# LIFETIMES OF FLAVOURED HADRONS AT LHCB $B^0, B^+, B^0_s, B^+_c$ and $\Lambda_b$

### Paul Sail

### On behalf of the LHCb collaboration

XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects 30 April, University of Warsaw, Warsaw





CONTENTS

### CONTENTS



- **2** LIFETIME MEASUREMENTS AT LHCB
- **3** THE LHCB EXPERIMENT
  - 4 THEORETICAL OVERVIEW
- **5** DATA ANALYSIS
- **6** RESULTS DISCUSSION

### 7 WRAP UP

### LIFETIME MEASUREMENTS AT LHCB

- Lifetime measurements of  $B^0$ ,  $B_s^0$ ,  $B_c^+$ ,  $\Lambda_b$  hadrons.
- Provides large number of improvements on previous precision measurements.
- Includes CP eigenstate and flavour-specific lifetimes of the B<sup>0</sup><sub>s</sub> meson.
- Allow us to test Heavy Quark Expansion (HQE) predictions.
- The methods used to extract the lifetime measurements differ.
- Data available:  $1 \text{ fb}^{-1}$  at 7 TeV and  $2 \text{ fb}^{-1}$  at 8 TeV.

THE LHCB EXPERIMENT

## THE LHCB EXPERIMENT (JINST 3 S08005 (2008))

- Forward facing spectrometer which covers  $\approx$  2% full solid angle
- Within the solid angle  $\approx 26\%$  of  $b\overline{b}$  pairs
- Include the full spectrum of B-hadrons produced by experiment (e.g. B<sup>0</sup>, B<sup>0</sup><sub>s</sub>, B<sup>+</sup><sub>c</sub>, Λ<sub>b</sub>).
- Trigger : Crucial for hadronic b-decay modes.
- VELO : Time dependent processes ( $\approx$  50 fs lifetime resolution).
- RICH : Hadronic final state identification.



## ${\rm B}^0_s$ Lifetimes

- Neutral mesons split into two mass eigenstates  $|B_L\rangle$  (light) and  $|B_H\rangle$  (heavy).
- $B_L$  and  $B_H$  have different lifetimes.
- Applicable to B<sup>0</sup> as well as B<sup>0</sup><sub>s</sub>.

Without initial flavour  $(B_s^0 \text{ or } \overline{B}_s^0)$  tagging

$$\Gamma(t) \propto \left[ \left(1 - \mathcal{A}_{\Delta\Gamma_s}\right) e^{-\Gamma_s - \frac{\Delta\Gamma_s}{2}t} + \left(1 + \mathcal{A}_{\Delta\Gamma_s}\right) e^{-\Gamma_s + \frac{\Delta\Gamma_s}{2}t} \right],$$

where

$$\mathcal{A}_{\Delta\Gamma_{S}} = \frac{R_{H} - R_{L}}{R_{H} + R_{L}} \qquad \text{or} \qquad \mathcal{A}_{\Delta\Gamma_{S}} = \frac{2Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}, \qquad \lambda_{f} = \frac{q}{\rho} \frac{\bar{A}_{f}}{\bar{A}_{f}}$$

FLAVOUR SPECIFIC DECAY

 $\mathcal{A}_{\Delta\Gamma_s}=0$  Average lifetime measurement

DECAY TO *CP* EIGENSTATE

Sensitive to  $\Delta\Gamma_s$ ,  $\mathcal{A}_{\Delta\Gamma_s}$  and *CP* violating phases ( $\phi_s$ )

THEORETICAL OVERVIEW

## $B^0$ and $\Lambda_b$ Lifetimes

- HQE theory provides a description of hadrons containing heavy quarks.
- Lifetime measurements allow testing of theoretical predictions.
- Singly heavy B hadron lifetimes
  - Dominated by the weak decay of the b-quark
  - Small contribution from the spectator quarks
  - To first order:  $\tau_{\rm B^0} \sim \tau_{\rm B^+} \sim \tau_{\rm B^0_s} \sim \tau_{\Lambda_b}$
- Predictions made from series expansion (m<sub>b</sub> > Λ<sub>QCD</sub>)
  - AKA Heavy Quark Expansion (HQE)

$$\Gamma = \Gamma_0 + \frac{\Lambda}{m_b}\Gamma_1 + \frac{\Lambda^2}{m_b^2}\Gamma_2 + \frac{\Lambda^3}{m_b^3}\Gamma_3 + \dots$$

- The terms are determined perturbatively and non-perturbatively
- Most precise predictions in lifetime ratios:

$$\frac{\tau_1}{\tau_2} = 1 + \frac{\Lambda^2}{m_b^2} \Gamma_2' + \frac{\Lambda^3}{m_b^3} \Gamma_3' + \dots$$

•  $\Gamma'_2$  vanishes for  $\tau_{\rm B^+}/\tau_{\rm B^0}$  and  $\tau_{\rm B_s^0}/\tau_{\rm B^0}$  but not for  $\tau_{\Lambda_b}/\tau_{\rm B^0}$ 

## $ar{B}^0_s o D^-_s D^+_s$ and $ar{B}^0_s o D^- D^+_s$ effective lifetime

MEASUREMENTS (PHYS. REV. LETT. 112, 111802 (2014))

## $ar{B}^0_s o D^-_s D^+_s$ lifetime

- $\bar{B}_s^0 \to D_s^- D_s^+$  is *CP*-even final state that allows the probing of  $\Gamma_L$ .
- $\bar{B}^0_s \to D^-_s D^+_s$  dominated by tree-level processes so clean measurement.
- Normalise using the topologically and kinematically similar  $B^- \rightarrow D^0 D_s^-$  decay.
- To extract the lifetime use  $au_{B^-} =$  1.641  $\pm$  0.008 m ps (Phys. Rev. D86, 010001 (2012) )

### $ar{B}^0_s ightarrow D^- D^+_s$ lifetime

- $\bar{B}_s^0 \to D^- D_s^+$  decay is flavour-specific.
- Mix of  $|B_L\rangle$  (light) and  $|B_H\rangle$  (heavy) mass eigenstates average  $B_s^0$  lifetime.
- Normalisation channel chosen is the  $B^0 \rightarrow D^- D_s^+$  decay.

## $ar{B}^0_s o D^-_s D^+_s$ and $ar{B}^0_s o D^- D^+_s$ lifetime results

#### LIFETIME MEASUREMENT METHOD

- Analysis performed with 3 fb<sup>-1</sup> of data.
- Lifetime ratio method employed on both decay channels.
- Acceptance and resolution effects cancel in the normalisation.



LHCB MEASUREMENTS (Phys. Rev. Lett. 112, 111802 (2014))

- $\hat{\tau}_{\bar{B}_{s}^{0} \to D_{s}^{-} D_{s}^{+}} = 1.379 \pm 0.026 \text{ (stat)} \pm 0.017 \text{ (syst) ps}$
- $\Gamma_L^s = 0.725 \pm 0.014 \text{ (stat)} \pm 0.009 \text{ (syst) } \text{ps}^{-1}$

• 
$$\hat{\tau}_{\bar{B}^0_s \to D^- D^+_s} = 1.52 \pm 0.15 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$$

P.SAIL (UNIVERSITY OF GLASGOW)

## Effective $B \rightarrow h^+ h^{'-}$ Lifetimes

### $B\!\to h^+ h^{'-}$ Lifetimes

- Measure the effective lifetimes of the  $B_s^0 \to K^+K^-$  ,  $B^0 \to K^+\pi^-$  and  $B_s^0 \to \pi^+K^-$  decays
- $B^0$ , flavour-specific  $B^0_s \to \pi^+ K^-$  and CP-eigenstate  $B^0_s \to K^+ K^-$ .
- Using 1 fb<sup>-1</sup> of 2011 LHCb data.
- Proceed through both tree and loop processes.
- New physics could enter and compete with SM processes.

### Effective $B_s^0 \rightarrow K^+K^-$ Lifetime

Decay into a CP even final state: K+K-

- Significant loop contributions in decay route
- *CP* conserved: only accessible from  $B_L$ , so measure  $\Gamma_L$ .
- *CP* violation: mix of  $B_L$  and  $B_H$
- SM predicts very small *CP* violation,  $A_{\Delta\Gamma}(B_s^0 \to K^+K^-) = -0.97^{+0.014}_{-0.009}$  (arXiv:1011.1096)

## EFFECTIVE LIFETIME METHODOLOGY

Data driven method used to determine per-event acceptance function

- Trigger and Selection re-run for all hypothetical lifetimes
- The step function is parameterised by the parameter t<sub>min</sub>



Fit methodology

- Fit factorised into invariant mass and reconstructed lifetime components
- Assumption that mass and lifetime are uncorrelated.
- Use *sWeights* to discriminate between signal and background.

## Effective $B \rightarrow h^+ h^{'-}$ Lifetime Results



#### LHCB MEASUREMENTS (NEW RESULT FOR CONFERENCE, PAPER SUBMITTED SHORTLY)

• 
$$\hat{\tau}_{B_c^0 \to K^+K^-} = 1.407 \pm 0.016 \text{ (stat)} \pm 0.007 \text{ (syst) ps}$$

• 
$$\Gamma_L^s = 0.711 \pm 0.008 \text{ (stat)} \pm 0.004 \text{ (syst) } \text{ps}^-$$

• 
$$\mathcal{A}_{\Delta\Gamma}(B_s^0 \to K^+K^-) = -0.87 \pm 0.17 \text{ (stat)} \pm 0.13 \text{ (syst)}$$

• 
$$\hat{\tau}_{B^0 \to K^+ \pi^-} = 1.524 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst) ps}$$

• 
$$\hat{\tau}_{B_{c}^{0} \to \pi^{+}K^{-}} = 1.60 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$$

### Lifetime measurements from $H_b \to J\!/\!\psi\,X$ $_{\mbox{\tiny (arXiv:1402.2554)}}$

### **B-HADRON LIFETIMES**

- Measure the effective lifetimes of the exclusive  $B^+ \rightarrow J/\psi K^+$ ,  $B^0 \rightarrow J/\psi K^{*0}$ ,  $B^0 \rightarrow J/\psi \Lambda$  decays
- Using 1 fb<sup>-1</sup> of 2011 LHCb data.
- Lifetime ratios to test HQE theory.
- Also determine  $\Delta \Gamma_d / \Gamma_d$ .

### LIFETIME FIT METHODOLOGY

- Main challenge to control detector acceptance, reconstruction and selection efficiencies.
- Two-dimensional maximum likelihood fit to  $m(J/\psi X)$  and *t*.
- Signal decay time PDF by single exponential function multiplied by t-dependent trigger and selection efficiency.
- Per-event correction for reconstruction efficiency applied in negative log-likelihood construction.

## $H_b \to J\!/\!\psi\,X$ lifetime measurement results

### RESULTS

- All results compatible with world averages.
- $\Lambda_b^0$  smaller by  $\approx 2\sigma$  from following LHCb measurement.
- Single most precise measurements of b-hadron lifetimes.

### LHCB MEASUREMENTS (ARXIV:1402.2554)

- $\hat{\tau}_{B^+ \to J/\psi K^+} = 1.637 \pm 0.004 \text{ (stat)} \pm 0.003 \text{ (syst) ps}$
- $\hat{\tau}_{B^0 \to J/\psi K^{*0}} = 1.524 \pm 0.006 \text{ (stat)} \pm 0.004 \text{ (syst) ps}$
- $\hat{\tau}_{B^0 \to J/\psi \ K_s^0} = 1.499 \ \pm \ 0.013 \ (stat) \ \pm \ 0.005 \ (syst) \ ps$
- $\hat{\tau}_{B_c^0 \to J/\psi \phi} = 1.415 \pm 0.027 \text{ (stat)} \pm 0.006 \text{ (syst) ps}$
- $\hat{\tau}_{\Lambda_b^0 \to J/\psi \Lambda} = 1.480 \pm 0.011 \text{ (stat)} \pm 0.005 \text{ (syst) ps}$

## $H_b \to J\!/\!\psi \, X$ additional results

### ADDITIONAL MEASUREMENTS

- Lifetime ratios consistent with HQE predictions.
- Difference from unity of  $\tau_{B^+}/\tau_{B^-}$ ,  $\tau_{\Lambda^0_b}/\tau_{\bar{\Lambda}^0_b}$  or  $\tau_{B^0 \to J/\psi K^{*0}}/\tau_{\bar{B} \to J/\psi \bar{K}^{*0}}$  would indicate violation of CPT invariance.
- For  $B^0 \to J/\psi K^{*0}$  would indicate  $\Delta \Gamma_d \neq 0$ .
- Measurements of  $\Gamma_d$ ,  $\Delta\Gamma_d$  and  $\Delta\Gamma_d/\Gamma_d$ .

### RATIOS AND OTHER RESULTS (ARXIV:1402.2554)

| Ratio                                                                       | Value                                         | Prediction                                                     |
|-----------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| $\tau_{B^+}/\tau_{B^0 \rightarrow I/\psi K^{*0}}$                           | $1.074~\pm~0.005~\pm~0.003$                   | 1.063 ± 0.027 (Nucl.Phys. B633 (2002) 212)                     |
| $\tau_{B_0}/\tau_{B_0} \to J/\psi K^{*0}$                                   | $0.971~\pm~0.009~\pm~0.004$                   | 1.00 $\pm$ 0.01 (Nucl.Phys. B633 (2002) 212)                   |
| $\tau_{\Lambda_b^0}/\tau_{B^0 \to J/\psi K^{*0}}$                           | $0.929~\pm~0.018~\pm~0.004$                   | 0.86 - 0.95 (Nucl.Phys. B633 (2002) 212)                       |
| $\tau_{B^+} / \tau_{B^-}$                                                   | $1.002 \pm 0.004 \pm 0.002$                   |                                                                |
| $\tau_{\Lambda 0}^{-} / \tau_{\overline{\Lambda 0}}^{-}$                    | 0.940 $\pm$ 0.035 $\pm$ 0.006                 |                                                                |
| $ \tau_{B^0 \to J/\psi K^{*0}} / \tau_{\bar{B}^0 \to J/\psi \bar{K}^{*0}} $ | $1.000~\pm~0.008~\pm~0.009$                   |                                                                |
| Other                                                                       |                                               |                                                                |
| Γ <sub>d</sub>                                                              | $0.656 \pm 0.003 \pm 0.002 \text{ ps}^{-1}$   |                                                                |
| $\Delta \Gamma_d$                                                           | $-0.029~\pm~0.016~\pm~0.007~\mathrm{ps}^{-1}$ |                                                                |
| $\Delta \Gamma_d / \Gamma_d$                                                | $-0.044~\pm~0.025~\pm~0.011$                  | (42 $\pm$ 8) $	imes$ 10 <sup>-4</sup> (arXiv:hep-ph/1102.4274) |

## PRECISION MEASUREMENT OF THE RATIO OF $\Lambda_b$ to $B^0$ LIFETIMES (ARXIV:1402.6242)

### $\Lambda_b$ to $B^0$ lifetime ratio

- Analysis uses total 3 fb<sup>-1</sup> from combined 2011 and 2012 LHCb data.
- 2011 data collected at centre of mass energy 7 TeV and 2012 at 8 TeV.
- Decay Modes used are  $\Lambda_b^0 \to J/\psi \, pK^-$  and  $\bar{B}^0 \to J/\psi \, \pi^+ K^-$ .

### FIT METHOD

- Use the ratio of  $\Lambda_b^0$  and  $\bar{B}^0$  decay time distributions to remove decay time acceptances
- $\tau_{\Lambda^0_{}}/\tau_{\rm B^0}$  determined by the yield of b-hadrons from both decays.
- Unbinned maximum likelihood fit to b-hadron mass distribution in 22 bins of decay time within 0.4 7.0 ps.
- The world average of  $\tau_{\rm B^0}=$  1.519  $\pm$  0.007  $\rm ps$  (Phys.Rev. D86 (2012) 010001) is used to determine  $\tau_{\Lambda_b^0}.$

## $\Lambda_b$ to $B^0$ lifetime ratio result



### RESULTS

• Most precise measurement to date of  $\frac{\hat{\tau}_{\Lambda_b}}{\hat{\tau}_{B^0}}$  and consistent with HQE predictions

 $\gtrsim 0.9$  (arXiv:hep-ph/9804275).

Most precise measurement of τ̂<sub>Λ<sub>b</sub></sub>.

#### LHCB MEASUREMENTS (ARXIV:1402.6242)

• 
$$\frac{\tau_{\Lambda_b}}{\hat{\tau}_{n0}} = 0.974 \pm 0.006 \text{ (stat)} \pm 0.004 \text{ (syst) ps}$$

• 
$$\hat{\tau}_{\Lambda_b} = 1.479 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst) ps}$$

#### P.SAIL (UNIVERSITY OF GLASGOW)

## Measurements of the $B_c^+$ lifetime (arXiv:1401.6932)

### $\mathbf{B}_{c}^{+}$ LIFETIME MEASUREMENT

- Lifetime measurement using the  $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$ .
- Total integrated luminosity of 2 fb<sup>-1</sup> from 2012 data.
- B<sup>+</sup><sub>c</sub> is the heaviest ground state charged meson in the SM.
- Precise measurement of  $\tau_{\rm Bc}^+$  provides tests of theoretical models of its dynamics.
- $\tau_{\rm B^+_{a}}$  is largest uncertainty in relative branching fraction measurements.

### LIFETIME MEASUREMENT METHOD

- Semileptonic decay means partial reconstruction.
- Need simulation to correct for missing energy, this correction method is called the k-factor.
- PDF model for *t* is obtained by convoluting simulated τ<sub>B<sup>+</sup><sub>c</sub></sub> distribution with k-factor and resolution functions.
- Further details presented in "Properties and decays of the B<sup>+</sup><sub>c</sub> meson" by L.Anderlini.

## $B_c^+$ lifetime results



### RESULTS

- Most precise measurement of the B<sup>+</sup><sub>c</sub> lifetime
- Computations with different frameworks predict 300 < τ<sub>B<sup>+</sup>/<sub>2</sub></sub> < 700 fs.</li>
- Current world average  $452 \pm 33 \, \mathrm{fs}$  (Phys.Rev. D86 (2012) 010001)

### LHCB MEASUREMENTS (ARXIV:1402.6242)

•  $\hat{\tau}_{B_c^+ \to J/\psi \ \mu^+ \nu_{\mu} \chi} = 509 \pm 8 \text{ (stat)} \pm 12 \text{ (syst) fs}$ 

RESULTS DISCUSSION

## Results Implications - CP eigenstate $B_s^0$

### $1/\Gamma_L^s$ Results

- Two compatible measurements of  $1/\Gamma_I^s$  using different channels.
- Worlds best measurement using  $B_s^0 \rightarrow K^+K^-$  channel.



#### SM CHECKS

- $\mathcal{A}_{\Delta\Gamma}(B_s^0 \to K^+K^-) = -0.87 \pm 0.17 \text{ (stat)} \pm 0.13 \text{ (syst)}$
- Consistent with SM prediction of  $A_{\Delta\Gamma}(B_s^0 \to K^+K^-) = -0.97^{+0.014}_{-0.009}$  (arXiv:1011.1096)

#### P.SAIL (UNIVERSITY OF GLASGOW)

**RESULTS DISCUSSION** 

## RESULTS IMPLICATIONS - FLAVOUR SPECIFIC $B_s^0$

### FLAVOUR SPECIFIC B<sup>0</sup><sub>s</sub> RESULTS

- LHCb results are compatible with the flavour specific lifetime predicted by  $\Delta\Gamma_s$  and  $\Gamma_s$  from  $B^0_s \to J/\psi\,\phi$  (Phys.Rev. D87 (2013) 112010)
- Blue line is central value, black lines are uncertainties.



RESULTS DISCUSSION

## Results Implications - $B^0$ and $\Lambda_b$

### **B<sup>0</sup>** RESULTS

 $\bullet~B^0$  measurements all consistent with world average, 1.519  $\pm$  0.007 ps (Phys.Rev. D86 (2012) 010001)



#### $\Lambda_b$ Results

- $\hat{\tau}_{\Lambda_b}$  lifetime within  $\approx 2\sigma$  world average of 1.429  $\pm$  0.024 ps (Phys.Rev. D86 (2012) 010001)
- $\frac{\tau_{\Lambda_b}}{\hat{\tau}_{p0}}$  in agreement with theoretical predictions of  $\gtrsim 0.9$  (arXiv:hep-ph/9804275)

### WRAP UP

- LHCb has a rich program of lifetime studies
- Theoretical motivations of lifetime include testing HQE and constraining CP-violation.
- Five lifetime analysis presented
  - Measurements of  $B^+$ ,  $B^0$ ,  $B^0_s$ ,  $B^+_c$  and  $\Lambda_b$  lifetimes and lifetime ratios presented.
  - Worlds best measurements of 1/Γ<sup>s</sup><sub>L</sub> and other compatible measurements.
  - Precision measurement of  $\tau_{\Lambda_b^0}/\tau_{B_d^0}$ .
  - World best measurement of  $\tilde{B}_c^+$  lifetime.
- Flavour specific  $B_s^0$  lifetime from  $B_s^0 \to D_s^+ \pi^-$  decay and update to effective  $B \to h^+ h^{\prime -}$  lifetimes being conducted.
- Future updates of all 1 fb<sup>-1</sup> analyses with 3 fb<sup>-1</sup>.

WRAP UP

### Backup slides - $H_b \rightarrow J/\psi X$ Fits



WRAP UP

## BACKUP SLIDES - $B_c^+$ LIFETIME FITS

