Properties and decays of the B_c^+ meson

Lucio Anderlini on behalf of the LHCb Collaboration

XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects

Thursday May, 1st - Warsaw, Poland

Introduction

- $(\bar{b}c)$ bound state
- Heaviest ground-state charged meson in SM;
- Open-flavour" quarkonium
- Can decay through
 - $c \to s(d)$ • $\bar{b} \rightarrow \bar{c}(\bar{u})$ • $c\bar{b} \to W^*$
- \Rightarrow Many decay modes possible

Important probe for QCD

... but few decays observed.

pdgLive Summary Tables Reviews, Tables, Plots Particle Listings

pdgLive Home > B_c^d

2013 Review of Particle Physics.

Please use this CITATION: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 part update for the 2014 edition.

B_c^\pm Quantum numbers shown are quark-model prediction	INSPIRE searc
B_c^{\pm} MASS	$6.2745\pm0.0018~\mathrm{GeV}$
B_{c}^{\pm} MEAN LIFE	$(0.452 \pm 0.033) imes 10^{-12}$ s

Decay Modes show all decays

B_ modes are charge conjugates of the modes below.

Γ_i	Mode	Fraction (Γ_i / Γ)	Scale Factor/ Confidence Level	P (MeV/c)
The	following quantities are not pure branching ra	atios; ratherthe fraction Γ_i/Γ		
× B($ar{b} ightarrow B_c$).			
Γ_1	$B_c^+ o J/\psi(1S) \ell^+ u_\ell$ anything	$(5.2^{+2.4}_{-2.1}) \times 10^{-5}$		
Γ_2	$B_c^+ ightarrow J/\psi(1S)\pi^+$	seen		2370
Γ_3	$B_c^+ ightarrow J/\psi(1S)\pi^+\pi^+\pi^-$	seen		2350
Γ_4	$B_c^+ ightarrow J/\psi(1S) a_1(1260)$	$<\!\!1.2 \times 10^{-3}$	CL=90%	2169
Γ_5	$B_c^+ ightarrow D^*(2010)^+ \overline{D}^0$	$<\!\!6.2 imes 10^{-3}$	CL=90%	2467
Γ_6	$B_c^+ ightarrow D^+ K^{*0}$	$<\!\!0.20 imes\!10^{-6}$	CL=90%	2783
Γ_7	$B_c^+ ightarrow D^+ \overline{K}^{*0}$	<0.16 $\times 10^{-6}$	CL=90%	2783
Γ_8	$B_c^+ ightarrow D_s^+ K^{*0}$	$<\!\!0.28 imes\!10^{-6}$	CL=90%	2751
Γ_9	$B_c^+ ightarrow D_s^+ \overline{K}^{*0}$	$<\!\!0.4 imes 10^{-6}$	CL=90%	2751
Γ_{10}	$B_c^+ o D_s^+ \phi$	$<\!\!0.32 imes\!10^{-6}$	CL=90%	2727

LHCb: A wonderful detector to study B_c^+ decays

Acceptance

Discussed in more detail in the LHCb Upgrade talk by Tomasz Szumlak (Tuesday)

Unique geometrical acceptance: Excellent vertex locator (VELO): Tracking system: Muon system:

 $\begin{array}{l} 2 < \eta < 5 \text{ coverage} \\ \sigma_{PV,xy} \sim 10 \mu \text{m}, \ \sigma_{PV,z} \sim 60 \mu \text{m} \\ \Delta p/p: 0.35\% \div 0.55\% \\ \epsilon(\mu \rightarrow \mu) \sim 97\%, \ \text{MisID rate}(h \rightarrow \mu) \sim \mathcal{O}(1\%) \end{array}$

Data taking

$1 \text{fb}^{-1}(2011) + 2 \text{fb}^{-1}(2012)$

LHCb Integrated Luminosity pp collisions 2010-2012

Trigger

Multi-level trigger:

- L0 hardware
- HLT 1 software
- HLT 2 software (event reco)

Highly efficient J/ψ lines dedicated at each level!

First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$	[PRL 108 (2012) 251802]
Measurement of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi \pi^+$ decay	[PRL 109 (2012) 232001]
Observation of $B_c^+ \to \psi(2S)\pi^+$	[PRD 87 (2013) 071103]
Observation of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ decays	[PRD 87 (2013) 112012]
First observation of the decay $B_c^+ \to J/\psi K^+$	[JHEP 09 (2013) 075]
Observation of the decay $B_c^+ \to B_s^0 \pi^+$	[PRL 111 (2013) 181801]
Observation of the decay $B_c^+ \to J/\psi K^+ K^- \pi^+$	[JHEP 1311 (2013) 094]
Measurement of the B_c^+ meson lifetime using $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ decays	[arXiv:1401.6932]
Evidence for the decay $B_c^+ \to J/\psi 3\pi^+ 2\pi^-$	[arXiv:1404.0287]

Almost all the studied decays have a $J\!/\!\psi \to \mu^+\mu^-$ in the final state

First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$	[PRL 108 (2012) 251802]
Measurement of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi \pi^+$ decay	[PRL 109 (2012) 232001]
Observation of $B_c^+ \to \psi(2S)\pi^+$	[PRD 87 (2013) 071103]
Observation of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ decays	[PRD 87 (2013) 112012]
First observation of the decay $B_c^+ \to J/\psi K^+$	[JHEP 09 (2013) 075]
Observation of the decay $B_c^+ \to B_s^0 \pi^+$	[PRL 111 (2013) 181801]
Observation of the decay $B_c^+ \to J/\psi K^+ K^- \pi^+$	[JHEP 1311 (2013) 094]
Measurement of the B_c^+ meson lifetime using $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ decays	[arXiv:1401.6932]
Evidence for the decay $B_c^+ \to J/\psi 3\pi^+ 2\pi^-$	[arXiv:1404.0287]

But there is an exception: $B^+_c\to B^0_s\pi^+$ First observation of a B^+_c decay due to $c\to s$ transition.

Lucio Anderlini – Properties and decays of the B_c^+ meson

First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$	[PRL 108 (2012) 251802]
Measurement of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi \pi^+$ decay	[PRL 109 (2012) 232001]
Observation of $B_c^+ \to \psi(2S)\pi^+$	[PRD 87 (2013) 071103]
Observation of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ decays	[PRD 87 (2013) 112012]
First observation of the decay $B_c^+ \to J/\psi K^+$	[JHEP 09 (2013) 075]
Observation of the decay $B_c^+ \to B_s^0 \pi^+$	[PRL 111 (2013) 181801]
Observation of the decay $B_c^+ \to J/\psi K^+ K^- \pi^+$	[JHEP 1311 (2013) 094]
Measurement of the B_c^+ meson lifetime using $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ decays	[arXiv:1401.6932]
Evidence for the decay $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$	[arXiv:1404.0287]

A Low-Q decay: $B_c^+ ightarrow J\!/\!\psi D_s^+$

Lucio Anderlini – Properties and decays of the $B_{\scriptscriptstyle C}^{\,+}$ meson

$B_c^+ ightarrow J/\psi D_s^+$ and $B_c^+ ightarrow J/\psi D_s^{*+}$

[PRD 87 (2013) 112012]

Fully reconstructed $J/\psi D_s^+$;

Partially reconstructed $J/\psi D_s^{*+}$ split for helicity:

• $\mathcal{A}_{\pm\pm} J/\psi$: $\pm 1; D_s^{*+}: \pm 1;$ • $\mathcal{A}_{00} J/\psi$: 0; $D_s^{*+}:$ 0;

Observed $28.9 \pm 5.6 D_s^+$ events in 3 fb⁻¹ (2011+2012); Significance > 9σ .

 $\frac{N_{B_c^+\to J/\psi D_s^{*+}}}{N_{B_c^+\to J/\psi D_s^{*}}} = 2.37\pm 0.56;$

$$\frac{\mathcal{A}_{\pm\pm}}{\mathcal{A}_{\pm\pm}+\mathcal{A}_{00}}=0.52\pm0.20;$$

$$\begin{split} & \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^{*+}}}{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}} = 2.37 \pm 0.56 \pm 0.10; \\ & \frac{\mathcal{B}_{B_c^+ \to J/\psi D_s^+}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 2.90 \pm 0.57 \pm 0.24 \end{split}$$

The mass of the B_c^+ meson has been measured with a very small systematic uncertainty:

 $6276.26 \pm 1.44 \pm 0.28 \text{ MeV}/c^2$.

Using LHCb measurement of the D_s^+ mass. [JHEP06 (2013) 065]

PDG 2013: $6274.5 \pm 1.8 \text{ MeV}/c^2$

Lucio Anderlini – Properties and decays of the B_c^+ meson

First observation of $B_c^+ \to J/\psi \pi^+ \pi^- \pi^+$	[PRL 108 (2012) 251802]
Measurement of B_c^+ production and mass with the $B_c^+ \rightarrow J/\psi \pi^+$ decay	[PRL 109 (2012) 232001]
Observation of $B_c^+ \to \psi(2S)\pi^+$	[PRD 87 (2013) 071103]
Observation of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ decays	[PRD 87 (2013) 112012]
First observation of the decay $B_c^+ \to J/\psi K^+$	[JHEP 09 (2013) 075]
Observation of the decay $B_c^+ \to B_s^0 \pi^+$	[PRL 111 (2013) 181801]
Observation of the decay $B_c^+ \to J/\psi K^+ K^- \pi^+$	[JHEP 1311 (2013) 094]
Measurement of the B_c^+ meson lifetime using $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ decays	[arXiv:1401.6932]
Evidence for the decay $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$	[arXiv:1404.0287]

Another LHCb hit: the lifetime measurement

Input for theo	ry
----------------	----

The precise measurement of B_c^+ lifetime provides an essential test of the theoretical models describing its dynamics:

Beneke and Buchalla (PRD 53 4991)	$\left[0.4,~0.7 ight]$ ps
Anisimov <i>et al.</i> (PLB 452 129)	(0.59 ± 0.06) ps
Kiselev <i>et al.</i> (Nucl. PB 585 353)	$(0.48\pm0.05)~{ m ps}$

Experiment	$ au_{B_c}$			Mode	
CDF	0.46	$^{+0.18}_{-0.16}$ (stat)	± 0.03 (syst)	$J/\psi \ell^+ \nu$	PRL 81 2432
CDF II	0.463	$^{+0.073}_{-0.065}$ (stat)	± 0.036 (syst)	$J\!/\!\psi e^+ \nu_e$	PRL 97 012002
D0	0.448	$^{+0.038}_{-0.036}$ (stat)	± 0.032 (syst)	$J/\psi\mu^+ u_\mu$	PRL 102 092001
CDF II	0.452	± 0.048 (stat)	± 0.027 (syst)	$J/\psi\pi^+$	PRD 87 011101
World Average	0.453	± 0.033			PDG 2013
CDF II	0.475	$^{+0.053}_{-0.049}$ (stat)	± 0.018 (syst)	$J/\!\psi\mu u$	unpublished

Input for experiments

Lifetime uncertainty becomes a dominant systematic uncertainty in several B_c^+ analyses.

Key elements of the analysis

- Decay $B_c^+ \to J\!/\!\psi\mu\nu$ with $J\!/\!\psi \to \mu^+\mu^-$;
- Clear 3μ signature allows decay-time unbiased selection;
- High-statistics due to the large BF.
- Semileptonic decay means partial reconstruction; Need simulation to correct for the missing energy The decay time correction is named k-factor
- Contribution from feed-down decays

e.g. $B_c^+ \rightarrow \psi(2S) \mu^+ \nu_\mu$ with $\psi(2S) \rightarrow J\!/\!\psi X$

Using a 2D data-model $M_{J/\psi\mu} \perp$ pseudo-proper decay time $t_{\rm ps}$ to enhance S/B separation.

 $t_{\rm ps}$ is the decay time in the frame of the $J\!/\!\psi\mu$ combination.

Data model

Signal model

Simulated using a few form-factor models;

Model corrected for feed-down contributions.

Data model

The B_c^+ lifetime τ is determined from a maximum likelihood unbinned fit to the $(M_{J/\psi\mu}, t_{\rm ps})$ distribution of the data sample collected in 2012 (corresponding to $2{\rm fb}^{-1}$).

$\tau = 509 \pm 8 \text{ (stat)} \pm 12 \text{ (syst) fs}$

Dominant systematic uncertainties:

- Background model (± 10 fs)
- Signal model, model dependence (\pm 5 fs)
- Deviation from time-independent eff. (\pm 2 fs)

LHCb used $B_c^+ \to J/\!\psi\mu\nu_\mu$ decays to measure the B_c^+ lifetime:

 $\tau = 509 \pm 8 \text{ (stat)} \pm 12 \text{ (syst) fs}$

This is the most precise measurement of the B_c^+ lifetime to date.

It is consistent with current world average and has less than half the uncerteinty.

Further improvements are expected from the LHCb experiment using $B_c^+ \to J/\!\psi\pi^+$ decays where systematic uncertainties are expected to be largely uncorrelated with those affecting the present measurement.

Conclusion

The excellent performance of the LHC and of the detector has allowed LHCb to reach several achivements.

- World's best measurement of the B_c^+ lifetime
- World's best measurement of the B_c^+ mass
- First observation of a B meson decaying to another B meson $(B_c^+ \to B_s^0 \pi^+)$ First upper limit on a B_c^+ charmless decay $(B_c^+ \to K_S^0 K^+)$ [PLB 726 (2013) 646]
- First observation, and relative BF measurement of

$$\begin{array}{l} B^+_c \rightarrow J/\!\psi \pi^+ \pi^- \pi^+ \\ B^+_c \rightarrow \psi(2S)\pi^+ \\ B^+_c \rightarrow J/\!\psi D^+_s \text{ and } B^+_c \rightarrow J/\!\psi D^{*+}_s \\ B^+_c \rightarrow J/\!\psi K^+ \\ B^+_c \rightarrow J/\!\psi K^+ K^- \pi^+ \\ B^+_c \rightarrow J/\!\psi \, 3\pi^+ \, 2\pi^- \end{array}$$

This is the dawning of the age of the B_c^+

Spare slides

Hadronic or Semileptonic channels?

Semileptonic (SL) decay $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$

- Large statistics, ~ 20 times $J\!/\!\psi\pi;$
- Rare experimental signature (3µ vertex)
- ${\scriptstyle \bullet }$ Impossible to reconstruct the B_c^+ mass
- Includes $c\bar{c} \rightarrow J/\psi X$ decays (feed-down) \Im Signal

Non-leptonic (NL) decay $B_c^+ \rightarrow J/\psi \pi^+$

- Simple background model;
- Model independent analysis
- Huge background from PV
- Detachment cuts: time-dependent efficiency
 Signal Background

Competitive and complementary analyses

Lucio Anderlini – Properties and decays of the B_c^+ meson

Background

DIS2014, Warsaw

Muon identification

Signal-background separation relies on 3μ : $h \rightarrow \mu$ misidentification is dangerous.

 $B \rightarrow J/\psi K(\pi)$ is very abundant and detached.

- Require muon hits in ≥ 4 muon stations;
- Reject K (and p) using RICH detectors;
- Reject K decaying to µ using track kink;
- · Reject combinatorial association of muon hits to hadron tracks by
 - Performing a Kalman filter track fit using muon hits
 - Rejecting muon candidates with Kalman filter $\chi^2/\mathrm{ndof} > 1.5$;
 - Requiring each hit is used at most once.

Average misidentification probability: 0.2% Single muon identification efficiency: 87%

Dominating residual background from decays in flight

Lucio Anderlini – Properties and decays of the B_c^+ meson

Misidentification background

DIS2014, Warsaw

Lucio Anderlini – Properties and decays of the B_c^+ meson

Comb. DLL as Kaon

A bad simulation of the B_c^+ momentum spectrum can modify the simulated k-factor distribution, and thus the lifetime. How much?

Reweighing of the B_c^+ spectra $(p_T \mbox{ and } \eta)$ to assess systematic uncertainty due to data/simulation disagreement

 $\bullet\,$ using $B_c^+ \to J/\psi \pi^+$ distribution to compare data and Simulation

reweighted signal pdf

(including feed-down decays)

Small effect: $0.8 (p_T) \oplus 0.6 (\eta) = 1.0$ fs

Model dependence assessment

We deform the model (true variables):

 $DeformedDalitz(m^2, q^2) = NominalDalitz(m^2, q^2) e^{(\alpha_{\psi}m + \alpha_{\nu}q)}$

The first step is to reconstruct the q^2 using the pointing information.

The we check the agreement

With PV and DV perfectly known, one can define the q^2 with a twofold ambiguity.

Information from the agreement of the 3 distributions $(M_{J/\psi\mu}, q_H^2, \text{ and } q_L^2)$ is combined.

Red curve: 68% C.L. from q^2 Full marker: Ebert model Blue curve: 68% C.L. from $m(J/\psi\mu)$ Empty marker: ISGW2 model

Model-independent uncertainty on lifetime $\pm~5~\text{fs}$