonances parameters except for  $D_1(2420)^0$
- Total Sample: all resonances parameters fixed



## Fit result



| Resonance              | Final state     | Mass (MeV)     |     |            | Width (MeV)   |      |             | Yields $\times 10^3$     | Sign. |
|------------------------|-----------------|----------------|-----|------------|---------------|------|-------------|--------------------------|-------|
| $D_1(2420)^0$          | $D^{*+}\pi^{-}$ | 2419.6 ±       | 0.1 | ± 0.7      | 35.2 ±        | 0.4  | ± 0.9       | $210.2 \pm 1.9 \pm 0.7$  |       |
| $D_2^*(2460)^0$        | $D^{*+}\pi^{-}$ | 2460.4 $\pm$   | 0.4 | $\pm$ 1.2  | 43.2 ±        | 1.2  | $\pm$ 3.0   | $81.9 \pm 1.2 \pm 0.9$   |       |
| $D_{J}^{*}(2650)^{0}$  | $D^{*+}\pi^{-}$ | 2649.2 $\pm$   | 3.5 | $\pm$ 3.5  | 140.2 $\pm$   | 17.1 | $\pm$ 18.6  | $50.7 \pm 2.2 \pm 2.3$   | 24.5  |
| $D_{J}^{*}(2760)^{0}$  | $D^{*+}\pi^{-}$ | 2761.1 $\pm$   | 5.1 | $\pm$ 6.5  | 74.4 $\pm$    | 3.4  | $\pm$ 37.0  | $14.4 \pm 1.7 \pm 1.7$   | 10.2  |
| $D_J^{\sigma}(2580)^0$ | $D^{*+}\pi^{-}$ | 2579.5 $\pm$   | 3.4 | $\pm$ 5.5  | 177.5 ±       | 17.8 | $\pm$ 46.0  | $60.3 \pm 3.1 \pm 3.4$   | 18.8  |
| $D_J(2740)^0$          | $D^{*+}\pi^{-}$ | 2737.0 $\pm$   | 3.5 | $\pm 11.2$ | 73.2 ±        | 13.4 | $\pm\ 25.0$ | $7.7 \pm 1.1 \pm 1.2$    | 7.2   |
| $D_J(3000)^0$          | $D^{*+}\pi^{-}$ | 2971.8 $\pm$   | 8.7 |            | 188.1 ±       | 44.8 |             | $9.5 \pm \ 1.1$          | 9.0   |
| $D_2^*(2460)^0$        | $D^+\pi^-$      | 2460.4 ±       | 0.1 | ± 0.1      | 45.6 ±        | 0.4  | ± 1.1       | $675.0 \pm 9.0 \pm 1.3$  |       |
| $D_{J}^{*}(2760)^{0}$  | $D^{+}\pi^{-}$  | 2760.1 $\pm$   | 1.1 | $\pm$ 3.7  | 74.4 $\pm$    | 3.4  | $\pm 19.1$  | $55.8 \pm 1.3 \pm 10.0$  | 17.3  |
| $D_J^*(3000)^0$        | $D^{+}\pi^{-}$  | 3008.1 $\pm$   | 4.0 |            | 110.5 ±       | 11.5 |             | $17.6\pm1.1$             | 21.2  |
| $D_2^*(2460)^+$        | $D^0\pi^+$      | 2463.1 ±       | 0.2 | ± 0.6      | 48.6 ±        | 1.3  | ± 1.9       | $341.6 \pm 22.0 \pm 2.0$ |       |
| $D_{J}^{*}(2760)^{+}$  | $D^0\pi^+$      | 2771.7 $\pm$   | 1.7 | $\pm$ 3.8  | 66.7 ±        | 6.6  | $\pm 10.5$  | $20.1 \pm 2.2 \pm 1.0$   | 18.8  |
| $D_J^*(3000)^+$        | $D^0\pi^+$      | 3008.1 (fixed) |     |            | 110.5 (fixed) |      |             | $7.6 \pm 1.2$            | 6.6   |





#### Fitting model.

□ Background model:

$$B(m) = P(m)e^{a_1m + a_2m^2}$$
 for  $m < m_0$ 

$$B(m) = P(m)e^{b_0+b_1m+b_2m^2}$$
 for  $m > m_0$ 

where P(m) is the two-body phase space.

 $b_0$  and  $b_1$  are obtained by imposing continuity on the function and its first derivative.

- $\square$  Use relativistic Breit-Wigner for  $D_2^*(2460)$  and  $D_0^*(2400)$  decaying to  $D\pi$ .
- □ Simple Breit-Wigner are used for the other structures.
- □ Each Breit-Wigner is multiplied by the phase-space factor.

 $\square$  The cross-feed lineshapes from  $D_1(2420)$  and  $D_2^*(2460)$  appearing in the  $D^+\pi^-$  and  $D^0\pi^+$  mass spectra are described by a Breit-Wigner function fitted to the data.



## $D_I$ spectroscopy at LHCb



• Search for  $D_J$  in  $D^{(*)}\pi$  mass spectrum based on 1fb<sup>-1</sup> data at  $\sqrt{s}=7$  TeV

$$-pp \to X + \pi^{-}D^{*+}, D^{*+} \to \pi^{+}D^{0}, D^{0} \to K^{-}\pi^{+}$$

$$-pp \to X + \pi^{-}D^{+}, D^{+} \to K^{-}\pi^{+}\pi^{+}$$

$$-pp \to X + \pi^{+}D^{0}, D^{0} \to K^{-}\pi^{+}$$

• Very clean signals of  $D^{*+}$ ,  $D^{+}$  and  $D^{0}$ 





# $D^{*+}\pi^-$ angular distributions



- D\*+ is a vector meson
  - $\Rightarrow$  Angular distribution of  $D^{*+}\pi^-$  contains information about spin-parity of  $D_J$
  - $\theta_H$ : the angle between the primary pion  $\pi^-$  and the slow pion  $\pi^+$  from  $D^{*+}$  in the rest frame of  $D^{*+}\pi^-$
- Angular distribution:  $\propto \sin^2 \theta_H$ 
  - Natural parity:  $J^P = 0^+, 1^-, 2^+, ...$
- Angular distribution:  $\propto 1 + h \cos^2 \theta_H$ 
  - Unnatural parity:  $J^P = 0^-, 1^+, 2^-, ...$





## Angular distribution(I)



27

Divide the  $\cos\theta_H$  into 10 bins and fit the yield of each resonance in each bin  $_{
m JHEP~09~(2013)~145}$ 

$$D_1(2420)^0 : J^P = 1^+, \text{ expect } \theta_H$$
  
  $\propto 1 + h \cos^2 \theta_H$ 



$$D_2^*(2460)^0: J^P = 2^+$$
, expect  $\theta_H \propto \sin^2 \theta_H$ 

