Production of $W^{+} W^{-}$pairs via subleading processes at the LHC

Marta Łuszczak
Institute of Physics
University of Rzeszow

April 28 - May 2, 2014
Warsaw

Plan of the talk

- Introduction
- $\gamma \gamma \rightarrow W^{+} W^{-}$reaction
- Inclusive production of $W^{+} W^{-}$pairs
- $q \bar{q} \rightarrow W^{+} W^{-}$mechanism
- MRST-QED parton distributions
- Naive approach to photon flux
- Resolved photons
- Single diffractive production
- Results
- Conclusions

Based on:
M. Luszczak, Ch. Royon and A. Szczurek, paper in preparation

Plan of the talk

```
\gamma\gamma }->\mp@subsup{W}{}{+}\mp@subsup{W}{}{-}\mathrm{ reaction
```


$p p \rightarrow p p W^{+} W^{-}$reaction

- The exclusive $p p \rightarrow p p W^{+} W^{-}$reaction is particularly interesting in the context of $\gamma \gamma W W$ coupling
- The general diagram for the $p p \rightarrow p p W^{+} W^{-}$reaction via $\gamma_{e l} \gamma_{e l} \rightarrow W^{+} W^{-}$subprocess

Marta Łuszczak

Plan of the talk

$\gamma \gamma \rightarrow W^{+} W^{-}$reaction

The three-boson $W W \gamma$ and four-boson $W W \gamma \gamma$ couplings, which contribute to the $\gamma \gamma \rightarrow W^{+} W^{-}$process in the leading order:

$$
\begin{aligned}
\mathcal{L}_{W W \gamma} & =-i e\left(A_{\mu} W_{\nu}^{-} \overleftrightarrow{\partial^{\mu}} W^{+\nu}+W_{\mu}^{-} W_{\nu}^{+} \overleftrightarrow{\partial^{\mu}} A^{\nu}+W_{\mu}^{+} A_{\nu} \overleftrightarrow{\partial^{\mu}} W^{-\nu}\right) \\
\mathcal{L}_{W W \gamma \gamma} & =-e^{2}\left(W_{\mu}^{-} W^{+\mu} A_{\nu} A^{\nu}-W_{\mu}^{-} A^{\mu} W_{\nu}^{+} A^{\nu}\right)
\end{aligned}
$$

where the asymmetric derivative has the form
$X \overleftrightarrow{\partial^{\mu}} Y=X \partial^{\mu} Y-Y \partial^{\mu} X$.

Plan of the talk
Introduction
$\gamma \gamma \rightarrow W^{+} W^{-}$reaction Introduction

$\gamma \gamma \rightarrow W^{+} W^{-}$reaction

- The Born diagrams for the $\gamma \gamma \rightarrow W^{+} W^{-}$subprocess

Plan of the talk

$\gamma \gamma \rightarrow W^{+} W^{-}$reaction

The elementary tree-level cross section for the $\gamma \gamma \rightarrow W^{+} W^{-}$ subprocess can be written in the compact form in terms of the Mandelstam variables

$$
\frac{d \hat{\sigma}}{d \Omega}=\frac{3 \alpha^{2} \beta}{2 \hat{s}}\left(1-\frac{2 \hat{s}\left(2 \hat{s}+3 m_{W}^{2}\right)}{3\left(m_{W}^{2}-\hat{t}\right)\left(m_{W}^{2}-\hat{u}\right)}+\frac{2 \hat{s}^{2}\left(\hat{s}^{2}+3 m_{W}^{4}\right)}{3\left(m_{W}^{2}-\hat{t}\right)^{2}\left(m_{W}^{2}-\hat{u}\right)^{2}}\right)
$$

$\beta=\sqrt{1-4 m_{W}^{2} / \hat{s}}$ is the velocity of the W bosons in their center-of-mass frame and the electromagnetic fine-structure constant $\alpha=e^{2} /(4 \pi) \simeq 1 / 137$ for the on-shell photon

Plan of the talk

The exclusive diffractive mechanism

The exclusive diffractive mechanism of central exclusive production of $W^{+} W^{-}$pairs in proton-proton collisions at the LHC (in which diagrams with intermediate virtual Higgs boson as well as quark box diagrams are included) was discussed

- P. Lebiedowicz, R. Pasechnik and A. Szczurek, Phys. Rev. D81 (2012) 036003
and turned out to be negligibly small.

Plan of the talk

$q \bar{q} \rightarrow W^{+} W^{-}$mechanism

Relevant leading-order matrix element, averaged over quark colors and over initial spin polarizations, summed over final spin polarization and cross section are well known.

Plan of the talk

Inclusive $\gamma \gamma \rightarrow W^{+} W^{-}$mechanism

- $\gamma \gamma$ processes contribute also to inclusive cross section.

We consider in addition 3 new mechanisms

- If at least one photon is a "real" constituent of the nucleon then the mechanisms presented are possible:

MRSTQ parton distributions

The factorization of the QED-induced collinear divergences leads to QED-corrected evolution equations for the parton distributions of the proton.

$$
\begin{aligned}
\frac{\partial q_{i}\left(x, \mu^{2}\right)}{\partial \log \mu^{2}} & =\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left\{P_{q q}(y) q_{i}\left(\frac{x}{y}, \mu^{2}\right)+P_{q g}(y) g\left(\frac{x}{y}, \mu^{2}\right)\right\} \\
& +\frac{\alpha}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left\{\tilde{P}_{q q}(y) e_{i}^{2} q_{i}\left(\frac{x}{y}, \mu^{2}\right)+P_{q \gamma}(y) e_{i}^{2} \gamma\left(\frac{x}{y}, \mu^{2}\right)\right\} \\
\frac{\partial g\left(x, \mu^{2}\right)}{\partial \log \mu^{2}} & =\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left\{P_{g q}(y) \sum_{j} q_{j}\left(\frac{x}{y}, \mu^{2}\right)+P_{g g}(y) g\left(\frac{x}{y}, \mu^{2}\right)\right\} \\
\frac{\partial \gamma\left(x, \mu^{2}\right)}{\partial \log \mu^{2}} & =\frac{\alpha}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left\{P_{\gamma q}(y) \sum_{j} e_{j}^{2} q_{j}\left(\frac{x}{y}, \mu^{2}\right)+P_{\gamma \gamma}(y) \gamma\left(\frac{x}{y}, \mu^{2}\right)\right\}
\end{aligned}
$$

Plan of the talk

MRSTQ parton distributions

In addition to usual $P_{q q}, P_{g q}, P_{q g}, P_{g g}$ spliting functions new spliting functions apper.

$$
\tilde{P}_{q q}=C_{F}^{-1} P_{q q}
$$

$\mathrm{P}_{\gamma q}=C_{F}^{-1} P_{g q}$,
$\mathrm{P}_{q \gamma}=T_{R}^{-1} P_{q g}$,
$\mathrm{P}_{\gamma \gamma}=-\frac{2}{3} \sum_{i} e_{i}^{2} \delta(1-y)$
momentum is conserved:

$$
\int_{0}^{1} d x x\left\{\sum_{i} q_{i}\left(x, \mu^{2}\right)+g\left(x, \mu^{2}\right)+\gamma\left(x, \mu^{2}\right)\right\}=1
$$

Cross section for photon-photon processes

$$
\frac{d \sigma^{\gamma_{i n} \gamma_{i n}}}{d y_{1} d y_{2} d^{2} p_{t}}=\frac{1}{16 \pi^{2} \hat{s}^{2}} x_{1} \gamma_{i n}\left(x_{1}, \mu^{2}\right) x_{2} \gamma_{i n}\left(x_{2}, \mu^{2}\right) \overline{\mid \mathcal{M}_{\gamma \gamma \rightarrow W^{+} W^{-}}}
$$

- include only cases when nucleons do not survive a collision and nucleon debris is produced instead

Cross section for photon-photon processes

$$
\begin{aligned}
& \frac{d \sigma^{\gamma} \gamma_{i n} \gamma_{e l}}{d y_{1} d y_{2} d^{2} p_{t}}=\frac{1}{16 \pi^{2} \hat{s}^{2}} x_{1} \gamma_{i n}\left(x_{1}, \mu^{2}\right) x_{2} \gamma_{e l}\left(x_{2}, \mu^{2}\right) \overline{\left|\mathcal{M}_{\gamma \gamma \rightarrow}+W^{-}\right|^{2}} \\
& \frac{d \sigma^{\gamma}{ }^{2} \gamma_{i n}}{d y_{1} d y_{2} d^{2} p_{t}}=\frac{1}{16 \pi^{2} \hat{s}^{2}} x_{1} \gamma_{e l}\left(x_{1}, \mu^{2}\right) x_{2} \gamma_{i n}\left(x_{2}, \mu^{2}\right) \overline{\left|\mathcal{M}_{\gamma \gamma \rightarrow W+}\right|^{2}} \\
& \frac{d \sigma^{\gamma}{ }^{\prime} \gamma_{e l}}{d y_{1} d y_{2} d^{2} p_{t}}=\frac{1}{16 \pi^{2} \hat{s}^{2}} x_{1} \gamma_{e l}\left(x_{1}, \mu^{2}\right) x_{2} \gamma_{e l}\left(x_{2}, \mu^{2}\right) \overline{\left.\mathcal{M}_{\gamma \gamma \rightarrow W+}\right|^{2}}
\end{aligned}
$$

The elastic photon fluxes are calculated using the Drees-Zeppenfeld parametrization, where a simple parametrization of nucleon electromagnetic form factors was used

Naive approach to photon flux

- the photon distribution in the proton is a convolution of the distribution of quarks in the proton and the distribution of photons in the quarks/antiquarks

$$
f_{\gamma / p}=f_{q} \otimes f_{\gamma / q}
$$

which can be written mathematically as

$$
x f_{\gamma / p}(x)=\sum_{q} \int_{x}^{1} d x_{q} f_{q}\left(x_{q}, \mu^{2}\right) e_{q}^{2}\left(\frac{x}{x_{q}}\right) f_{\gamma / q}\left(\frac{x}{x_{q}}, Q_{1}^{2}, Q_{2}^{2}\right)
$$

Naive approach to photon flux

- the flux of photons in a quark/antiquark was parametrized as:

$$
f_{\gamma}(z)=\frac{\alpha_{e m}}{2 \pi} \frac{1+(1-z)^{2}}{2} \log \left(\frac{Q_{1}^{2}}{Q_{2}^{2}}\right)
$$

- the choice of scales:

$$
\begin{aligned}
Q_{1}^{2} & =\max \left(\hat{s} / 4-m_{W}^{2}, 1^{2}\right) \\
Q_{2}^{2} & =1^{2} \\
\mu^{2} & =\hat{s} / 4
\end{aligned}
$$

Resolved photons

For completness we include also the following processes

Resolved photons

- extra photon remnant debris (called $X_{\gamma, 1}$ or $X_{\gamma, 2}$ in the figure) appears in addition
- the "photonic" quark/antiquark distributions in a proton must be calculated as the convolution:

$$
f_{q / p}^{\gamma}=f_{\gamma / p} \otimes f_{q / \gamma}
$$

which mathematically means:

$$
x f_{q / p}^{\gamma}(x)=\int_{x}^{1} d x_{\gamma} f_{\gamma / p}\left(x_{\gamma}, \mu_{s}^{2}\right)\left(\frac{x}{x_{\gamma}}\right) f\left(\frac{x}{x_{\gamma}}, \mu_{h}^{2}\right) .
$$

Technically first $f_{\gamma / p}$ in the proton is prepared on a dense grid for $\mu_{s}^{2} \sim 1 \mathrm{GeV}^{2}$ (virtuality of the photon) and then used in the convolution formula. The second scale is evidently hard $\mu_{h}^{2} \sim M_{W W}^{2}$. The new quark/antiquark distributions of photonic origin are used to calculate cross section as for the standard quark-antiquark annihilation subprocess.

Single diffractive production of $W^{+} W^{-}$pairs

If we study processes with rapidity gap extra gap survival factor must be included!

Single diffractive production of $W^{+} W^{-}$pairs

- apply the resolved pomeron approach
- one assumes that the Pomeron has a well defined partonic structure, and that the hard process takes place in a Pomeron-proton or proton-Pomeron (single diffraction) or Pomeron-Pomeron (central diffraction) processes.

$$
\begin{gathered}
\frac{d \sigma_{S D}}{d y_{1} d y_{2} d p_{t}^{2}}=K \frac{|M|^{2}}{16 \pi^{2} \hat{s}^{2}}\left[\left(x_{1} q_{f}^{D}\left(x_{1}, \mu^{2}\right) x_{2} \bar{q}_{f}\left(x_{2}, \mu^{2}\right)\right)\right. \\
\left.+\left(x_{1} \bar{q}_{f}^{D}\left(x_{1}, \mu^{2}\right) x_{2} q_{f}\left(x_{2}, \mu^{2}\right)\right)\right] \\
\left.+\left(x_{1} \bar{q}_{f}^{D}\left(x_{1}, \mu^{2}\right) x_{2} q_{f}^{D}\left(x_{2}, \mu^{2}\right)\right)\right]
\end{gathered}
$$

The matrix element squared for the $q \bar{q} \rightarrow W^{+} W^{-}$process is the same as previously for non-diffractive processes

Plan of the talk

Formalism

The 'diffractive' quark distribution of flavour f can be obtained by a convolution of the flux of Pomerons $f_{\mathbf{P}}\left(x_{\mathbf{P}}\right)$ and the parton distribution in the Pomeron $q_{f} / \mathbf{P}\left(\beta, \mu^{2}\right)$:
$q_{f}^{D}\left(x, \mu^{2}\right)=\int d x_{\mathbf{p}} d \beta \delta\left(x-x_{\mathbf{p}} \beta\right) q_{f / \mathbf{p}}\left(\beta, \mu^{2}\right) f_{\mathbf{p}}\left(x_{\mathbf{p}}\right)=\int_{x}^{1} \frac{d x_{\mathbf{p}}}{x_{\mathbf{p}}} f_{\mathbf{p}}\left(x_{\mathbf{p}}\right) q_{f / \mathbf{p}}\left(\frac{x}{x_{\mathbf{p}}}, \mu^{2}\right)$.

The flux of Pomerons $f_{\mathbf{P}}\left(x_{\mathbf{P}}\right)$:

$$
f_{\mathbf{p}}\left(x_{\mathbf{p}}\right)=\int_{t_{\min }}^{t_{\max }} d t f\left(x_{\mathbf{p}}, t\right)
$$

with $t_{\text {min }}, t_{\text {max }}$ being kinematic boundaries.
Both pomeron flux factors $f_{\mathbf{p}}\left(x_{\mathbf{p}}, t\right)$ as well as quark/antiquark distributions in the pomeron were taken from the H 1 collaboration analysis of diffractive structure function at HERA.

Plan of the talk

Results

Plan of the talk

Results

Plan of the talk

Results

Plan of the talk

Results

Plan of the talk

Results

Results

Contributions of different subleading processes to the total cross section (pb)

contribution	1.96 TeV	7 TeV	8 TeV	14 TeV	comment
CDF	12.1 pb				
D0	13.8 pb	54.4 pb			large extrapolation large extrapolation
ATLAS		51.1 pb			dominant (LO, NLO)
CMS		27.24	33.04	70.21	subdominant (NLO)
$q \bar{q}$	9.86	1.48	1.97	5.87	new, anomalous $\gamma \gamma W W$
$g g$	5.1710^{-2}	3.0710^{-3}	4.4110^{-2}	5.4010^{-2}	1.1610^{-1}
$\gamma_{e l} \gamma_{e l}$	1.0810^{-2}	1.4010^{-1}	1.7110^{-1}	3.7110^{-1}	new, anomalous $\gamma \gamma W W$
$\gamma_{e l} \gamma_{i n}$	1.0810^{-2}	1.4010^{-1}	1.7110^{-1}	3.7110^{-1}	new, anomalous $\gamma \gamma W W$
$\gamma_{i n} \gamma_{e l}$	3.7210^{-2}	4.4610^{-1}	5.4710^{-1}	1.19	anomalous $\gamma \gamma W W$
$\gamma_{i n} \gamma_{i n}$	1.0410^{-4}	2.9410^{-3}	3.8310^{-3}	1.0310^{-2}	new, quite sizeable
$\gamma_{e l}$, res $-q / \bar{q}$	1.0410^{-4}	2.9410^{-3}	3.8310^{-3}	1.0310^{-2}	new, quite sizeable
$q / \bar{q}-\gamma_{e l} . r e s$				new, quite sizeable	
$\gamma_{i n, \text { res }}-q / \bar{q}$				new, quite sizeable	
$q / \bar{q}-\gamma_{i n . r e s}$			0.11		0.40
double scattering $(++)$	0.5710^{-2}	0.14	not included in NLO studies		
$\mathbf{P p}$	2.8210^{-2}	9.8810^{-1}	1.27	3.35	new, relatively small
$p \mathbf{P}$	2.8210^{-2}	9.8810^{-1}	1.27	3.35	new, relatively small
$\mathbf{R p}$	4.5110^{-2}	7.1210^{-1}	8.9210^{-1}	2.22	new, relatively small
$p \mathbf{R}$	4.5110^{-2}	7.1210^{-1}	8.9210^{-1}	2.22	new, relatively small

Conclusions

- Large contribution of photon induced processes
- Inelastic-inelastic photon-photon contribution large when photon treated as parton in the nucleon
- Resolved photon contribution are rather small
- Diffractive production with rapidity gap interesting by itself (could be measured ?)
- Diffractive contribution to inclusive cross section unclear
- In the future we have to include decays of W bosons

