Associated-quarkonium production

J.P. Lansberg
IPN Orsay – Paris-Sud U. –CNRS/IN2P3

thanks to W. den Dunnen, C. Lorcé, C. Pisano, M. Schlegel, H.S. Shao
Part I

Quarkonium hadroproduction: where do we stand?
Reminder: QCD corrections for Υ at the Tevatron
Reminder: QCD corrections for Υ at the Tevatron

$\frac{d\sigma}{dP_T}|_{|y|<0.4} \times \text{Br (pb/GeV)}$

P_T (GeV)

Υ(1S) prompt data $\times F_{\text{direct}}$

ψ or Υ

$\alpha_3^SP_{-8}$

$\alpha_5^SP_{-4}$

g double t-channel gluon exchange at α_5^S

Attention: the NNLO \star is not a complete NNLO
Reminder: QCD corrections for Υ at the Tevatron

Υ (1S) prompt data x F_{direct}

LO
NLO

$\alpha_3^3 P_T^{-8}$
$\alpha_4^4 P_T^{-6}$

g
ψ or Υ

g
ψ or Υ
Reminder: QCD corrections for Υ at the Tevatron

$|y|<0.4 \times \text{Br (pb/GeV)}$

P_T (GeV)

Υ (1S) prompt data x F direct

LO
NLO
NNLO

ψ or Υ

$\alpha_3^3 P_T^{-8}$

$\alpha_4^4 P_T^{-6}$

$\alpha_5^5 P_T^{-4}$

+ double t-channel gluon exchange at α_5^5

Attention: the NNLO* is not a complete NNLO
QCD corrections for Υ at the Tevatron & the LHC

$|b\rangle$ *(3S) (GeV/c) Υ of T_p

$[\text{nb/(GeV/c)}]$ $T_p/\sigma_3S \times B_3S$

$10^4 10^3 10^2 10^1 10^0$

$0 5 10 15$

LHCb data (2.0<y<4.5)
direct NNLO* CSM (2.0<y<4.5)
direct NLO CSM (2.0<y<4.5)
LHCb data (2.0<y<4.5)
direct NNLO* CSM (2.0<y<4.5)
direct NLO CSM (2.0<y<4.5)

$\sqrt{s} = 7$ TeV

$B^{3S} \times d\sigma_{3S}/dp_T$ [nb/(GeV/c)]

Attention: the NNLO* is not a complete NNLO

+ double t-channel gluon exchange at α^5_S

J.P. Lansberg (IPNO) Associated-quarkonium production May 1, 2014 3 / 27
CSM predictions account for the P_T-integrated yield

\rightarrow The yield vs. \sqrt{s}, y

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

(Here only LO curves*)

*NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

*NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

*NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, …
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

\[\frac{d\sigma}{dy} |_{y=0} \times \text{Br} \]

\[x \text{ Br (pb)} \]

\[s^{1/2} \text{ (GeV)} \]

\[F^{\text{direct}}_{\Upsilon(1S)} = 51 \pm 12 \% \]

\[F^{\text{direct}}_{\Upsilon(1S+2S+3S)} = 42 \pm 10 \% \]

\[\text{LO gg CSM} \]

\[\text{STAR/CDF/CMS data} \]

\[\text{CMS} \]

\[\text{LHCb} \]

* NLO not stable at large \sqrt{s} (small x) and small P_T
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 - large NLO and NNLO correction to the P_T spectrum; but not perfect
 - CSM was always in the game for the P_T integrated yield

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
 - Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation, here or there

- New hope in double-parton fragmentation
 - Kang, Qiu, Sterman, PRL 108 (2012) 102002
 - Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering

- All this motivates the study of new observables which can be more discriminant for specific effects
Colour-Singlet Model (CSM) back in the game
[large NLO and NNLO correction to the P_T spectrum; but not perfect]
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum ; but not perfect]
- CSM was always in the game for the P_T integrated yield

Kang, Qiu, Sterman, PRL 108 (2012) 102002

[Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 - [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 - [large NLO and NNLO correction to the P_T spectrum ; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- All approaches have troubles in describing the polarisation, here or there
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum ; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- All approaches have troubles in describing the polarisation, here or there
- New hope in double-parton fragmentation
 Kang, Qiu, Sterman, PRL 108 (2012) 102002
 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- All approaches have troubles in describing the polarisation, here or there
- New hope in double-parton fragmentation
 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
 Kang, Qiu, Sterman, PRL 108 (2012) 102002
- All this motivates the study of new observables which can be more discriminant for specific effects
Part II

Quarkonium + Quarkonium
$J/\psi + J/\psi \& J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_S^4
$J/\psi + J/\psi \ & \ J/\psi + \eta_c$

- **LO** to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
$J/\psi + J/\psi \& J/\psi + \eta_c$

- **LO** to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

[nicely confirmed by a full NLO]

$J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections
- $J/\psi + \eta_c$ suppressed by C parity: LO at α_s^5

[nicely confirmed by a full NLO]

[First evaluation !]
$J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

$J/\psi + \eta_c$ suppressed by C parity: LO at α_S^5

[Diagram showing the process of $J/\psi + J/\psi$ production]

- [Nicely confirmed by a full NLO]

[First evaluation !]
J/ψ + J/ψ & J/ψ + η_c

- LO to $J/ψ + J/ψ$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

J/ψ + η_c suppressed by C parity: LO at α_S^5

- [nicely confirmed by a full NLO]
- [First evaluation !]

Different P_T spectrum & different ΔM distribution
The k_T smearing completely flattens the $\Delta\phi$ distribution.

Implication for the DPS "extraction" ?????
\(\Upsilon + b \)-tagged jet (or \(\Upsilon + \) non-prompt \(J/\psi \))

- \(\Upsilon + b \): \(\sim 0.1 \) pb/GeV at the Tevatron, \(\sim 1 \) pb/GeV at the LHC (14 TeV)
- hard (flatter) \(P_T \) spectrum w.r.t. the inclusive LO CSM
$\Upsilon + b$-tagged jet (or $\Upsilon +$ non-prompt J/ψ)

- $\Upsilon + b$: ~ 0.1 pb/GeV at the Tevatron, ~ 1 pb/GeV at the LHC (14 TeV)
- hard (flatter) P_T spectrum w.r.t. the inclusive LO CSM
- $\Upsilon + b$: discriminant for CSM vs. COM channels
$\Upsilon + b$-tagged jet (or $\Upsilon +$ non-prompt J/ψ)

- $\Upsilon + b$: ~ 0.1 pb/GeV at the Tevatron, ~ 1 pb/GeV at the LHC (14 TeV)
- Hard (flatter) P_T spectrum w.r.t. the inclusive LO CSM
- $\Upsilon + b$: discrimant for CSM vs. COM channels
- Different topologies/correlation:
 - CSM: 1 b away, 1 b near(er)
 - COM: 2 b’s away (from a recoiling gluon)
Part III

Quarkonium + photon
$Q + \text{isolated } \gamma$

- At high energy, 2 gluons in the initial states: no quark
\(Q + \text{isolated } \gamma \)

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([1S_0^8] \& 3P_j^8]\) instead of \(C = -1 \) octet \([3S_1^8]\) for the inclusive case
At high energy, 2 gluons in the initial states: no quark
The photon needs to be **emitted** by the heavy-quark loop
Consequence: gluon **fragmentation** associated with $C = +1$ octet $[{^1S_0^8} \& {^3P_J^8}]$
instead of $C = -1$ octet $[{^3S_1^8}]$ for the inclusive case
CS rate at NLO \simeq **conservative** (high) expectation from CO

In fact, the NLO CO yield can even be negative

R.Li and J.X. Wang, PLB 672,51,2009

R.Li and J.X. Wang, arXiv:1401.6918
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet [$^1S_0^8$ & $^3P_J^8$] instead of $C = -1$ octet [$^3S_1^8$] for the inclusive case
- CS rate at NLO \simeq conservative (high) expectation† from CO
- CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed (at NLO)

†In fact, the NLO CO yield can even be negative

R.Li and J.X. Wang, PLB 672,51,2009

R.Li and J.X. Wang, arXiv:1401.6918

J.P. Lansberg (IPNO)
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([^1S_0^8] \) & \(^3P_J^8 \)] instead of \(C = -1 \) octet \([^3S_1^8] \) for the inclusive case
- CS rate at NLO \(\simeq \) conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(^1S_0^8 \) and \(^3P_J^8 \) are indeed suppressed
- At NNLO\(^*\), CS rate clearly above (high) expectation from CO \(\text{ (at NLO)}\)

\[^\dagger\text{In fact, the NLO CO yield can even be negative}\]

\[^\dagger\text{R.Li and J.X. Wang, PLB 672,51,2009}\]

\[^\dagger\text{R.Li and J.X. Wang, PLB 679,340,2009}\]

\[^\dagger\text{New info on CS vs CO w.r.t and strong constraints on CO fits}\]

\[^\dagger\text{Possible at LHC: cf. (c, b) - jet + γ studies by D0 up to Pγ ≃ 150 GeV : D0, PRL102 (2009) 192002.}\]
\(Q + \text{isolated } \gamma \)

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([^1S_0^8] \text{ & } ^3P_J^8\) instead of \(C = -1 \) octet \([^3S_1^8]\) for the inclusive case
- CS rate at NLO \(\simeq \) conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(^1S_0^8 \) and \(^3P_J^8 \) are indeed suppressed
- At NNLO\(^\star\), CS rate clearly above (high) expectation from CO (at NLO)

\[\begin{array}{c}
\text{JPL, PLB 679,340,2009.}
\end{array}\]

\(^\dagger\) In fact, the NLO CO yield can even be negative

R.Li and J.X. Wang, arXiv:1401.6918
Q + isolated \(\gamma \)

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([^1S_0^8] \) & \(^3P_J^8 \) instead of \(C = -1 \) octet \([^3S_1^8] \) for the inclusive case
- CS rate at NLO \(\simeq \) conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(^1S_0^8 \) and \(^3P_J^8 \) are indeed suppressed
- At NNLO\(^*\), CS rate clearly above (high) expectation from CO (at NLO)

\[\text{Graphs showing the distribution of } \frac{d\sigma}{dP_T(y, \gamma, X)} \text{ at } P_T = 5 \text{ to } 45 \text{ GeV}\]

- New info on CS vs CO w.r.t and strong constraints on CO fits\(^\dagger\)

\(^\dagger\)In fact, the NLO CO yield can even be negative

\(R.Li \text{ and J.X. Wang, arXiv:1401.6918}\)

\(J.P. \text{ Lansberg (IPNO)}\)
At high energy, 2 gluons in the initial states: no quark

The photon needs to be emitted by the heavy-quark loop

Consequence: gluon fragmentation associated with $C = +1$ octet $[^1S_0^8]$ & $[^3P_J^8]$ instead of $C = -1$ octet $[^3S_1^8]$ for the inclusive case

CS rate at NLO \simeq conservative (high) expectation† from CO

CO rates may be clearly lower if $[^1S_0^8]$ and $[^3P_J^8]$ are indeed suppressed

At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

New info on CS vs CO w.r.t and strong constraints on CO fits†

Possible at LHC: cf. $(c, b) - jet + \gamma$ studies by D0 up to $P_T^{\gamma} \simeq 150$ GeV:

†In fact, the NLO CO yield can even be negative

\[\text{J.P. Lansberg (IPNO)} \]

\[\text{Associated-quarkonium production} \]

\[\text{May 1, 2014 11 / 27} \]
$Q + \gamma$: back-to-back and both isolated

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2 \alpha$, $\alpha_s^3 \alpha$ (b, c), $\alpha_s^4 \alpha$ (d, e, f).
$Q + \gamma$: back-to-back and both isolated

- Born (LO): $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
$Q + \gamma$: back-to-back and both isolated

- **Born (LO):** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2\alpha_s$ (a), $\alpha_s^3\alpha_s$ (b, c), $\alpha_s^4\alpha_s$ (d, e, f).
\(Q + \gamma: \text{back-to-back and both isolated} \)

- **Born (LO):** \(2 \rightarrow 2 \) contributions (a)-(b) fall like \(P_T^{-8} \)
- **At NNLO:** topologies like (d) dominate at very large \(P_T \)
- **At NLO:** topologies like (c) contribute at mid \(P_T \)
\(Q + \gamma: \text{back-to-back and both isolated} \)

- **Born (LO):** \(2 \rightarrow 2 \) contributions \((a)-(b)\) fall like \(P_T^{-8} \)
- **At NNLO:** topologies like \((d)\) dominate at very large \(P_T \)
- **At NLO:** topologies like \((c)\) contribute at mid \(P_T \)
- **COM contributions similar to \((d)\):**
 - Instead of a ’hard’ gluon, there would be multiple soft gluons.
Q + γ: back-to-back and both isolated

- **Born (LO):** $2 \to 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T
- **At NLO:** topologies like (c) contribute at mid P_T
- **COM contributions similar to (d):**
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- **(c)-(f):** parton \to some hadrons in the central region;
 - for (d), hadrons near the Q
Q + γ: back-to-back and both isolated

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2\alpha_s$ (a), $\alpha_s^3\alpha_s$ (b, c), $\alpha_s^4\alpha_s$ (d, e, f).

- **Born (LO):** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T
- **At NLO:** topologies like (c) contribute at mid P_T
- **COM contributions similar to (d):**
 Instead of a ’hard’ gluon, there would be multiple soft gluons.
- **(c)-(f):** parton [\rightarrow some hadrons] in the central region;
 for (d), hadrons near the Q
- **$2 \rightarrow 2$ topologies contribute to $\Delta \phi_{Q-\gamma} = \pi$ (back-to-back);**
 smearing effect small for $P_T \gg \langle k_T \rangle$
$Q + \gamma$: **back-to-back** and both isolated

Born (LO): $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}

At NNLO: topologies like (d) dominate at very large P_T

At NLO: topologies like (c) contribute at mid P_T

COM contributions similar to (d):

Instead of a ’hard’ gluon, there would be multiple soft gluons.

(c)-(f): parton $[\rightarrow$ some hadrons$]$ in the central region;

for (d), hadrons near the Q

2 → 2 topologies contribute to $\Delta \phi_{Q-\gamma} = \pi$ (back-to-back);

smearing effect small for $P_T \gg \langle k_T \rangle$

(c)-(f) populate $\Delta \phi_{Q-\gamma} < \pi$ [even $\Delta \phi \rightarrow 0$ for (c) and (d) at large P_T]
Q + γ: back-to-back and both isolated

- The studies is of an **isolated** quarkonium back-to-back with an (isolated) photon selects the **Born contributions to Q + γ**
Q + γ: back-to-back and both isolated

- The studies is of an **isolated** quarkonium back-to-back with an (isolated) photon selects the **Born contributions to** \(Q + γ\)
- The “back-to-back” requirement also limits the DPS contributions

 [a priori evenly distributed in \(Δφ\)]

J.P. Lansberg (IPNO)

Associated-quarkonium production

May 1, 2014

13 / 27
\(Q + \gamma \): back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to \(Q + \gamma \)
- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in \(\Delta \phi \)]
- Unique candidate to pin down the gluon TMDs
 - gluon sensitive process
 - colorless final state (virtue of isolation): TMD factorisation applicable
 - small sensitivity to QCD corrections (most of them in the TMD evolution)
\(Q + \gamma: \) back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to \(Q + \gamma \)
- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in \(\Delta \phi \)]
- Unique candidate to pin down the gluon TMDs
 - gluon sensitive process
 - colorless final state (virtue of isolation): TMD factorisation applicable
 - small sensitivity to QCD corrections (most of them in the TMD evolution)
- Rates are not too small

Direct back-to-back Onium + \(\gamma \) at sqrt(s)=14 TeV

Color Singlet

\[\langle O^{1S}_{0}|(\Upsilon)\rangle \geq 0.02 \text{ GeV}^3 \]

Color Octet

\[\langle O^{3S}_{1}|(J/\psi)\rangle \geq 0.002 \text{ GeV}^3 \]

J.P. Lansberg (IPNO)
Associated-quarkonium production
May 1, 2014 13 / 27
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdY d^2 q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C \left[f_1^g f_1^g \right] + F_3 \cos(2\phi_{CS}) C \left[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2 \right] + F_4 \cos(4\phi_{CS}) C \left[w_4 h_1^\perp g h_1^\perp g \right] \right\} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1 [f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C [w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C [w_4 h_1^\perp g h_1^\perp g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S_{qT}^{(n)} = \left(\frac{d\sigma}{dQdYd\cos \theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$
back-to-back $Q + \gamma$ and the gluon TMDs

- The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_{1\perp}^g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_{1\perp}^g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_{1\perp}^g h_{1\perp}^g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

- We define: $S_{q_T}^{(n)} = (\frac{d\sigma}{dQdYd\cos\theta_{CS}})^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$

- $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f^g_1(x, k_T, \mu_F)$ and $h^{\perp g}_1(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C [f^g_1 f^g_1] + F_3 \cos(2\phi_{CS}) C [w_3 f^g_1 h^{\perp g}_1 + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C [w_4 h^{\perp g}_1 h^{\perp g}_1] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S^{(n)}_{q_T} = \left(\frac{d\sigma}{dQdYd\cos\theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$

- $S^{(0)}_{q_T} \leftrightarrow f^g_1(x, k_T, \mu_F)$: clean extraction is possible!
- $S^{(4)}_{q_T} \leftrightarrow h^{\perp g}_1(x, k_T, \mu_F)$: a nonzero $S^{(4)}_{q_T}$ (or $\int dq_T S^{(4)}_{q_T}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQ dY d^2 q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^\perp g h_1^\perp g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQ dY d\cos\theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQ dY d^2 q_T d\Omega}$

- $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
- $S_{q_T}^{(4)} \leftrightarrow h_1^\perp g(x, k_T, \mu_F)$: a nonzero $S_{q_T}^{(4)}$ (or $\int dq_T S_{q_T}^{(4)}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
- $S_{q_T}^{(2)} \leftrightarrow f_1^g$ & $h_1^\perp g$
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^{\perp g}(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQ dY d^2 q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^{\perp g} h_1^{\perp g}] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQ dY d\cos(\theta_{CS})}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQ dY d^2 q_T d\Omega}$

- $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
- $S_{q_T}^{(4)} \leftrightarrow h_1^{\perp g}(x, k_T, \mu_F)$: a nonzero $S_{q_T}^{(4)}$ (or $\int dq_T S_{q_T}^{(4)}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
- $S_{q_T}^{(2)} \leftrightarrow f_1^g$ & $h_1^{\perp g}$
Part IV

Quarkonium + W/Z boson
$Q + W/Z$ boson

- $Y + W/Z$ boson
$Q + W/Z$ boson

- $\Upsilon + W/Z$ boson
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
Q + W/Z boson

- **Y + W/Z boson**
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) < 2.3 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) < 2.5 \text{ pb}
 \]
 - NRQCD predictions (Signal dominated by CO into χ_b)
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.025 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.0075 \text{ pb}
 \]

CDF Collaboration, PRL. 90 (2003) 221803

\(Q + W/Z\) boson

- **\(Y + W/Z\) boson**
 - 95% C.L. upper limits obtained with \(\mathcal{L} = 83\text{pb}^{-1}\) by CDF
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) < 2.3 \text{ pb} \\
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) < 2.5 \text{ pb}
 \]
 (1)
 - CDF Collaboration, PRL. 90 (2003) 221803
 - NRQCD predictions (Signal dominated by CO into \(\chi_b\))
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.025 \text{ pb} \\
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.0075 \text{ pb}
 \]
 (2)
 - CSM yield expected to be 300 times smaller (??? ...)

J.P. Lansberg (IPNO)
Associated-quarkonium production
May 1, 2014
16 / 27
Q + W/Z boson

- **Y + W/Z boson**
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF

 $$\sigma[p\bar{p} \to Y(1S) + W^\pm] \times Br(Y(1S) \to \mu\mu) < 2.3\ \text{pb}$$

 $$\sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) < 2.5\ \text{pb}$$

 - **NRQCD predictions (Signal dominated by CO into χ_b)**

 $$\sigma[p\bar{p} \to Y(1S) + W^\pm] \times Br(Y(1S) \to \mu\mu) \simeq 0.025\ \text{pb}$$

 $$\sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) \simeq 0.0075\ \text{pb}$$

- **CSM yield expected to be 300 times smaller (???) ...**
- **With 1 fb$^{-1}$ at $\sqrt{s} = 7\ \text{TeV}$ and a larger $(E \times A)(Y)$, one should see events if CO’s are at work**

CDF Collaboration, PRL. 90 (2003) 221803

$Q + W/Z$ boson

- $Y + W/Z$ boson
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[
 \sigma[p\bar{p} \to Y(1S) + W^\pm] \times Br(Y(1S) \to \mu\mu) < 2.3 \text{ pb} \\
 \sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) < 2.5 \text{ pb}
 \]
 (1)
 - NRQCD predictions (Signal dominated by CO into χ_b)
 \[
 \sigma[p\bar{p} \to Y(1S) + W^\pm] \times Br(Y(1S) \to \mu\mu) \simeq 0.025 \text{ pb} \\
 \sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) \simeq 0.0075 \text{ pb}
 \]
 (2)

- CSM yield expected to be 300 times smaller (??? ...)
- With 1 fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$ and a larger ($E \times A)(Y)$, one should see events if CO’s are at work

- $J/\psi + Z$ and $J/\psi + W$ recently computed at NLO in α_s
 - L.Gang et al. PRD83,014001,2011; JHEP02(2011)071

- $J/\psi|Y + Z$ at NLO in α_s + Polarisation
 - B.Gong et al. JHEP 1303 (2013) 115
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]
Rates similar for \(\Upsilon + Z \) and \(J/\psi + Z \) [Same for \(Q + \gamma \) for \(Q \gtrsim 20 \text{ GeV} \)]
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

- **Mass effects** ($m_c \leftrightarrow m_b$ less relevant because of m_Z)
- $|R(0)|^2$ is 10 times larger for Υ than for J/ψ
- Branching “only” 2.5 times smaller
Y + Z cross sections

- Rates similar for Y + Z and J/ψ + Z [Same for Q + γ for Q ≳ 20 GeV]

![Graphs showing dσ/dP_T x Br (fb/GeV) vs. P_T (GeV) for Y and J/ψ](image)

- Mass effects (m_c ↔ m_b less relevant because of m_Z)
- |R(0)|^2 is 10 times larger for Y than for J/ψ
- Branching “only” 2.5 times smaller
- Potential probe of gluon TMDs as well
\(\Upsilon + Z : \Upsilon \) polarisation

\[\alpha \left(P_{_{\Upsilon} T} \right) \]

\[P_{_{\Upsilon} T} > 3 \text{ GeV} \]

\[|y_{\Upsilon}| < 2.4 \]

\[\sqrt{s} = 14 \text{ TeV} \]

LO: \(\mu_R = \mu_F = m_Z \)

NLO: \(\mu_R = \mu_F = m_Z \)

CSM predictions seem robust both for the yield and the polarisation.

Yield and polarisation at LO and NLO are similar, unlike the inclusive case.

It is not clear why the difference exists; further investigation is needed.
\(\Upsilon + Z : \Upsilon \) polarisation

\[\alpha(P_{\Upsilon T}) \]

- \(\Upsilon \) polarisation at LO and NLO are similar

- \(\Upsilon \) polarisation at LO and NLO are similar.
$\Upsilon + Z$ polarisation

Y polarisation at LO and NLO are similar

unlike the inclusive case

not clear why: need for further investigation
Y + Z : Y polarisation

Y polarisation at LO and NLO are similar

- unlike the inclusive case
- not clear why: need for further investigation
- CSM predictions seem robust both for the yield and the polarisation
J/ψ + W

'ψ + W offers a clean test of the colour octet contributions'

In the CSM, the W boson cannot be emitted by the charm quark loop replacing the gluon in $\psi + g$, the γ in $\psi + \gamma$ or the Z in $\psi + Z$.

\(J/\psi + W \)

\('\psi + W \) offers a clean test of the colour octet contributions'

- In the CSM, the \(W \) boson cannot be emitted by the charm quark loop replacing the gluon in \(\psi + g \), the \(\gamma \) in \(\psi + \gamma \) or the \(Z \) in \(\psi + Z \)
- One needs a light-quark line to emit the \(W \)
- In the COM, the light-quark line also radiates a gluon which produces a \(^3S_i^{[8]} \) octet \(Q\bar{Q} \)
In the CSM, the W boson cannot be emitted by the charm quark loop replacing the gluon in $\psi + g$, the γ in $\psi + \gamma$ or the Z in $\psi + Z$

One needs a light-quark line to emit the W

In the COM, the light-quark line also radiates a gluon which produces a $^3S^1_8$ octet $Q\bar{Q}$

The corresponding process suppressed in the CSM by α_s^2
(similarly to the gluon fragmentation in the inclusive case)

Usual conclusion:
the CSM contribution is strongly suppressed even at rather low P_T
To check this, we have considered two kinds of "LO" CSM process At α_1 (EW) and LO in α_s (α_3 vs. α_2 for COM), we have fusion involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}) "LO" contains leading power in P_T \rightarrow no kinematical suppression At α_3 and α_0 s, we also have $q\bar{q}$ fusion $\rightarrow \gamma^* W \rightarrow J/\psi W^\pm$: negligible since α_3? J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218
direct $J/\psi + W$

- To check this, we have considered two kinds of “LO” CSM process.
To check this, we have considered two kinds of “LO” CSM process:

- At $\alpha_{(EW)}^1$ and LO in α_s (α_S^3 vs. α_S^2 for COM),
- we have $s g$ fusion

\[\text{direct } J/\psi + W \]
To check this, we have considered two kinds of “LO” CSM process:

- At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have *sg fusion*
- involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

\[J/\psi + W \]
To check this, we have considered two kinds of “LO” CSM process

- At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion
- involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})
- “LO” contains leading power in P_T
 → no kinematical suppression
To check this, we have considered two kinds of “LO” CSM process

At $\alpha^1_{(EW)}$ and LO in α_s (α^3_s vs. α^2_s for COM), we have sg fusion

involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

“LO” contains leading power in P_T → no kinematical suppression

At α^3 and α^0_s, we also have $q\bar{q}$ fusion
To check this, we have considered two kinds of “LO” CSM process.

At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

“LO” contains leading power in P_T → no kinematical suppression

At α_s^3 and α_s^0, we also have $q\bar{q}$ fusion

“LO” contains leading power in P_T → no kinematical suppression
To check this, we have considered two kinds of “LO” CSM process.

At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion, involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}).

“LO” contains leading power in P_T → no kinematical suppression.

At α_s^3 and α_s^0, we also have $q\bar{q}$ fusion.

“LO” contains leading power in P_T → no kinematical suppression.

pure EW process.
To check this, we have considered two kinds of “LO” CSM process

At $\alpha^1_{(EW)}$ and LO in α_s (α^3_s vs. α^2_s for COM), we have sg fusion
involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

“LO” contains leading power in P_T → no kinematical suppression

At α^3 and α^0_s, we also have $q\bar{q}$ fusion

“LO” contains leading power in P_T → no kinematical suppression

pure EW process

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$: negligible since α^3 ?
Results

J.P. Lansberg, C. Lorè, PLB 726 (2013) 218

- Associated-quarkonium production
- May 1, 2014 21 / 27
Results

- **sg fusion small at Tevatron energies; q\bar{q}' enhanced in p\bar{p} collisions**
Results

- **sg fusion small** at Tevatron energies; **q̅q′** enhanced in **p̅p** collisions

- **CSM q̅q′** competes with **COM q̅q′** if \(\langle O_{J/\psi}(^3S_1^{[8]}) \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \)!

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218
Results

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

- **sg** fusion small at Tevatron energies; **q̄q′** enhanced in **p̄p** collisions
- **CSM q̄q′** competes with **COM q̄q′** if \(\langle O_{J/\psi}(3S^{[8]}_1) \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \)!
- **q̄q′** **COM and CSM** have the same **\(P_T \)** dependence

- **sg** fusion small at Tevatron energies; **q̅q’** enhanced in **p̅p** collisions
- CSM **q̅q’** competes with COM **q̅q’** if $\langle O_{J/\psi}(3S_1^{[8]}) \rangle \leq 3 \times 10^{-3}$ GeV3!
- **q̅q’** COM and CSM have the same P_T dependence
- **sg** fusion becomes large at LHC energies
Results

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

- **sg** fusion small at Tevatron energies; \(q\bar{q}' \) enhanced in \(pp \) collisions
- CSM \(q\bar{q}' \) competes with COM \(q\bar{q}' \) if \(\langle O_{J/\psi}(^3S_1^{[8]} \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \)!
- \(q\bar{q}' \) COM and CSM have the same \(P_T \) dependence
- **sg** fusion becomes large at LHC energies
- **sg** fusion competes with \(q\bar{q}' \) annihilation in \(pp \) collisions
sg fusion small at Tevatron energies; $q\bar{q}'$ enhanced in $p\bar{p}$ collisions

CSM $q\bar{q}'$ competes with COM $q\bar{q}'$ if $\langle O_{J/\psi}^{3S_1^{[8]}} \rangle \leq 3 \times 10^{-3}$ GeV3 !

$q\bar{q}'$ COM and CSM have the same P_T dependence

sg fusion becomes large at LHC energies

sg fusion competes with $q\bar{q}'$ annihilation in pp collisions

CSM contributions larger than COM at the LHC
Results

- *sg* fusion small at Tevatron energies; *q̅q′* enhanced in *p̅p* collisions
- **CSM** *q̅q′* competes with **COM** *q̅q′* if \[\langle O_{J/\psi} (3 S_1^{[8]}) \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \]
- *q̅q′* **COM** and **CSM** have the same \(P_T \) dependence
- *sg* fusion becomes large at LHC energies
- *sg* fusion competes with *q̅q′* annihilation in *pp* collisions
- **CSM** contributions larger than **COM** at the LHC
- Unfortunately, *J/ψ + W* not a clean test of colour octets

but measured by ATLAS!
Rapidity distribution – Comparison with ATLAS

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Cross sections are not very large

Comparison with ATLAS

arXiv:1401.2831 [hep-ex]

LO CSM total
LO CSM g+s fusion
LO CSM via γ*

no cut on W decay products; for W+ and W-
μ_R=μ_F=m_W x (0.75,2;1,1;2,0.75) and
m_c=1.5+/-0.1 GeV for CSM

direct-J/ψ+W at sqrt(s)=8 TeV

Feed-down from ψ(2S): 0.15±0.04 fb
Feed-down from χ_c: 3.7±2.1 fb
Sum: 4.5±2.3 fb

ATLAS data

total prompt: 25±10 fb
DPS subtracted: 15±10 fb [marginal agreement]
Cross sections are not very large
Cross sections are not very large

Comparison with ATLAS

arXiv:1401.2831 [hep-ex]
Cross sections are not very large

Comparison with ATLAS

CSM

$$\sigma = \sigma (P_T^\psi > 8.5 \text{GeV}, |y^\psi| < 2.4)$$
Rapidity distribution – Comparison with ATLAS

Cross sections are not very large

Comparison with ATLAS

CSM

- direct: $0.6 \pm 0.2 \text{ fb}$
- Feed-down from $\psi(2S)$: $0.15 \pm 0.04 \text{ fb}$

$\sigma = \sigma (P_T^{\psi} > 8.5 \text{ GeV}, |y^{\psi}| < 2.4)$

arXiv:1401.2831 [hep-ex]
Cross sections are not very large

Comparison with ATLAS

CSM
 direct: 0.6 ± 0.2 fb
 Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
 Feed-down from χ_c: 3.7 ± 2.1 fb
 Sum: 4.5 ± 2.3 fb

\[\sigma = \sigma(P_T^{\psi} > 8.5\text{GeV}, |y^{\psi}| < 2.4) \]
Rapidity distribution – Comparison with ATLAS

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Cross sections are not very large
Comparison with ATLAS

CSM
- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data

$\sigma = \sigma (P_T^{\psi} > 8.5\text{GeV}, |y^{\psi}| < 2.4)$
Cross sections are not very large

Comparison with ATLAS

CSM
- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data
- total prompt: 25 ± 10 fb

$\sigma = \sigma(P_T^{\psi} > 8.5\text{GeV}, |y^{\psi}| < 2.4)$
Rapidity distribution – Comparison with ATLAS

Cross sections are not very large

Comparison with ATLAS

CSM

- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data

- total prompt: 25 ± 10 fb
- DPS subtracted: 15 ± 10 fb

\[\sigma = \sigma (P_T^\psi > 8.5 \text{GeV}, |y^\psi| < 2.4) \]
Cross sections are not very large
Comparison with ATLAS
CSM
 - direct: 0.6 ± 0.2 fb
 - Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
 - Feed-down from χ_c: 3.7 ± 2.1 fb
 - Sum: 4.5 ± 2.3 fb
ATLAS data
 - total prompt: 25 ± 10 fb
 - DPS subtracted: 15 ± 10 fb

\[\sigma = \sigma(P_T^\psi > 8.5\text{GeV}, |y^\psi| < 2.4) \]
Part V

Quarkonium + hadron
\(Q + \) hadron azimuthal correlations

\(\rightarrow J/\psi + \) hadron azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: \(gg \rightarrow J/\psi g \))

Need for updates with NLO and NNLO

\(gg \rightarrow J/\psi gg \): peak at \(\Delta \phi = \pi \) (activity from the recoiling jet)

\(gg \rightarrow J/\psi g g \): peak at \(\Delta \phi = \pi \) + activity between 0 and \(\pi \)

\(gg \rightarrow J/\psi g g g \): peak at \(\Delta \phi = \pi \) + activity between 0 and \(\pi \)+ near jet?
$Q + \text{hadron}$ azimuthal correlations

$\rightarrow J/\psi + \text{hadron}$ azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

$gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)

$gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π

$gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet?

The aim of STAR was to extract the B feed-down to J/ψ:

more activity near the J/ψ than for prompt production

Could that be used to discriminate octet vs. singlet hadronisation?

J.P. Lansberg (IPNO)
Associated-quarkonium production
May 1, 2014 24/27
Q + hadron azimuthal correlations

→ J/ψ + hadron azimuthal correlations

![Graph showing azimuthal correlations](graph.png)

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Talk by M. Cervantes (STAR) at WWND 2011
Q + hadron azimuthal correlations

→ $J/\psi +$ hadron azimuthal correlations

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO

The aim of STAR was to extract the B feed-down to J/ψ: more activity near the J/ψ than for prompt production. Could that be used to discriminate octet vs. singlet hadronisation?
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi +$ activity between 0 and $\pi +$ near jet?
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*
- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi +$ activity between 0 and $\pi +$ near jet?

$\Upsilon +$ hadron azimuthal correlations

Talk by M. Cervantes (STAR) at WWND 2011
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO:

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet?

→ Υ + hadron azimuthal correlations

The aim of STAR was to extract the B feed-down to J/ψ:
more activity near the J/ψ than for prompt production
Q + hadron azimuthal correlations

\[\rightarrow J/\psi + \text{hadron azimuthal correlations} \]

![Graph showing azimuthal correlations](image)

- PYTHIA might not be reliable (Color Singlet at LO: \(gg \rightarrow J/\psi g \))
- Need for updates with NLO and NNLO
 - \(gg \rightarrow J/\psi g \): peak at \(\Delta \phi = \pi \) (activity from the recoiling jet)
 - \(gg \rightarrow J/\psi gg \): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi \)
 - \(gg \rightarrow J/\psi ggg \): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi \) + near jet?

Y + hadron azimuthal correlations

- The aim of STAR was to extract the \(B \) feed-down to \(J/\psi \):
 - more activity near the \(J/\psi \) than for prompt production

Could that be used to discriminate octet vs. singlet hadronisation?
Part VI

$J/\psi + \text{charm}$
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or J/ψ+lepton in the yield integrated over P_T

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics
Double charm: \(J/\psi + D \)

\(J/\psi + D \) or \(J/\psi + \text{lepton} \) in the yield integrated over \(P_T \)

- peak at \(\Delta\phi = \pi \)
- Rate significant & \(y \)-dependence gives info on \(c(x) \)

\(J/\psi + D \) or \(J/\psi + \text{lepton} \) at large \(P_T \) (say, \(P_T > 15 \) GeV)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

$J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

\[\frac{N(J/\psi + c)}{N(J/\psi + X)} (\%) \]

plot for RHIC kinematics

$J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1^8 g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)
Double charm: $J/\psi + D$

→ $J/\psi + D$ or $J/\psi + $lepton in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

![Graph](image)

plot for RHIC kinematics

→ $J/\psi + D$ or $J/\psi + $lepton at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1^{[8]}g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

→ First measurement by LHCb ($p_T^D \geq 3$ GeV $\Rightarrow p_T^{\text{charm quark}}$ not small)

![Graph](image)

LHCb, JHEP 1206 (2012) 141
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + $lepton in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

$J/\psi + D$ or $J/\psi + $lepton at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1[8] g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

$J/\psi + D$ or $J/\psi + $lepton at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1[8] g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

$J/\psi + D$ or $J/\psi + $lepton at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1[8] g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

First measurement by LHCb ($p_T^D \geq 3$ GeV $\Rightarrow p_T^{\text{charm quark}}$ not small)

At low P_T, we should be careful about the k_T smearing effect on $\Delta \phi$
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma / dP_T$ is concerned
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is \(gg \rightarrow Qg \)

- **LO CSM fails** as far as \(d\sigma/dP_T \) is concerned

- **QCD corrections open leading** \(P_T \) channel: they are needed!
 \(2 \rightarrow 3, 2 \rightarrow 4 \) channels
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!

 $2 \rightarrow 3$, $2 \rightarrow 4$ channels
- **Drawback**: large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi g g$)

J.P. Lansberg (IPNO)
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned

- **QCD corrections open leading P_T channel:** they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)

- **(N)NLO corrections alter the polarisation:**
 transverse \rightarrow longitudinal (in HX)
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed! $2 \rightarrow 3$, $2 \rightarrow 4$ channels
- Drawback: large theoretical uncertainties... Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)
- (N)NLO corrections alter the polarisation: transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned.
- QCD corrections open **leading** P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels
- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)
- (N)NLO corrections alter the polarisation:
 transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations at the LHC or elsewhere!
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels
- Drawback: large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi g g g$)
- (N)NLO corrections alter the polarisation:
 transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
- Need for new observables, need for NLO evaluations at the LHC or elsewhere!
- Given the precision of the data at low P_T, one should re-think
 the opportunity of extracting $g(x)$ with quarkonium
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels
- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order $(gg \rightarrow J/\psi g g g)$
- (N)NLO corrections alter the polarisation:
 transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations
- Given the precision of the data at low P_T, one should re-think
 the opportunity of extracting $g(x)$ with quarkonium
- and by extension the gluon TMDs (gluon transverse motion)
 for the first time
Part VII

Backup
Despite th. uncertainties, CSM predictions are parameter free!
Despite the uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

$$
\sigma^{\text{direct}}(\Upsilon(3S)) / \sigma^{\text{direct}}(\Upsilon(1S)) = \frac{|\psi_{3S}(0)|^2}{|\psi_{1S}(0)|^2} \sim 0.34
$$

$$
\sigma^{\text{direct}}(\Upsilon(2S)) / \sigma^{\text{direct}}(\Upsilon(1S)) = \frac{|\psi_{2S}(0)|^2}{|\psi_{1S}(0)|^2} \sim 0.45
$$

$$
\sigma^{\Upsilon(1S)}(|y| < 2) \rightarrow \ell\ell \simeq 7.4 \text{ nb}
$$

$$
\sigma^{\Upsilon(3S)}(|y| < 2) \rightarrow \ell\ell \simeq 1.0 \text{ nb}
$$

CMS, PRD 83, 112004 (2011)

Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

$$
\sigma^{\Upsilon(3S)}(|y| < 2) \rightarrow \ell\ell \simeq 1 \text{ nb}
$$

100% direct $\rightarrow \sigma^{\Upsilon(3S)} \sim 45 \text{ nb}$

CMS, PRD 83, 112004 (2011)

NEW: the $3S$ yield likely not 100% direct

cf. $\chi_b(3P)$ observation by ATLAS

Despite the uncertainties, CSM predictions are parameter free! At LO in v^2, one 	extit{de facto} predicts direct cross-section ratios.

Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{\psi_{3S}(0)^2}{\psi_{1S}(0)^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{\psi_{2S}(0)^2}{\psi_{1S}(0)^2} \sim 0.45$$
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \left| \frac{\psi^{3S}(0)}{\psi^{1S}(0)} \right|^2 \sim 0.34 \quad \frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \left| \frac{\psi^{2S}(0)}{\psi^{1S}(0)} \right|^2 \sim 0.45
\]

\[
\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \text{50\% direct} \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34 \quad \frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

$$\sigma(Y(1S)(|y| < 2)) \, Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \text{50%direct} \quad \rightarrow \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}$$

Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
Despite th. uncertainties, CSM predictions are parameter free!
At LO in \(v^2 \), one \textit{de facto} predicts direct cross-section ratios
Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34 \quad \frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
\]

\[
\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \xrightarrow{50\% \text{ direct}} \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)

Extrapolated 3S direct yield: 0.34 \times 150 \text{ nb} \sim 50 \text{ nb}

\[
\sigma(Y(3S)(|y| < 2)) Br_{\ell\ell} \sim 1.0 \text{ nb} \xrightarrow{100\% \text{ direct}} \sigma(\text{direct } Y(3S)) \sim 45 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)
Cross section ratio I

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:
 \[
 \frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34 \\
 \frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
 \]

- $\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \simeq 7.4 \text{ nb}$ \[50\%]direct $\rightarrow \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}$

- Extrapolated 3S direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

- $\sigma(Y(3S)(|y| < 2)) Br_{\ell\ell} \simeq 1.0 \text{ nb}$ \[100\%]direct $\rightarrow \sigma(\text{direct } Y(3S)) \sim 45 \text{ nb}$

- NEW: the 3S yield likely not 100% direct
 cf. $\chi_b(3P)$ observation by ATLAS \[PRL, 108, 152001 (2012)]
Cross section ratio II

- CSM extrapolation
- LHCb $2.0 < y < 4.5$
- CMS $|y| < 2.0$

- Mass effects at low P_T: not included in the results:
 - $\Upsilon(nS)$
 - NRQCD

- Feed-down: simple kinematical effect:
 - $P_{\text{daughter}} T \sim M_{\text{daughter}} M_{\text{mother}} P_{\text{mother}}$

- Harmless if $d\sigma/dP_T \propto P^{-n}$ with n fixed,
 - harmful if n changes, especially true at low P_T where $d\sigma/dP_T$ can be flat.
\textbf{Cross section ratio II}

- \textbf{\(P_T \) dependence of cross section ratios:}
Cross section ratio II

- P_T dependence of cross section ratios:
- Mass effects at low P_T: not incoded in the ν^2 results: $M_{\text{NRQCD}}^{Y(nS)} = 2m_b$
P_T dependence of cross section ratios:

- Mass effects at low P_T: not incoded in the v^2 results: $M_{Y(nS)}^{NRQCD} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M_{\text{daughter}}}{M_{\text{mother}}} P_T^{\text{mother}}$
P_T dependence of cross section ratios:
- Mass effects at low P_T: not incoded in the v^2 results: $M^{Y(nS)}_{\text{NRQCD}} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M^{\text{daughter}}}{M^{\text{mother}}} P_T^{\text{mother}}$
- Harmless if $\frac{d\sigma}{dP_T} \propto P_T^{-n}$ with n fixed,
P_T dependence of cross section ratios:

- Mass effects at low P_T: not incoded in the ν^2 results: $M_{\text{NRQCD}}^{\Upsilon(nS)} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M_{\text{daughter}}}{M_{\text{mother}}} P_T^{\text{mother}}$
- Harmless if $\frac{d\sigma}{dP_T} \propto P_T^{-n}$ with n fixed,
- harmful if n changes, esp. true at low P_T where $\frac{d\sigma}{dP_T}$ can be flat
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar

why?
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar

why?

Let us simplify and look at

$q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \to \gamma^* \to J/\psi$ vs. $q\bar{q}' \to g^* \to J/\psi$

The cross sections are well-known:
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar

Let us simplify and look at $q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

- CSM: $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_{\bar{q}}^2}{M_Q^3 s} \delta \left(x_1 x_2 - \frac{M_Q^2}{s} \right) |R(0)|^2$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar why?

Let us simplify and look at

$q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

- **CSM:** $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2$

- **COM:** $\hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha_s)^2 \pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle O_Q(3S_1^1) \rangle$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \to \gamma^* \to J/\psi$ vs. $q\bar{q}' \to g^* \to J/\psi$

The cross sections are well-known:

- **CSM:** $\hat{\sigma}[1]_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_{\bar{q}}^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2$

- **COM:** $\hat{\sigma}[8]_{g^*} = \frac{(4\pi\alpha s)^2 \pi}{27 M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle O_Q(3S_1^{[1]}) \rangle$

The ratio gives:

$$\frac{\hat{\sigma}[1]_{\gamma^*}}{\hat{\sigma}[8]_{g^*}} = \frac{6\alpha^2 e_q^2 e_{\bar{q}}^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle} \langle O_Q(3S_1^{[1]}) \rangle = 2N_c (2J + 1) \frac{|R(0)|^2}{4\pi}$$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar. Why?

Let us simplify and look at $q\bar{q}' \to \gamma^* \to J/\psi$ vs. $q\bar{q}' \to g^* \to J/\psi$

The cross sections are well-known:

- **CSM:**
 \[
 \hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_Q^2 e_{\bar{Q}}^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2
 \]

- **COM:**
 \[
 \hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha s)^2 \pi}{27 M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle \mathcal{O}_Q(3S^1_1) \rangle
 \]

The ratio gives:

\[
\frac{\hat{\sigma}^{[1]}_{\gamma^*}}{\hat{\sigma}^{[8]}_{g^*}} = \frac{6\alpha^2 e_Q^2 e_{\bar{Q}}^2 \langle \mathcal{O}_Q(3S^1_1) \rangle}{\alpha_s^2 \langle \mathcal{O}_Q(3S^1_8) \rangle} \quad \langle \mathcal{O}_Q(3S^1_1) \rangle = 2N_c(2J + 1) |R(0)|^2
\]

Colour factor: $2N_c$
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6e_q^2e_Q^2\langle O_Q({^3S_1}^{[1]}) \rangle}{\alpha_s^2\langle O_Q({^3S_1}^{[8]}) \rangle}
\]

The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients. For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}({^3S_1}^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.

For Υ production, it is about the same (smaller but α_s also smaller and $|R(0)|$ larger).

If we add the W emission, the charge factor changes and μ_R: $O(m_Q) \rightarrow O(m_W) \rightarrow$.

This explains our results for $J/\psi + W$.

General conclusion: For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\hat{\sigma}_{\text{via } \gamma^*}^{[1]}}{\hat{\sigma}_{\text{via } g^*}^{[8]}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(3S^1_1) \rangle}{\alpha_s^2 \langle O_Q(3S^8_1) \rangle}$$

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$ and on the ratio of the non-perturbative coefficients.
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(\,^3S_1^{[1]}\,\rangle}{\alpha_s^2 \langle O_Q(\,^3S_1^{[8]}\,\rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$, and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(\,^3S_1^{[8]}\,\rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}_{\text{via } \gamma^*}^{[1]}}{\hat{\sigma}_{\text{via } g^*}^{[8]}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(\frac{3}{2}S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(\frac{3}{2}S_1^{[8]}) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for
 \[
 \langle O_{J/\psi}(\frac{3}{2}S_1^{[8]}) \rangle = 2.2 \times 10^{-3} \text{ GeV}^3,
 \]
 the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same

 (e_Q smaller but α_s also smaller and $|R(0)|^2$ larger)
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha^2 e_q e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same (eQ smaller but α_s also smaller and $|R(0)|^2$ larger).
- If we add the W emission, the charge factor changes and $\mu_R : \mathcal{O}(m_Q) \rightarrow \mathcal{O}(m_W)$.

\rightarrow This explains our results for $J/\psi + W$.
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\hat{\sigma}_{\text{via } \gamma^*}^{[1]}}{\hat{\sigma}_{\text{via } g^*}^{[8]}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(\ 3S_1^{[1]}\rangle}{\alpha_s^2 \langle O_Q(\ 3S_1^{[8]}\rangle}$$

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(\ 3S_1^{[8]}\rangle = 2.2 \times 10^{-3} \text{ GeV}^3$, the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same
 (e$_Q$ smaller but α_s also smaller and $|R(0)|^2$ larger)
- If we add the W emission, the charge factor changes and $\mu_R : O(m_Q) \rightarrow O(m_W)$
 \rightarrow This explains our results for $J/\psi + W$.

General conclusion:

For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.