Exploring the Structure of the Proton

Jerome I. Friedman MIT

SLAC Starts Operation in 1966

- CIT-MIT-SLAC Collaboration designed and constructed spectrometer complex to study structure of proton, utilizing ELASTIC SCATTERING
- Electron ideal probe:
 - Structure known: "point particle"
 - Interaction understood: QED

In 1950's, Hofstadter used Elastic e-p scattering to measure the proton's form factor & r.m.s. radius

What were the models of the proton at that time?

- Nuclear Democracy Bootstrap Model
 The S Matrix era "Old Physics"
- Quark Model of Gell-Mann & Zweig

 – Quarks are the building blocks of the highly successful SU(3) classification scheme

"OLD PHYSICS"

NUCLEAR DEMOCRACY BOOTSTRAP MODEL Particles are composites of one another

> $p = \pi^+ + n +$ $n = \pi^- + p +$

Particles have diffuse substructures and no elementary building blocks

OUARK MODEL (1964)

* 3 TYPES <u>UP</u>, <u>DOWN</u>, <u>STRANGE</u> **SPIN** 1/2 *

*** FRACTIONAL CHARGES**

up(+2/3), down(-1/3), strange(-1/3)

p = (u,u,d) n = (d,d,u)

Are Quarks Real?

MANY UNSUCCESSFUL SEARCHES

 Accelerators, Cosmic rays, Terrestrial environment Sea water, Meteorites, Air, etc.

FRACTIONAL CHARGES

- Considered by many to be unreasonable

<u>GENERAL POINT OF VIEW IN 1966</u> Quarks most likely just mathematical representations Useful but NOT real !

Particles have diffuse substructures and no elementary building blocks

Implausibility of Quark Model

"...the idea that mesons and baryons are made primarily of quarks is hard to believe.."

M. Gell-Mann 1966

"Additional data are necessary and very welcome to destroy the picture of elementary constituents."

J. Bjorken 1967

"I think Professor Bjorken and I constructed the sum rules in the hope of destroying the quark model."

K. Gottfried 1967

" Of course the whole quark idea is ill founded."

J.J. Kokkedee 1969

Stanford Linear Accelerator

SLAC Magnetic Spectrometers

Magnetic Form Factor of Proton

Extended earlier measurements at CEA & DESY

1967 MIT-SLAC begins Inelastic Program $e + p \Rightarrow e + Anything$

Inelastic vs. Elastic Scattering

- Elastic scattering provides information about the charge and magnetic moment distributions averaged over time
- Inelastic scattering can provide a "snapshot" of the structure $\Delta t \approx h/\Delta E$

 ΔE is energy lost by electron.

 $\Delta E = 2 \text{ GeV} \qquad \Delta t = 3 \times 10^{-25} \text{ SeC}$

for $\mathbf{v} \approx \mathbf{c}$

motion during "snapshot" is

≈ 10⁻¹⁴ cm.

DEEP INELASTIC SCATTERING REQUIRED FOR LARGE $\triangle E$

MIT - SLAC Group

W.B. Atwood	C.L. Jordan
E.D. Bloom	H.W. Kendall
A. Bodek	<u>M. Mestayer</u>
M. Breidenbach	<u>G. Miller</u>
C. Buschhorn	L.Mo
R.L.A. Cottrell	H. Piel
D. Coward	J.S. Poucher
H. DeStaebler	<u>M. Riordan</u>
<u>R. Ditzler</u>	D. Sherden
J. Drees	M. Sogard
J. Elias	S. Stein
J.I. Friedman	R.E. Taylor
G. Hartmann	R. Verdier

Two Major Surprises

Bjorken Scaling of Structure Functions

Weak q² dependence of cross sections

Bjorken Scaling

Experimental Test of Scaling

Test of Scaling 2

Comparison of e-Carbon & e-p Scattering

e-p Cross-sections divided by Mott Cross-section

<u>Non-Constituent</u> <u>Models proposed</u> to explain Scaling

"OLD PHYSICS"

Vector Dominance Resonance Models { Veneziano N's and Δ 's Regge Poles Diffraction Models

0.50 0.45 Q2 5 5' 5' CeA 0.40 ≥ 2.0 GeV 0.35 P 0.30 ≥W2P 0.25 0.20 0.15 101 - A. 0.10 0.05 Ο 0.45 0.40 0.35 0.30 ₽W2 0.25 0.20 0.15 A a lat a bar a bar a bar 0.10 0.05 Ο 0.70 d 0.60 0.50 ₽₩Ź 0.40 0.30 0.20 0.10 Ο 0.2 Ο 0.4 0.8 0.6 1.0 9**79999**99 Х

Scaling Observed in Deuteron and Neutron Scattering

n/p Scattering

COMPARISON	OF	O_n/O_p
		1 1

WITH MODELS

Model	σ_n/σ_p at x $pprox$ 0.85
Diffraction	1
Resonance	~ 0.7
Regge	~ 0.6
Duality	0.47
Parton (Bare Nucleon +	0.10 Pions)
Quark	≥0.25
Experiment	0.30±.03

- Many attempts were made to use "Old Physics" models to explain results without success.
- But <u>Quark model</u> was not regarded as valid by most physicists.

?

- Theoretical contribution that helped resolve puzzle:
 - R. Feynman -- Parton Model

Parton Model (Feynman 1968)

- 1) Electrons scatter from bound constituents (partons)
- 2) Partons recoil and interact internally, producing known particles, π' s, K 's, etc.
- 3) If partons are point-like, F_2 and F_1 scale in X = q²/2Mv = 1/ ω
- 4) Scaling variable x is fractional momentum of struck Parton
- 5) $F_2(x)$ is related to momentum distribution of Partons in proton

If Partons are Quarks

1) They must be spin 1/2 particles

2) They must have fractional charges consistent with the quark model

SEPARATION OF W_1 AND W_2

Requires Measurements of cross sections at constant W and q^2 (vary E, E', θ)

$$R = \frac{W_2}{W_1} (1 + \frac{v^2}{q^2}) - 1 \qquad R = \sigma_L / \sigma_T$$

PARTON MODEL :Callan -GrossSpin $\frac{1}{2}$ $R \rightarrow 0$ as $\nu \rightarrow \infty$ $F_2 = 2xF_1$

Comparisons of forward and backward scattering answered the question: What is the the spin of the partons?

$F_{2}(x) \text{ Sum Rule Provided Information about} \\ Parton Charges \\ \int_{\omega^{2}}^{\infty} \frac{\omega W_{2}}{\omega^{2}} d\omega = \int_{z}^{1} F_{z}(x) dx = \langle Q^{2} \rangle_{AVG}^{*} \begin{pmatrix} Fraction of \\ Nucleon's \\ Momentum \\ Carried by \\ Partons \end{pmatrix}$

If Partons are Quarks

Experiment \Rightarrow 0.14 \pm .006

CONCLUSION: CONSISTENT WITH QUARK MODEL IF

- * QUARKS CARRY 1/2 MOMENTUM
- * GLUONS CARRY OTHER HALF

Do Partons have Fractional Charges (+2/3, -1/3)?

- Comparisons of Electron Scattering and Neutrino Scattering provided the answer.
- First results came from Large Heavy Liquid Bubble Chamber "Gargamelle" (1971-1974)

EARLY NEUTRINO AND ANTI - NEUTRINO RESULTS

CERN -- Large Heavy - Liquid Bubble Chamber -

"Gargamelle " (1971 - 74)

- Observed neutrino and anti-neutrino scattering probability increased linearly with energy
 - ** confirmed existence of "point-like" constituents
- 2) Comparisons of electron and neutrino scattering
 - ** confirmed fractional charges of constituents

STRONG VALIDATION OF QUARK MODEL

GARGAMELLE

5 meters

12000 liters of Freon

Neutrino and Anti-neutrino Scattering

Linear rise of scattering cross sections confirmed point-like constituents in proton and neutron

Comparison of electron & neutrino scattering in the quark model (1972-1974) $\int [F_{2}^{\nu n}(x) + F_{2}^{\nu p}(x)] dx$ $\int [F_2^{en}(x) + F_2^{ep}(x)]dx$ $=\frac{2}{(Q_{\mu}^{2}+Q_{d}^{2})}$ $=\frac{2}{(2/3)^2+(1/3)^2}$ = 3.6 Experimental Value (MIT-SLAC, CERN) = 3.4 ± 0.7

VALIDATION OF QUARK MODEL

OTHER NEUTRINO RESULTS

*
$$\frac{1}{2} \int \left[F_2^{\nu p}(x) + F_2^{\nu n}(x) \right] dx = \begin{pmatrix} \text{Total Fraction of} \\ \text{Nucleon's Momentum} \\ \text{carried by Quarks} \end{pmatrix}$$

Experimental Value (Gargamelle) = 0.49 ±.07

Half of Momentum carried by Quarks as suggested by Electron Scattering results

*
$$\frac{1}{2}\int [F_3^{\nu p}(x) + F_3^{\nu n}(x)] dx =$$
Number of
Valence Quarks
= 3

Experimental Value (Gargamelle) = 3.2 ±0.6 Consistent with Quark Model

Partons are Quarks

- Constituents have spin 1/2
- Constituents have fractional charges consistent with quark model --- from electron and neutrino sum rules

Model of Nucleon

- (1) 3 valence quarks ----- p(uud), n(ddu)
- (2) quark-antiquark sea ---- vacuum polarization
- (3) Gluons ----- neutral particles responsible for binding quarks that carry 1/2 of nucleon's momentum