



The LHCb Upgrade

#### Outline

- LHCb Detector
- Selected Physics Results
- Upgrade Plans
- Summary

#### **On behalf of the LHCb Collaboration**

Tomasz Szumlak AGH-UST

XXII International Workshop on Deep-Inelastic Scattering (DIS) 28/04 – 02/05/2014, Warsaw, POLAND

## Collaboration

- ≈900 physicists
   64 universities/laboratories
   16 countries
- >160 papers published

# Physics Programme

- CP violation
- rare decays
- electroweak physics
- lepton flavour violation
- charm physics
- production and spectroscopy



LHCb is dedicated for studying heavy quark flavour physics

 $\Box$  It is a single arm forward spectrometer with pseudorapidity coverage 2 <  $\eta$  < 5

 $\Box$  Precise tracking system (VELO, upstream and downstream tracking stations and 4 Tm magnet)

□ Particle identification system (RICH detectors, calorimeters and muon stations)

□ Partial information from calorimeters and muon system contribute to L0 trigger (hardware) that works at LHC clock – 40 MHz

□ Full detector readout at 1 MHz



The LHCb detector at LHC (JINST 3 2008 S08005)



| "Input" for the LHCb detector – LHC performance |         |         | ALICE CMS<br>HCb Weith Area<br>TT40<br>TT40<br>TT40<br>TT40<br>TT41<br>TT41<br>TT40<br>TT41<br>TT40<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT41<br>TT4 |  |  |
|-------------------------------------------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                 | design  | 2011    | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| beam energy                                     | 7 TeV   | 3.5 TeV | 4 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| bunches                                         | 2808    | 1380    | 1380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| bunch spacing                                   | 25 ns   | 50 ns   | 50 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| bunch intensity                                 | 1.15x10 | 1.45x10 | 1.7×10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| peak luminosity                                 | 10      | ≈3.5x10 | ≈7.7x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |



# **Operation conditions of the LHCb in 2011**

- $\Box$  recorded luminosity L  $\approx$  **1,2** [fb<sup>-1</sup>] at beam energy 3.5 [TeV]
- **LHCb** stably operated at  $L_{inst} = 4.0 \times 10^{32} [cm^{-2}s^{-1}]$  (nominal 2.0 x 10<sup>32</sup>)
- $\Box$  Average number of visible interactions per x-ing  $\mu = 1.4$  (nominal 0.4)
- □ Data taking efficiency ~90 % with 99 % of operational channels
- □ HLT (High Level Trigger) input ~ 0.85 MHz, output ~ 3 kHz
- □ Ageing of the sub-detectors monitored according to expectations





# **Operation conditions of the LHCb in 2012**

- □ Beam energy 4.0 [TeV] (15 % increase of the b-barb x-section)
- $\Box$  Keep the luminosity at L<sub>inst</sub> = 4.0 x 10<sup>32</sup> [cm<sup>-2</sup>s<sup>-1</sup>] for this year
- $\Box$  Average number of visible interactions per x-ing slightly higher  $\mu = 1.6$

 $\hfill\square$  Keep high data taking efficiency and quality

 $\Box$  HLT (High Level Trigger) input  $\sim$  **1.0 MHz**, output  $\sim$  **5 kHz** (upgraded HLT farm and revisited code)

□ Collected ~ 2.1 fb<sup>-1</sup> of collision data







# **Selected physics results (1)**

CMS-PAS-BPH-13-007

#### $B^0 \rightarrow K^* \mu^+ \mu^-$ : NP in loops

- □ The largest sample collected
- Clear theoretical quantity
- Sensitive to Wilson coefficients
- World's best measurement

 $q_0^2 = 4.9 \pm 0.9 \text{ GeV}/c^2$  $q_{0,SM}^2 \in [3.9, 4.4] \text{GeV}/c^2$ 

#### $B_s \to \mu^+ \mu^-$ : constraining SUSY

- □ Strongly suppressed in the SM
  - ❑ Theory known with high precision
- Enhanced in MSSM

#### World's best measurement LHCb & CMS

 $BR(B^{0} \to \mu^{+}\mu^{-}) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$  $BR(B^{0}_{s} \to \mu^{+}\mu^{-}) = (2.9 \pm 0.7) \times 10^{-9}$ 





# **Selected physics results (2)**

#### $B^0 \rightarrow K^* \mu^+ \mu^-$ : NP in loops

- Observed forward-backward asymmetry very similar to that predicted by the SM
- □ Cannot clearly state any discrepancy sample limitation
- New base of observables proposed
- □ Reduced dependency on hadronic form factors
- Observed discrepancy may be a hint of new heavy neutral Z' particle





# **Overall summary of Run I**

#### LHCb:

- □ Superb performance greatly exceeded any expectations
- Stable operation at inst. luminosity 100% higher than nominal
- **General purpose detector in forward direction**
- □ Many world leading results
- Over 180 papers published!

#### The pinch of salt:

- □ No conclusive BSM physics discovered
- □ There is still room for NP!
- Need push precision to the limits in order to challenge theoretical predictions
- Need more data



# Data taking road map for LHCb before the upgrade



• *p* Pb run @5 TeV

![](_page_10_Picture_0.jpeg)

# **Upgrade Plans**

# Why upgrade (i.e., what's wrong with the current design...?)

Superb performance – but **1 MHz** readout is a **sever limit** 

- □ can collect ~ 2 fb<sup>-1</sup> per year, ~ 5 fb<sup>-1</sup> for the "phase 1" of the experiment
- □ this is not enough if we want to move from **precision** exp to **discover**y exp
- □ cannot gain with increased luminosity trigger yield for hadronic events saturates

#### Upgrade plans for LHCb do not depend on the LHC machine

 $\hfill\square$  we use fraction of the luminosity at the moment

#### **Upgrade target**

- □ full event read-out@40 MHz (flexible approach)
- □ completely new front-end electronics needed (on-chip zero-suppression)
- redesign DAQ system
- □ HLT output@20 kHz, more than 50 fb<sup>-1</sup> of data for the "phase 2"
- $\Box$  increase the yield of events (up to 10x for hadronic channels)
- experimental sensitivities close or better than the theoretical ones
- expand physics scope to: lepton flavour sector, electroweak physics, exotic searches and QCD

#### Installation ~ 2018 - 2019

![](_page_10_Picture_18.jpeg)

![](_page_11_Picture_0.jpeg)

#### Sensitivities to key flavour observables

(for more see: LHCb Upgrade: Technical Design Report, LHCb-TDR-12)

| Туре         | Observable                                                                               | Current              | LHCb                  | Upgrade                | Theory       |
|--------------|------------------------------------------------------------------------------------------|----------------------|-----------------------|------------------------|--------------|
|              |                                                                                          | precision            | $(5 \text{ fb}^{-1})$ | $(50 \text{ fb}^{-1})$ | uncertainty  |
| Gluonic      | $S(B_s \to \phi \phi)$                                                                   | -                    | 0.08                  | 0.02                   | 0.02         |
| penguin      | $S(B_s 	o K^{*0} ar{K^{*0}})$                                                            | -                    | 0.07                  | 0.02                   | < 0.02       |
|              | $S(B^0 	o \phi K^0_S)$                                                                   | 0.17                 | 0.15                  | 0.03                   | 0.02         |
| $B_s$ mixing | $2\beta_s \ (B_s \to J/\psi\phi)$                                                        | 0.35                 | 0.019                 | 0.006                  | $\sim 0.003$ |
| Right-handed | $S(B_s \to \phi \gamma)$                                                                 | -                    | 0.07                  | 0.02                   | < 0.01       |
| currents     | $\mathcal{A}^{\Delta\Gamma_s}(B_s	o \phi\gamma)$                                         | -                    | 0.14                  | 0.03                   | 0.02         |
| E/W          | $A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$                                                  | -                    | 0.14                  | 0.04                   | 0.05         |
| penguin      | $s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$                                             | -                    | 4%                    | 1%                     | 7%           |
| Higgs        | $\mathcal{B}(B_s \to \mu^+ \mu^-)$                                                       | -                    | 30%                   | 8%                     | < 10%        |
| penguin      | $rac{\mathcal{B}(B^0  ightarrow \mu^+ \mu^-)}{\mathcal{B}(B_s  ightarrow \mu^+ \mu^-)}$ | -                    | -                     | $\sim 35\%$            | $\sim 5\%$   |
| Unitarity    | $\gamma \ (B \rightarrow D^{(*)}K^{(*)})$                                                | $\sim 20^{\circ}$    | $\sim 4^{\circ}$      | $0.9^{\circ}$          | negligible   |
| triangle     | $\gamma \ (B_s \to D_s K)$                                                               | -                    | $\sim 7^{\circ}$      | $1.5^{\circ}$          | negligible   |
| angles       | $eta  \left( B^0  ightarrow J/\psi  K^0  ight)$                                          | $1^{\circ}$          | $0.5^{\circ}$         | $0.2^{\circ}$          | negligible   |
| Charm        | $A_{\Gamma}$                                                                             | $2.5 \times 10^{-3}$ | $2 \times 10^{-4}$    | $4 \times 10^{-5}$     | -            |
| CPV          | $A^{dir}_{CP}(KK) - A^{dir}_{CP}(\pi\pi)$                                                | $4.3 \times 10^{-3}$ | $4 \times 10^{-4}$    | $8 \times 10^{-5}$     | -            |

![](_page_12_Picture_0.jpeg)

#### Projected running conditions for the upgrade

- **D** Operational luminosity up to  $L_{inst} = 2 \times 10^{33} [cm^{-2}s^{-1}]$
- □ 25 ns bunch time spacing
- $\square$  Average number of visible interaction per x-ing  $\mu \approx 2.6$
- □ Challenging environment for tracking and reconstruction
- Radiation damage

![](_page_12_Figure_7.jpeg)

#### High µ already seen in LHCb!

![](_page_13_Picture_0.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

Problem for hadronic channels:

saturation with increasing luminosityno gain in event yields

![](_page_14_Picture_0.jpeg)

#### ... and the upgraded one

![](_page_14_Figure_2.jpeg)

#### Staged approach:

□ use Low Level Trigger (LLT) as a throttle

 $\square$  enormous gain for hadronic final states such  $\Phi\Phi$ 

□ do as much as you can in HLT

![](_page_14_Figure_7.jpeg)

![](_page_15_Picture_0.jpeg)

#### Tracking is at heart of the current LHCb success

- □ Upgrade cannot compromise this performance
- □ This is not an easy task

#### At high luminosity we are expecting

- □ More interactions per x-ing
- □ Higher track multiplicities, more vertices, higher detector occupancy
- □ More ghosts (scary and dangerous in many ways...)
- □ Spill-over

#### We need to maintain

- □ High tracking efficiency ( $\sim$  90% for p > 5 GeV)
- $\Box$  High relative momentum resolution (~ 3.5 x 10<sup>-3</sup>)
- $\Box$  Ghost rate as low as possible (less than ~ 10 %)
- □ Single event processing time in HLT as short as possible (~ 25 ms)
- □ And do not add to the material budget...

#### And in addition all of this using full detector information@40 MHz

![](_page_16_Picture_0.jpeg)

#### What we must change to cope with the 40 MHz read-out

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_0.jpeg)

#### **New front-end electronics**

- □ Trigger-less
- □ Sends out data with the machine frequency
- □ On chip zero-suppression (SoC)

![](_page_17_Figure_5.jpeg)

![](_page_18_Picture_0.jpeg)

#### **VErtex LOcator VELO2**

![](_page_18_Figure_2.jpeg)

# Read-out ASIC, VeloPix, based on TimePix/Medipix chip

- □ 256x256 pixel matrix
- equal spatial resolution in both directions
- □ IBM 130 nm CMOS process
- □ great radiation hardness potential ~ 500 Mrad

- Current design: R- $\Phi$  geometry Si strip sensors with pitch between 38 100  $\mu m$
- To be replaced with pixel based device
  - Iow occupancy
  - □ much easier patter recognition
  - easier to control alignment
  - radiation hardness
  - □ extremely high data rate ~ 12 Gbit/s
  - un-uniform data rates/radiation damage
  - $\Box$  micro-channel CO<sub>2</sub> cooling

![](_page_18_Figure_17.jpeg)

![](_page_19_Picture_0.jpeg)

#### **VErtex LOcator VELO2**

Predicted performance superior in almost any aspect w.r.t the current VELO
 This is essential for physics performance of the upgraded spectrometer
 TDR document is out!

![](_page_19_Picture_3.jpeg)

![](_page_19_Figure_4.jpeg)

(VELO Upgrade: Technical Design Report, LHCb-TDR-13)

![](_page_20_Picture_0.jpeg)

#### TT and T (IT + OT) trackers

![](_page_20_Figure_2.jpeg)

• TT and IT part of the T stations are Si strips based detectors

**□** pitch 200 µm

□ long strips 11, 22 and 33 cm

World's best b hadrons mass measurement!

- OT is a gaseous detector
  - □ very long (2.4 5 m)
  - □ and thin straws (5 mm)
  - $\Box$  occupancy limited to  $\sim$  10 25 %

![](_page_21_Picture_0.jpeg)

#### TT tracker upgrade

![](_page_21_Figure_2.jpeg)

Upgrade technology

□ 4 – 6 detector planes of Si strip detectors

- $\square$  reduced silicon thickness 500  $\rightarrow$  300  $\mu m$
- □ strip length 2.5 10 cm
- $\square$  increase acceptance at low  $\eta$
- □ new read-out electronics with on-chip zerosuppression SALT chip

(Tracking Upgrade: Technical Design Report, LHCb-TDR-15)

#### Features after the upgrade

- high momentum track on-line selection (part of the trigger)
   reconstruct long lived particles decaying outside the VELO
   momentum estimate for slow particles
- $\hfill\square$  improved matching with VELO segments

![](_page_21_Figure_13.jpeg)

![](_page_22_Picture_0.jpeg)

#### T stations upgrade

![](_page_22_Picture_2.jpeg)

Central Tracker & Outer Tracker

![](_page_22_Picture_4.jpeg)

Full Fibre Tracker

IT must be completely removed

□ integrated 1 MHz electronics

Decrease the occupancy

First option (Central Tracker)

![](_page_22_Picture_9.jpeg)

 □ central part: scintillating fibers with SiPM readout (128 readout channels)
 □ build with 5 layers of 250 µm scintillating fibers
 □ outer part is kept as is (straws)

• Second option (Full Fiber Tracker)

OT removed completely with 1 mm scintillating fibers

(Tracking Upgrade: Technical Design Report, LHCb-TDR-15)

![](_page_23_Picture_0.jpeg)

#### **Particle ID and Calorimeters**

#### MaPMTs by Hamamatsu

![](_page_23_Picture_3.jpeg)

#### **Both RICH1 and RICH2 remains**

new photo detectors (MaPMTs)
 square design to increase coverage
 40 MHz read-out ASIC
 remove aerogel (cannot operate at expected luminosities)

#### ASIC prototype

![](_page_23_Picture_7.jpeg)

#### Calorimeters (ECAL and HCAL) are maintained

PS/SPD removed (no L0!), e/γ separation provided by tracker (worked out in HLT)
 inner modules of the ECAL may be replaced due to radiation damage (LS3)
 front-end electronics adapted to 40 MHz read-out
 first prototype ready – under study
 lower gain

(PID Upgrade: Technical Design Report, LHCb-TDR-14)

![](_page_24_Picture_0.jpeg)

# Summary

# Run II and the upgrade road map

![](_page_24_Figure_3.jpeg)

LHC LS3 HL-LHC

![](_page_25_Picture_0.jpeg)

# Superb performance of the LHCb experiment during Run I

□ Large number of world's best physics results

□ More than 180 papers published

□ We did not make any considerable dents on the Standard Model

Upgrade of the present detector essential for discovery potential of the LHCb – origin of the CP violation and NP
 Can collect ~ 50 fb<sup>-1</sup> of data between 2019 and 2028
 Base-line technologies of the upgrade have been chosen
 Respective TDRs have been/are being submitted to the LHCC

# □ Stay tuned! A lot of exciting time is ahead!

![](_page_25_Picture_7.jpeg)

![](_page_26_Picture_0.jpeg)

# **Back-up**

![](_page_27_Picture_0.jpeg)

![](_page_27_Figure_1.jpeg)

- Single arm spectrometer geometry
- $_{\rm o}$  Fully instrumented in rapidity range 2 <  $\eta$  <5

 $_{\rm o}$  Capable of reconstructing backward tracks (-4 <  $\eta$  < -1.5)