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‣ LHC was incredibly successful at 7 & 8 TeV

‣ Everything SM like (including Higgs)
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Vacuum stability in the SM at NNLO requires Degrassi et al; Bezrukov et al; 
Alekhin, Djouadi, Moch; Masina 
(2012)
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perturbative partonic cross-section

non-perturbative parton distributions

d� =
X

ab

Z
dxa
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dxb fa(xa, µ
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F ) ⇥ d�̂ab(xa, xb, Q

2
,↵s(µ

2
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d�̂ = ↵n
s d�̂(0) + ↵n+1

s d�̂(1) + ...Partonic cross-section: expansion in ↵s(µ
2
R) ⌧ 1

‣ In the LHC era, QCD is everywhere!

a

b

H, �, Z,W

jet

‣ Require precision for perturbative and non-perturbative contribution
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set H.O. data uncertainty HQ Comments

MSTW 
2008

NNLO DIS+DY+Jets 0.1171 Hessian (dynamical 
tolerance)

GM-VFN
(ACOT+TR’) old HERA DIS

CT10 NNLO DIS+DY+Jets 0.118 Hessian (dynamical 
tolerance)

GM-VFN
(SACOT-X)

New HERA 
DIS

NNPDF NNLO
DIS+DY+Jets

+LHC 0.1174 Monte Carlo
GM-VFN
(FONLL)

New HERA 
DIS

ABKM NNLO
DIS+DY(f.t.)

+DY-tT(LHC) 0.1132 Hessian 
FFN

BMSN
New HERA 

DIS

(G)JR NNLO
DIS+DY(f.t.)+

some jet 0.1124 Hessian 
FFN
(VFN 

massless)

valence like 
input pdfs

HERA 
PDF

NNLO
only DIS 
HERA 0.1176 Hessian 

GM-VFN
(ACOT+TR’)

Latest HERA 
DIS

↵s(MZ)@NNLO

PDFs

‣ Several groups provide pdf fits + uncertainties

‣ Differ by: data input, TH/bias, HQ treatment, coupling, etc
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‣ Several groups provide pdf fits + uncertainties
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up to 5% ! >15% in Higgs cross section
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Figure 6: The gluon-gluon (upper plots) and quark-gluon (lower plots) luminosities, Eq. (2), for
the production of a final state of invariant mass MX (in GeV) at LHC 8 TeV. The left plots show
the comparison between NNPDF2.3, CT10 and MSTW08, while in the right plots we compare
NNPDF2.3, HERAPDF1.5 and MSTW08. All luminosities are computed at a common value of
αs = 0.118.
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↵s = 0.118

Lij(⌧ ⌘ M

2
X/S) =

1

S

Z 1

⌧

dx

x

fi(x,M
2
X)fj(⌧/x,M

2
X)

‣ Good agreement for global fits but deviations as large as uncertainties
‣ Larger differences with “non-global” results
‣ 2x larger uncertainties for gluon 

R. Ball et al (2013)

gluon-gluon
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an overall, a-priori unknown correlation coefficient is
introduced and determined by requiring that the total
χ2/d.o. f . of the combination equals unity. In both cases,
the resulting final overall uncertainty of the central value
of αs is larger than the initial estimate of a Gaussian er-
ror.

This procedure is only meaningful if the individual
measurements are known not to be correlated to large
degrees, i.e. if they are not - for instance - based on
the same input data, and if the input values are largely
compatible with each other and with the resulting cen-
tral value, within their assigned uncertainties. The list
of selected individual measurements discussed above,
however, violates both these requirements: there are
several measurements based on (partly or fully) iden-
tical data sets, and there are results which apparently do
not agree with others and/or with the resulting central
value, within their assigned individual uncertainty. Ex-
amples for the first case are results from the hadronic
width of the τ lepton, from DIS processes and from jets
and event shapes in e+e− final states. An example of the
second case is the apparent disagreement between re-
sults from the τ width and those from DIS [25] or from
Thrust distributions in e+e− annihilation [39].

Due to these obstacles, we have chosen to determine
pre-averages for each class of measurements, and then
to combine those to the final world average value of
αs(MZ), using the methods of error treatment as just de-
scribed. The five pre-averages are summarized in Fig. 2;
we recall that these are exclusively obtained from ex-
tractions which are based on (at least) full NNLO QCD
predictions, and are published in peer-reviewed journals
at the time of completing this review. From these, the
new central and world average value of

αs(MZ) = 0.1184 ± 0.0007 , (3)

is determined, with an uncertainty of well below 1 %.4
This world average value is - in spite of several new
contributions to this determination - identical to and
thus, in excellent agreement with the 2009 result [5, 6].
For convenience, we also provide corresponding val-
ues for ΛMS suitable for use with the common Λ-
parametrisation of αs, see e.g. Eq. 6 in [5]:

Λ
(5)
MS

= (213 ± 8) MeV , (4)

Λ
(4)
MS

= (296 ± 10) MeV , (5)

4The weighted average, treating all inputs as uncorrelated mea-
surements with Gaussian errors, results in αs(MZ) = 0.11844 ±
0.00059 with χ2/d.o.f. = 3.2/4. Requiring χ2/d.o.f. to reach unity
leads to a common correlation factor of 0.19 which increases the over-
all error to 0.00072.

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 2: Summary of values of αs(MZ)) obtained for various sub-
classes of measurements (see Fig. 1 (a) to (d)). The new central and
world average value of αs(MZ) = 0.1184 ± 0.0007 is indicated by the
dashed line and the shaded band. Figure taken from [1].

Λ
(3)
MS

= (339 ± 10) MeV , (6)

for Nf = 5, 4 and 3 quark flavors, respectively.
In order to verify the consistency and stability of the

new result, we give each of the averages obtained when
leaving out one of the five input values:

αs(MZ) = 0.1182 ± 0.0007 (w/o τ results),
αs(MZ) = 0.1183 ± 0.0012 (w/o lattice),
αs(MZ) = 0.1187 ± 0.0009 (w/o DIS),
αs(MZ) = 0.1185 ± 0.0006 (w/o e+e−), and
αs(MZ) = 0.1184 ± 0.0006 (w/o e.w. prec. fit).

They are well within the error of the overall world av-
erage quoted above. Most notably, the result from lat-
tice calculations, which has the smallest assigned error,
agrees well with the exclusive average of the other re-
sults. However, it largely determines the size of the
(small) overall uncertainty.

There are apparent systematic differences between
the various structure function results, and also between
the new result from Thrust in e+e− annihilation and the
other determinations. Expressing this in terms of a χ2

between a given measurement and the world average as
obtained when excluding that particular measurement,
the largest values are χ2 = 12.6 and χ2 = 16.1, cor-
responding to 3.5 and 4.0 standard deviations, for the
measurements of [26] and [39], respectively. We note
that such and other differences have been extensively
discussed at a recent workshop on measurements of αs,
however none of the explanations proposed so far have
obtained enough of a consensus to definitely resolve
these tensions [43].

5

•DIS (PDFS) not well covered : some experiments pull value down

�s(MZ) = 0.1184± 0.0007PDG S. Bethke

‣ One main issue is the coupling constant

•Optimistic value for the uncertainty at the LHC
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•DIS (PDFS) not well covered : some experiments pull value down

�s(MZ) = 0.1184± 0.0007PDG S. Bethke

‣ One main issue is the coupling constant

•Optimistic value for the uncertainty at the LHC

PDF4LHC recommendation

‣ Compute pdfs uncertainties using MSTW & CT & NNPDF (68%cl)
‣ Obtain the envelope of all bands and use

±0.0012 (±0.002) at 68% (90%) c.l.��s(MZ) =

‣ Precise LHC data will have important effect on validation & improvement
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NLO

NNLO
PS

Resummation

Automation

The perturbative toolkit for precision at colliders
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The NLO revolution

‣ Accurate Theoretical Predictions         
      shape and normalization
      first error estimate

‣ Large Corrections : check PT
‣ Opening of new channels
‣ Effect of extra radiation
       jet algorithm dependence  

Higgs

Why NLO?

Amazing progress in the last few years
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Large multiplicities 
relevant for LHC

  Enormous progress in getting NLO predictions for 
2�(4,5,6!) processes over the last years 

  Made possible by   
  Improved techniques for loop amplitudes 
  Crucial: a high level of automation 

Brookhaven Forum 2013 5 Aude Gehrmann-De Ridder 

NLO Multi-parton production  
One-loop calculations

✤ These developments of one-loop technology lead to  
a serious accomplishment -- NLO QCD predictions 
are now available for major collider processes,  
making rich phenomenology possible 

✤ multiple jets ( up to 4)

✤ a gauge boson and up to 5 (!) jets

✤ multiple gauge bosons in association with up to 
2 jets ( up to VV+2jets)

✤ top quarks in association with jets (up to two) 
and gauge photons (W,Z,photon)

✤ Higgs and up to two jets

  

Progress with NLO computations

● In the past three-four years, dramatic developments occurred in the field of next-to-leading 
order calculations for the LHC.  We were so successful, that the famous NLO wish-list has 
been officially closed by Joey Huston as of May 2012

NLO predictions are currently available  for 
major production channels: 

 1) multiple jets (up to 4 jets )

2)  a gauge boson and up to 5 jets

3) multiple gauge bosons in association with 
jets ( up to VV + 2j)

4)  top quarks in association with jets (up to 
two) and gauge bosons (W,Z, photon)

5) Higgs and jets

Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, Bern, Dixon, Kosower, Berger, Forde, Maitre, Febres-Cordero, 

Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, Gleisberg, Papadopoulos, Ossola, Pittau, Czakon, Worek, 
Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, Bevilacqua, Ellis, Kunszt, Giele, Zanderighi, Melia, Rountsh, 

Denner, Dittmaier, Pozzorini, KallweitDenner, Dittmaier, Pozzorini, Kallweit

C
L
O
S
E
D

Wednesday, March 20, 13

K. Melnikov,  MITP, 2013 
 

13 2012:  NLO  W+5j [BlackHat, preliminary] [unitarity] 

G. Salam, La Thuile 2012 
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+
X

i

ai+
X

i

bi+
X

i

ci=
X

i

di +
x

y

Bottleneck in the virtual contribution : large multiplicities

Revolution in calculation of 1-loop amplitudes

Feynmanian approach

 Improvements in decomposition and reduction
Denner, Dittmaier; Pozzorini; Binoth, Guillet, Heinrich, Pilon, Schubert + many others

Unitarian approach

 Use multi-particle cuts from generalized unitarity 
Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Mastrolia; Forde; 
Badger; Ellis, Giele, Kunszt, Melnikov + many others

OPP Ossola, Papadopoulos, Pittau decomposition at the integrand level

9
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NLO scale dependence
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LO scale dependence

pT
jet  >  25 GeV,  | ηjet |  <  3 

ET
e   >  20 GeV,   | ηe |   <  2.5

ET
ν  > 20 GeV,   MT

W  > 20 GeV

R   =   0.5   [anti-kT]

√
%
s   =  7 TeVµR  =  µF  =  HT

^ ’  / 2 W- + 5 jets + X

FIG. 6: The pT distributions of the leading five jets in W− + 5-jet production at the LHC at
√
s = 7 TeV. In the upper panels, the NLO predictions are shown as solid (black) lines, while

the LO predictions are shown as dashed (blue) lines. The lower panels show the predictions for

the LO distribution and scale-dependence bands normalized to the NLO prediction (at the scale

µ = Ĥ ′
T/2). The LO distribution is the dashed (blue) line, and the scale-dependence bands are

shaded (gray) for NLO and cross-hatched (brown) for LO.

for W± + n-jet to W± + (n−1)-jet production. The charge-asymmetry ratios are all sig-

nificantly greater than unity, and grow with increasing numbers of jets. The jet-production

ratios are of order 1/4, and decrease with increasing numbers of jets. The NLO corrections

to the charge-asymmetry are quite small, and the corrections to the jet-production ratios

are modest but noticeable.

These values of the charge-asymmetry ratio reflect the excess of up quarks over down

quarks in the proton. The W+ bosons are necessarily emitted by up-type quarks, whereas

− bosons are emitted by down-type quarks. The up-quark excess in the proton then leads

to larger W+ cross sections. As the number of jets increases, production of a W requires a

larger value of the momentum fraction x. This alters the mix of subprocesses that contribute
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FIG. 2: Sample nine-point real-emission diagrams for the processes qg → Wq′ggggg and qq̄′ →

W Q1ggQ2Q̄2Q̄1, followed by the decay of the W boson to leptons.

In this paper, we compute the total cross sections at NLO for inclusive W+ + n-jet

and W− + n-jet production with n ≤ 5 and describe W+/W− ratios and W + n-jet/W+

(n−1)-jet ratios. Such ratios can be sensitive probes of new physics. We also study two

types of distributions: the differential cross section in the total hadronic transverse energy

H jets
T =

∑

j∈jets p
j
T, and the complete set of differential cross sections in the jet transverse

momenta. For four and five jets we make use of a leading-color approximation for the virtual

contributions. This approximation has been shown to have subleading-color corrections of

under 3% for processes with four or fewer associated jets [22, 43].

This paper is organized as follows. In section II we summarize the basic setup of the

computation. In section III we present our results for cross sections, ratios and distributions.

We give our summary and conclusions in section IV.
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A very recent example : W+5 jets !! BlackHat Collaboration, Z.Bern et al

2 ! 8 2 ! 7Real SHERPA Virtual BlackHat

µR = µF =
Ĥ 0

T

2
⌘ 1

2

X

m

pmT + EW
TDynamical Scale choice

‣ Dramatic reduction in 
scale dependence (~20%)

‣ Up to 50% correction 
(non-trivial in shape)
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‣ Better stability

‣NLO in very good
 agreement with data!

Multi-jet production
Njet+Sherpa (Badger, Biedermann, Uwer, Yundin) pp ! 5 jets atNLO

11

4

FIG. 1. Same as Fig. 2 but using the NLO setup in LO.

the two bands, LO and NLO, nicely overlap. Note however
that we have used the NLO setup in the leading order calcu-
lation. In particular the NLO PDFs with the corresponding as
are employed. In Fig. 2 we show the scale dependence using
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x, µR = x bHT
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�
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NJet + Sherpa
pp ! 5 jet at 7 TeV
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NLO

FIG. 2. Residual scale dependence of the 5-jet cross section in lead-
ing and next-to-leading order.

in the leading order prediction LO PDFs with the respective
as. Compared to Fig. 1 we observe in Fig. 2 a much larger dif-
ference between the LO and NLO prediction. To some extend
the difference is due to the change in as. Similar to what has
been found in Ref. [6] we conclude that using the NLO PDFs
in the LO predictions gives a better approximation to the full
result compared to using LO PDFs.

Although not a physical observable it is interesting to ask
how the different partonic channels contribute to the inclusive
5-jet rate. Ignoring different quark flavours we distinguish
nine partonic channels in LO:

gg ! 5g, gg ! qq+3g, qg ! q+4g,
qq ! 5g, gg ! 4q+g, qg ! 3q+2g,
qq ! qq+3g, qg ! 5q, qq ! 4q+g,

where q may be any quark or anti-quark with exception of the
top-quark i.e. qq = {uu,uū,ud,ud̄, . . .}. In Tab. I the indi-
vidual contribution of each channel is presented. The most

TABLE I. Contribution of individual partonic channels.

qg ! q+4g 39.2%
gg ! 5g 27.3%
qq ! 2q+3g 13.5%
qg ! 3q+2g 9.0%
gg ! 2q+3g 8.5%
qq ! 4q+g 1.8%
gg ! 4q+g 0.5%
qg ! 5q 0.2%
qq ! 5g 0.04%

important contribution is provided by the qg initial state. Al-
most 50% of the cross section can be attributed to this chan-
nel. This is a consequence of the large parton luminosity in
combination with the sizeable cross sections. Among the qg
initiated reactions the qg ! q+4g channel is with about 40%
of the cross section the most important process. Replacing
the quark line in this process by a gluon will still lead to large
partonic cross sections. However the gg parton flux is reduced
compared to the qg initial state. As a consequence the purely
gluonic reaction leads to a slightly smaller contribution and is
responsible for about 25% of the cross section. The composi-
tion of the cross section may provide useful information when
jet rates are used to constrain the PDFs. Since the luminosity
functions

Li j(ŝ,shad,µ f ) =
1

shad

shadZ

ŝ

ds
s

Fi/p

⇣
µ f ,

s
shad

⌘
Fj/p

⇣
µ f ,

ŝ
s

⌘
(8)

depend on the partonic centre-of-mass energy, the composi-
tion may be different for different kinematical configurations.
We come back to this point when we discuss differential dis-
tributions.

In Tab. II we show for completeness the cross sections for
two, three and four-jet production as calculated with NJET
using the same setup as in the five jet case. The real correc-
tions to five-jet production allow us to calculate also the cross
section for six jet production, however only in leading order
QCD. The result is given by

3

ds̄V
n denotes the finite part of the virtual corrections, ds̄I

n the
finite part of the integrated subtraction terms together with the
contribution from the factorization and dsRS

n+1 the real cor-
rections combined with the subtraction terms. For the com-
putation of ds̄I

n and dsRS
n we use Sherpa which provides a

numerical implementation of the Catani-Seymour subtraction
scheme. The required tree-level amplitudes are, as in the LO
case, computed with Comix as part of the Sherpa framework.

The necessary one-loop matrix elements for the virtual cor-
rections ds̄V

n are evaluated with the publicly available NJET1

package [1]. NJET uses an on-shell generalized unitarity
framework [30–33] to compute multi-parton one-loop prim-
itive amplitudes from tree-level building blocks. An accu-
rate numerical implementation is achieved using the integrand
reduction procedure of OPP [34]. The algorithm is based
on the NGLUON library [11] following the description of D-
dimensional generalized unitarity presented in Refs. [35, 36]
and using Berends-Giele recursion [37] for efficient numer-
ical evaluation of tree-level amplitudes. For a more detailed
description of the employed methods and the usage of the pro-
gram, we refer to Refs. [1, 11]. The scalar loop integrals are
obtained via the QCDLOOP/FF PACKAGE [38, 39]. We note
that NJET is so far the only publicly available tool that is able
to compute all one-loop seven-point matrix-elements that con-
tribute to five-jet production in hadronic collisions. For refer-
ence numerical evaluations of the one-loop matrix elements at
a single phase-space point have been presented previously [1].

III. RESULTS FOR 5-JET PRODUCTION AT THE LHC AT
7 AND 8 TEV

A. Numerical setup

As mentioned earlier we use the Sherpa Monte-Carlo event
generator [26] to handle phase-space integration and gen-
eration of tree-level and Catani-Seymour dipole subtraction
terms using the colour dressed formalism implemented in
Comix [27, 28]. The virtual matrix elements are interfaced
using the Binoth Les Houches Accord [40, 41].

To combine partons into jets we use the anti-kt jet clustering
algorithm as implemented in FASTJET [42, 43]. Furthermore
asymmetric cuts on the jets ordered in transverse momenta,
pT , are applied to match the ATLAS multi-jet measurements
[7]:

p j1
T > 80 GeV, p j�2

T > 60 GeV, R = 0.4. (6)

The PDFs are accessed through the LHAPDF interface
[44] with all central values using NNPDF2.1 [45] for LO
(as(MZ) = 0.119) and NNPDF2.3 [46] for NLO (as(MZ) =
0.118) if not mentioned otherwise.

Generated events are stored in Root Ntuple format [47]
which allows for flexible analysis. Renormalization and fac-
torization dependence can be re-weighted at the analysis level

1 To download NJET visit the project home page at
https://bitbucket.org/njet/njet/.

as well as the choice of PDF set. Since the event generation
of high multiplicity processes at NLO is computationally in-
tensive analysis of PDF uncertainties and scale choices would
be prohibitive without this technique.

B. Numerical results

In this section we present the numerical results for total
cross sections and selected2 distributions at centre-of-mass
energies of 7 and 8 TeV. Within the setup described in the
previous section we have chosen the renormalization and fac-
torization scales to be equal µr = µ f = µ and use a dynamical
scale based on the total transverse momentum bHT of the final
state partons:

bHT =
Nparton

Â
i=1

pparton
T,i . (7)

We then obtain the 5-jet cross section at 7 TeV,

µ s7TeV-LO
5 [nb] s7TeV-NLO

5 [nb]
bHT/2 0.699(0.004) 0.544(0.016)
bHT 0.419(0.002) 0.479(0.008)
bHT/4 1.228(0.006) 0.367(0.032)

where numerical integration errors are quoted in parentheses.
We show the values of the cross section at three values of the
renormalization scale, µ = x bHT/2 where x = 0.5,1,2. We ob-
serve significant reduction in the residual scale dependence
when including NLO corrections. Within the chosen scale
band, the LO predictions lie within a range of 0.810 nb while
at NLO the range is 0.177 nb. The analagous results at 8 TeV
are shown below.

µ s8TeV-LO
5 [nb] s8TeV-NLO

5 [nb]

bHT/2 1.044(0.006) 0.790(0.021)
bHT 0.631(0.004) 0.723(0.011)
bHT/4 1.814(0.010) 0.477(0.042)

In Fig. 1 the scale dependence of the leading order and next-
to-leading order cross section is illustrated. The dashed black
line indicates µ = bHT/2. The horizontal bands show the vari-
ation of the cross section for a scale variation between bHT/4
and bHT . The uncertainty due to scale variation is roughly
reduced by a factor of one third. Furthermore we see that
around µ = bHT/2 the NLO cross section is flat indicating that
µ = bHT/2 is a reasonable choice for the central scale. This is
further supported by the fact that for µ = bHT/2 the NLO cor-
rections are very small. It is also interesting to observe that

2 The complete set of results presented in this section together with ad-
ditional distributions for 7 and 8 TeV can be obtained from https://

bitbucket.org/njet/njet/wiki/Results/Physics.

5

µ s7TeV-NLO
2 [nb] s7TeV-NLO

3 [nb] s7TeV-NLO
4 [nb]

bHT /2 1175(3) 52.5(0.3) 5.65(0.07)

bHT 1046(2) 54.4(0.2) 5.36(0.04)

bHT /4 1295(4) 33.2(0.4) 3.72(0.12)

TABLE II. Results for two, three and four-jet production with the
same setup as in the five-jet case. All values in units of nb.

µ s7TeV-LO
6 [nb] s8TeV-LO

6 [nb]

bHT/2 0.0496(0.0005) 0.0844(0.0010)
bHT 0.0263(0.0003) 0.0452(0.0005)
bHT/4 0.0992(0.0011) 0.1673(0.0021)

where the NNPDF2.3 NLO PDF set with as = 0.118 has been
used. The jet rates have been measured recently by ATLAS
using the 7 TeV data set [7]. In Fig. 3 we show the data

102

103

104

105

106

�
(p

b)

NJet + Sherpa
pp ! jets at 7 TeV

LO

NLO
ATLAS data
CERN-PH-EP-2011-098

2 3 4 5 6
Inclusive Jet Multiplicity

1

2

T
he

or
y

/
da

ta

FIG. 3. Cross sections for 2-, 3-, 4-, 5- and 6-jet production in
leading and next-to-leading order as calculated with NJET as well
as results from ATLAS measurements [7]. All LO quantities use
NNPDF2.1 with as(MZ) = 0.119. NLO quantities use NNPDF2.3
with as(MZ) = 0.118, the 6-jet cross section is only avaiable LO
accuracy.

together with the theoretical predictions in leading and next-
to-leading order. In case of the six jet rate only LO results
are shown. In the lower plot the ratio of theoretical predic-
tions with respect to data is given. With exception of the two
jet cross section the inclusion of the NLO results improves
significantly the comparison with data. For the higher mul-
tiplicities where NLO predictions are available the ratio be-
tween theory and data is about 1.2�1.3. Given that inclusive

cross sections are intrinsically difficult to measure we con-
sider this agreement as remarkable good. In particular for
three-, four- and five-jet production the theoretical predictions
agree within the uncertainties with the data. One should also
keep in mind that a one per cent uncertainty of the collider en-
ergy may lead to sizeable changes in the cross sections. (For
example, the inclusive cross section for top-quark pair produc-
tion changes by about 3% when the energy is changed from
7 TeV to (7±0.07) TeV.) Instead of studying inclusive cross
sections it is useful to consider their ratios since many theo-
retical and experimental uncertainties (i.e. uncertainties due
to luminosity, scale dependence, PDF dependence etc.) may
cancel between numerator and denominator. In particular one
may consider

Rn =
s(n+1)-jet

sn-jet
. (9)

This quantity is in leading order proportional to the QCD cou-
pling as and can be used to determine the value of as from
jet rates. In Fig. 4 we show QCD predictions in NLO using

FIG. 4. Theoretical predictions for the jet ratios Rn compared with
recent ATLAS measurements [7]. Theoretical predictions are made
with the central values of the 4 listed PDF sets with NLO as running.
as(mZ) = 0.118 for NNPDF2.3, CT10 and ABM11 and as(mZ) =
0.120 for MSTW2008

different PDF sets together with the results from ATLAS. The
results obtained from NNPDF2.3 are also collected in Tab. III
where, in addition, the ratios at leading order (using the LO
setup with NNPDF2.1) are shown. In case of R3 and R4 per-
turbation theory seems to provide stable results. The leading
order and next-to-leading order values differ by less than 10%.
In addition NNPDF [46], CT10 [48] and MSTW08 [49] give
compatible predictions. ABM11 [50] gives slightly smaller
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FIG. 7. The pT distribution of the leading jet. Both LO and NLO use
the NNPDF2.3 PDF set with as(MZ) = 0.118

For simplicity we do not expand the double ratio in as. Since
the NLO corrections are moderate in size we do not expect
a significant change in the prediction—the difference is for-
mally of higher order in as. As can be see in Fig. 9, the nor-
malized rapidity distribution changes by less than 5% when
going from 7 to 8 TeV. For the transverse momentum dis-
tribution we expect a harder spectrum for 8 TeV centre-of-
mass energy compared to 7 TeV. This is indeed observed in
Fig. 10. The fact that for low transverse momenta the ratios
are below one is an effect of the normalization to the total
cross section. For 8 TeV the regions where the inclusive cross
section gets significant contributions is extended to larger pT
leading to a ratio below one when comparing with the 7 TeV
case. Using data for jet production may provide useful in-
put to constrain PDFs. In this context it is very interesting to
study the decomposition of the jet rates with respect to indi-
vidual partonic channels not only for inclusive quantities but
also for differential distributions. In Fig. 11 the decomposition
of the rapidity distribution of the leading jet is shown. As in
the inclusive case we restrict the discussion to leading order.
Evidently we find again that the qg ! q + 4g channel is the
most important channel followed by the pure gluonic chan-
nel. Since the rapidity distribution is only mildly affected by
the partonic centre-of-mass energy we do not expect a strong
dependence of the composition with respect to the rapidity.
Indeed as can be seen from Fig. 11 the decomposition shows
only a weak dependence on the rapidity. This information
can be used to define control samples, when using jet data to
constrain the parton luminosities. In Fig. 12 the analogous re-
sults for the transverse momentum distribution is presented.
In difference to the rapidity distribution a significant depen-

FIG. 8. The rapidity distribution of the leading jet. Both LO and
NLO use the NNPDF2.3 PDF set with as(MZ) = 0.118

dence of the decomposition as function of the transverse mo-
mentum is visible. While at small transverse momentum the
gg ! 5g dominates over qq ! 2q + 3g the situation changes
at about 300 GeV and the qq ! 2q+3g becomes more impor-
tant than gg ! 5g. This behaviour is a direct consequence of
the fact that at high partonic centre-of-mass energy the quark
luminosity Lqq̄ dominates over the gluon flux Lgg. A simi-
lar pattern, although less pronounced, can also be observed in
the qq ! 5g and gg ! 4q + 1g channels. A cut in the trans-
verse momentum can thus be used to change the mixture of
the individual partonic channels and to provide additional in-
formation on specific parton luminosities. From the above
discussion we expect that different PDF sets should give very
similar results for the rapidity distribution since each bin is
rather inclusive with respect to the partonic centre-of-mass
energies where the luminosities are sampled. On the other
hand if any difference using PDF sets from different groups is
observed it will most likely show up in the transverse momen-
tum distribution. In Fig. 13 the rapidity distribution is shown
using four different PDF sets. The PDF sets NNPDF2.3,
CT10 and MSTW2008 lead to very similar results. A ma-
jor difference is observed comparing the aforementioned PDF
sets with ABM11. ABM11 leads to reduction of about 20%
with respect to NNPDF2.3, CT10 and MSTW2008. However
one can see that the shape for the distribution predicted by
ABM11 agrees well with the other PDF sets. In Fig. 14 and
Fig. 15 we show results for the normalized distributions. For
the rapidity distribution the four different PDF sets agree well
within ±5%. The rapidity distributions of the sub leading jets
show a similar behaviour. In Fig. 15 the transverse momen-
tum distribution is studied for different PDF sets. As expected
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Process (V ∈ {Z,W, γ}) Comments
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [4, 5];
Campbell/Ellis/Zanderighi [6].
ZZjet completed by
Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7]

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [8];
NLO QCD+EW to the VBF channel
completed by Ciccolini/Denner/Dittmaier [9, 10]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [11]
andWWZ by Hankele/Zeppenfeld [12]
(see also Binoth/Ossola/Papadopoulos/Pittau [13])

4. pp → tt̄ bb̄ relevant for tt̄H computed by
Bredenstein/Denner/Dittmaier/Pozzorini [14, 15]
and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16]

5. pp → V +3jets calculated by the Blackhat/Sherpa [17]
and Rocket [18] collaborations

Calculations remaining from Les Houches 2005

6. pp → tt̄+2jets relevant for tt̄H computed by
Bevilacqua/Czakon/Papadopoulos/Worek [19]

7. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
8. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by
(Bozzi/)Jäger/Oleari/Zeppenfeld [20–22]

NLO calculations added to list in 2007

9. pp → bb̄bb̄ qq̄ channel calculated by Golem collaboration [23]

NLO calculations added to list in 2009

10. pp → V +4 jets top pair production, various new physics signatures
11. pp → Wbb̄j top, new physics signatures
12. pp → tt̄tt̄ various new physics signatures
Calculations beyond NLO added in 2007

13. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

14. NNLO pp → tt̄ normalization of a benchmark process
15. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

16. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes
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Process (V ∈ {Z,W, γ}) Comments
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9. pp → bb̄bb̄ qq̄ channel calculated by Golem collaboration [23]

NLO calculations added to list in 2009

10. pp → V +4 jets top pair production, various new physics signatures
11. pp → Wbb̄j top, new physics signatures
12. pp → tt̄tt̄ various new physics signatures
Calculations beyond NLO added in 2007

13. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

14. NNLO pp → tt̄ normalization of a benchmark process
15. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark
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Table 1: The updated experimenter’s wishlist for LHC processes
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‣ Final goal: Really automatic NLO calculations zero cost for humans
• Specify the process (input card)
• Input parameters
• Define final cuts

•in a few years a number of codes (among others)

✓compete on precision, flexibility, speed, stability, ...

‣ Automatic NLO calculation “conceptually” solved

✓many features : uncertainties, ...

‣ Individual calculations still relevant!

Blackhat+Sherpa GoSam + Sherpa/MadGraph 

MadLoop+MadFKS CutTools          OpenLoops+Sherpa

Best solution still to emerge, but not more NLO wish-list, do it yourself!

✓open the way to new methods
13
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๏ QCD based on convergence of perturbative expansion
� = C0 + ↵sC1 + ↵2

sC2 + ↵3
sC3 + ...

requires �s ⇥ 1 , Cn � O(1)

๏ Convergence spoiled when two scales are very different

In the boundaries of phase space

unbalance cancellation of infrared singularities
between real and virtual contributions

soft and collinear emission

low transverse momentum

L = | log E1

E2
| � 1

log

qT
Q

Higgs

Cm ⇠ Ln n  2m

14

�n
S ln2n M2/q2

T

→ −∞
dσ

dqT

dσ

dqT

→ +∞

�n
S ln2n M2/q2

T

→ −∞
dσ

dqT

dσ

dqT

LO: → +∞ as qT " 0

NLO: as qT " 0

Resummation
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‣Resummation achieved by exponentiation of large logs in Sudakov factor

Most recently: jet vetos ‣ Reduction in uncertainty 
‣ Validation of tools

Banfi, Monni, Salam, Zanderighi (2012)

Jet veto in Higgs @ NNLL

Stewart, Tackmann, Walsh, Zuberi (2013)
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‣Resummation achieved by exponentiation of large logs in Sudakov factor

Most recently: jet vetos ‣ Reduction in uncertainty 
‣ Validation of tools

Banfi, Monni, Salam, Zanderighi (2012)

Jet veto in Higgs @ NNLL

Stewart, Tackmann, Walsh, Zuberi (2013)
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Merging NLO with Parton Showers

‣ Resummation to NLL accuracy + realistic final states

 MC@NLO Frixione, Webber  POWHEG Nason; Frixione, Nason, Oleari

‣ Can be interfaced to different tools : Herwig, Phytia,Sherpa

‣ Treat radiation differently but formally same NL accuracy

‣ Allow to carry NLO precision to all aspects of experimental analysis
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Figure 4. Comparison of the � = 1 Nnlops (red) with the NNLL+NNLO prediction of HqT
(green) for the Higgs transverse momentum. In HqT we choose µR = µF = 1

2mH as the central
scales, and keep the resummation scale always fixed to 1

2mH. On the left (right), the Nnlops
(HqT) uncertainty band is shown. In the lower panel, the ratio to the Nnlops (HqT) central
prediction is displayed.

Figure 5. As in fig. 4 but with � = 1
2 in the profile function.

In figures 4 and 5, we compare the Nnlops (see eq. (3.2)) with the HqT [55, 56]
result for two choices of the � parameter in the profile function. The uncertainty band is
the envelope of the 21-point scale variation illustrated in section 3. We used the ‘switched’
output of HqT, forming the related uncertainty band from the envelope of the seven results
obtained by independent variations of µR and µF, by a factor of two, symmetrically, about
µR = µF = 1

2mH, while keeping the resummation scale always fixed to 1
2mH.

Pleasingly, we see that the Nnlops and HqT results are almost completely contained
within each other’s uncertainty band in the region of moderate transverse momenta. We
have verified that at high transverse momentum the HqT prediction agrees identically with
that of Hnnlo, since the ‘switched’ output in the former uses the fixed order result in this
region. It follows that here we see the HqT spectrum falling less rapidly than that of the
Nnlops simulation at large pH

T. As was seen in fig. 3 and remarked upon in the related
discussion, in the case of � = 1, the Nnlops result is very well approximated by that of
Hj-Minlo multiplied by a uniform NNLO-to-NLO K -factor of 1.5, leaving the slope of the
distribution unchanged. On the other hand, for � = 1

2 (fig. 5) the K -factor enhancement is

– 13 –

Hamilton, Nason, Re, Zanderighi

‣ NNLOPS (Higgs)

POWHEG+MINLO
H+jet at NLO
Inclusive H reweigthed to NNLO
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‣ aMC@NLO:  full automation of NLO and PS in MC@NLO framework 
Frederix, Frixione, Hirschi, Pittau, Maltoni,Torrelli 

Automation and more

‣ Sherpa : real matrix elements matching MC@NLO and POWHEG

‣ POWHEL: automation of ME from HELAC with POWHEG-Box

Krauss, Höche, Siegert, Schönher

Papadopoulos, Garzelli, Kardos, Trocsanyi

+ many others

‣ POWHEG Box + Madgraph4 Campbell, Ellis, Frederix, Nason, Oleari, Williams

‣ Provide large library of processes or different degree of automation 

Aioli, Nason, Oleari, re‣ POWHEG-BOX framework 

‣ MINLO Hamilton, Nason, Oleari, Zanderighi

Lönnbland, Prestel‣ UNLOPS
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Aioli et al‣ GENEVA
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NNLO the new frontier
‣ Some measurements to few percent accuracy

O(↵2
s)

meaningful comparison
solid estimate of uncertainties

Match experimental accuracy
Extract accurate information

pp ! H

pp ! ��

pp ! jets

pp ! tt̄

e+e� ! 3 jets

pp ! V V

e�p ! (2 + 1) jets

pp ! V + jets

pp ! V

pp ! H + jets

✓ 

‣ Some processes with still (potentially) large NNLO corrections        

✓ 

✓ 
✓ 

✓ 

partial

partial
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pp ! HH

pp ! V Hpp ! Z�
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M.Grazzini, S.Kallweit, D.Rathlev, A.Torre (2013)pp ! Z�

Figure 1: Invariant mass distribution of the l+l−γ system at LO (dots), NLO (dashes), NNLO
(solid). The loop-induced gg contribution is also shown for comparison. The lower panel shows
the ratio NNLO/NLO.

has a kinematical boundary at ml+l−γ ∼ 66 GeV, and the region below this boundary receives
contribution only beyond LO. We also note that the invariant-mass region below the Z peak is
the one in which NNLO corrections are more significant, but it marginally contributes to the cross
section.

In Fig. 2 we consider the pT distribution of the photon, and we present a comparison of the
NLO and NNLO theoretical predictions with the ATLAS data (the bin sizes are chosen so as
to match those adopted in Ref. [2]). We see that the data agree with the NLO and NNLO
theoretical predictions within the uncertainties, and that the NNLO corrections slightly improve
this agreement. We should not forget, however, that EW corrections affect the tail of the pγT
distribution in a significant way and act in the opposite direction [10].

ATLAS also considers an additional set up with pγT > 40 GeV. In this case our corresponding
cross sections are σLO = 77.48 ± 0.06 fb, σNLO = 132.89 ± 0.07 fb and σNNLO = 153.3 ± 0.5 fb.
The impact of the NNLO corrections is about 16% with respect to NLO. The increased impact
of NNLO corrections compared to the pγT > 15 GeV case can be understood by studying the
invariant mass distribution in Fig. 3. With pγT > 40 GeV the LO boundary moves to ml+l−γ ∼ 97
GeV, and the phase-space region below the boundary, which opens up beyond LO, includes the Z
peak, and significantly contributes to the cross section. Moreover the region immediately above
the Z peak shows relatively large NLO and NNLO corrections.

We have also considered the selection cuts applied by the CMS collaboration [3]. They require
the photon to have pγT > 15 GeV and pseudorapidity |ηγ| < 2.5. The charged leptons are required
to have plT > 20 GeV, |ηl| < 2.5, and mll > 50 GeV. The lepton–photon separation is ∆R(l, γ) >
0.7. The photon-isolation parameters that we use in this case are ϵγ = 0.05 and R = 0.15. Our

4

Figure 2: Transverse momentum spectrum of the photon at NLO and NNLO compared with ATLAS
data. The lower panel shows the ratio DATA/THEORY.

corresponding results are σLO = 1333.6±0.2 fb, σNLO = 1890.6±0.4 fb and σNNLO = 2021±6 fb.
The impact of NNLO corrections on the NLO result is about 7%. A direct comparison to CMS
data is not possible because CMS does not provide the measured fiducial cross section.

We have illustrated the first calculation of the cross section for Zγ production at the LHC up
to NNLO in QCD perturbation theory. Our computation is implemented in a numerical program
that allows us to apply arbitrary kinematical cuts on the final state leptons and photon and
on the associated jet activity. For the selection cuts typically applied by the ATLAS and CMS
collaborations, we find that the impact of NNLO corrections is moderate, and ranges between 7
and 16%. The impact of NNLO corrections may be larger in some kinematical regions.
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Our fits return the value c0 = −31.96 + 0.1119NL which
falls within the range estimated in Ref. [24].
The parton level results derived in this section can be

used to derive an estimate for the so-far unknown con-
stant C(2)

gg appearing in the threshold approximation [17].
Expanding Eq. 5 around the limit β → 0 we obtain

C(2)
gg = 338.179− 26.8912NL + 0.142848N2

L . (14)

As explained in Ref. [25], the estimate (14) for C(2)
gg

has to be used with caution and a sizable uncertainty
should be assumed. We have no good way of estimating
the error on the extracted constant and to be reasonably
conservative in the following we take this error to be 50%.

The constant C(2)
gg is related [26] to the hard matching

coefficientsH(2)
gg,1,8 needed for NNLL soft gluon resumma-

tion matched to NNLO. However, since our calculation
deals with the color averaged cross-section, we cannot

extract both constants H(2)
gg,1,8. We proceed as follows.

Close to threshold, the color singlet and color octet

contributions to σ(2)
gg have independent constant terms

C(2)
gg,1,8, with the constant C(2)

gg in Eq. (14) being their
color average. We parameterize the second, unknown,

combination of C(2)
gg,1,8 by their ratio R(2)

gg ≡ C(2)
gg,8/C

(2)
gg,1,

which has the advantage of being normalization inde-

pendent. For any guessed value of R(2)
gg , together with

Eq. (14), we can extract values for the hard matching

constants H(2)
gg,1,8. As a guide for a reasonable value of

R(2)
gg we take the one-loop result (see [17, 25]): R(1)

gg ≡
C(1)

gg,8/C
(1)
gg,1 = 2.18.

In the following we vary R(2)
gg in the range 0.1 ≤ R(2)

gg ≤
8; for each value of R(2)

gg we then vary the color av-

eraged constant C(2)
gg by additional 50%. We observe

that as a result of this rather conservative variation,
the NNLO+NNLL theoretical prediction for LHC 8 TeV
changes by 0.4% (in central value) and by 0.2% (in scale
dependence). Given the negligible phenomenological im-
pact of these variations, we choose as our default values:

H(2)
gg,1 = 53.17, H(2)

gg,8 = 96.34 (forNL = 5) , (15)

derived from Eq. (14) and the mid-range value R(2)
gg = 1.

CALCULATION OF gg → tt̄+X THROUGH O(α4
S)

The calculation of the O(α4
S) corrections to gg → tt̄+

X is performed in complete analogy to the calculations
of the remaining partonic reactions [12–14]. The two-
loop virtual corrections are computed in [27], utilizing
the analytical form for the poles [28]. We have computed
the one-loop squared amplitude; it has previously been
computed in [29]. The real-virtual corrections are derived
by integrating the one-loop amplitude with a counter-
term that regulates it in all singular limits [30]. The
finite part of the one-loop amplitude is computed with
a code used in the calculation of pp → tt̄ + jet at NLO
[31]. The double real corrections are computed in [11].
Factorization of initial state collinear singularities as well
as µF,R scale dependence is computed in a standard way;
see Refs. [13, 14].

PHENOMENOLOGICAL APPLICATIONS

In table I we present our most precise predictions
for the Tevatron and LHC at 7, 8 and 14 TeV.
All numbers are computed for m = 173.3 GeV and
MSTW2008nnlo68cl pdf set [32] with the program
Top++ (v2.0) [33]. Scale uncertainty is determined
through independent restricted variation of µF and µR.
Our best predictions are at NNLO and include soft gluon

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.164 +0.110(1.5%)
−0.200(2.8%)

+0.169(2.4%)
−0.122(1.7%)

LHC 7 TeV 172.0 +4.4(2.6%)
−5.8(3.4%)

+4.7(2.7%)
−4.8(2.8%)

LHC 8 TeV 245.8 +6.2(2.5%)
−8.4(3.4%)

+6.2(2.5%)
−6.4(2.6%)

LHC 14 TeV 953.6 +22.7(2.4%)
−33.9(3.6%)

+16.2(1.7%)
−17.8(1.9%)

TABLE I: Our best NNLO+NNLL theoretical predictions for
various colliders and c.m. energies.

resummation at NNLL [26, 34].
In this letter we take A = 0 as a default value for the

constantA introduced in Ref. [35]. The reason for switch-
ing to a new default value for A (compared to A = 2 in
[12–14, 26]) is that this constant is consistently defined
only through NLO. Nonetheless it contributes at NNLO

Czakon, Fiedler, Mitov (2013)

‣ Very relevant observable at colliders
‣ LHC will reach better than 5% accuracy
‣ top mass, pdfs, new physics

(inclusive) Full NNLO available

<5% TH uncertainties

•Precision for mass

pp ! tt̄
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Fig. 1. – Scale dependence of the total cross-section at LO (blue), NLO (red) and NNLO
(black) as a function of mtop at the Tevatron (left) and the LHC 8 TeV (right). No soft
gluon resummation is included. For reference the most precise experimental measurements are
also shown.

In fig. 1 (left) we show the scale dependence of the predicted cross-section at the
Tevatron, as a function of the top quark mass. We note the significant and consistent
improvement in the theoretical precision due to inclusion of corrections at higher per-
turbative orders. We also note the agreement between the theoretical prediction (3) and
the latest Tevatron measurement [13].

Next we turn to the LHC. In fig. 1 (right) we show the scale dependence of the
predicted cross-section at the LHC 8 TeV as a function of mtop. Similarly to the case
of the Tevatron, we observe a very good perturbative convergence of the theoretical
prediction and good agreement with the available measurement [14].

In fig. 2 (left) we show the scale dependence of the predicted cross-section at the LHC
as a function of the collider energy. We note that the perturbative convergence observed
at 8 TeV is consistently present in the whole range of relevant LHC energies. Moreover,
the good agreement of the NNLO theoretical prediction with the available data persists
at all energies where data is currently available [15-17].

Next we study the impact of soft-gluon resummation on the size of the scale depen-
dence and the central value of the theoretical prediction. In fig. 2 (right) we show the
scale dependence of the predicted cross-section at the LHC 8 TeV for a number of cases
with different fixed order and logarithmic accuracy: LO, NLO, NLO+LL, NLO+NLL,
NLO+NNLL, NNLO, NNLO+LL, NNLO+NLL and NNLO+NNLL. In all cases we fol-
low the resummation procedure of Ref. [18]. We set the constant A = 0 (introduced in
Ref. [19]), mtop = 173.3 GeV and set the accuracy of the pdf according to the accuracy
of the fixed order result.

We observe that the excellent convergence of the perturbative expansion is preserved
after the inclusion of soft gluon resummation. In particular, the feature that resummation
shifts the fixed order cross-section up by about 2-3% is consistently present at NLO and
NNLO and does not seem to significantly depend on the logarithmic accuracy of the

(3) Recall that only the scale dependence is shown. The full theoretical uncertainty is, roughly,
about twice as large as the scale dependence.

M. Czakon, P. Fiedler, A. Mitov, J. Rojo (2013)
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the default fit and after including the Tevatron and LHC top quark cross section data. Right plot:
the relative reduction of PDF uncertainties thanks to the inclusion of top data in the PDF fit.

negligible.

It is interesting to study the modifications of the theory predictions after the top

quark data have been added into the NNPDF2.3 fit. In Table 9 we show the tt̄ cross

section for NNPDF2.3, comparing the default prediction with the predictions after adding

different subsets of the top quark data. We show only the entries which correspond to pure

predictions. By including top data from lower energy colliders, we can provide arguably

the most accurate theoretical prediction for the total tt̄ cross section at higher energies,

given that PDF uncertainties will be reduced in the same kinematical range from lower

energy data.11

These predictions are collected in Table 9. As an illustration, the NNPDF2.3 prediction

including Tevatron and LHC 7 top data would be the best available theory prediction for

LHC 8 TeV. Note that not only PDF uncertainties are reduced, but that also the central

value is shifted to improve the agreement with the experimental data. As can be seen, the

precise 7 TeV data carry most of the constraining power, though of course improved power

of the 8 TeV data will be provided with the analysis of the full 2012 dataset.

Then in Table 10 we provide NNPDF2.3 χ2 compared to the top quark data, before

adding any data, after adding all Tevatron and LHC data and adding only the Tevatron

and LHC 7 TeV data points. The slight improvement of an already good quantitative

description can be seen. As expected, the agreement of the prediction with LHC8 data,

when only Tevatron and LHC7 data are used, is a non-trivial consistency check of the

whole procedure.12

Given that the constraints from top quark data in a global PDF fit such as NNPDF2.3

are already substantial, we expect even larger constrains in PDF sets based on reduced

11Note that, as shown by Fig. 1, the typical x ranges covered by the theory predictions at LHC 7, 8

and 14 TeV are quite similar, justifying the extrapolation of lower LHC energy data to improve the theory

predictions at higher LHC center of mass energies.
12The small change of the χ2 between TEV+LHC data and TEV+LHC7 data is due to statistical fluc-

tuations, reflecting the fact that the 8 TeV data are still not precise enough to provide constraints on the

gluon PDF.

– 13 –
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•  data used in ABM 2013

~20% reduction x=0.1 to 0.5

•Precision for gluon pdf
pp ! tt̄
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the default fit and after including the Tevatron and LHC top quark cross section data. Right plot:
the relative reduction of PDF uncertainties thanks to the inclusion of top data in the PDF fit.

negligible.

It is interesting to study the modifications of the theory predictions after the top

quark data have been added into the NNPDF2.3 fit. In Table 9 we show the tt̄ cross

section for NNPDF2.3, comparing the default prediction with the predictions after adding

different subsets of the top quark data. We show only the entries which correspond to pure

predictions. By including top data from lower energy colliders, we can provide arguably

the most accurate theoretical prediction for the total tt̄ cross section at higher energies,

given that PDF uncertainties will be reduced in the same kinematical range from lower

energy data.11

These predictions are collected in Table 9. As an illustration, the NNPDF2.3 prediction

including Tevatron and LHC 7 top data would be the best available theory prediction for

LHC 8 TeV. Note that not only PDF uncertainties are reduced, but that also the central

value is shifted to improve the agreement with the experimental data. As can be seen, the

precise 7 TeV data carry most of the constraining power, though of course improved power

of the 8 TeV data will be provided with the analysis of the full 2012 dataset.

Then in Table 10 we provide NNPDF2.3 χ2 compared to the top quark data, before

adding any data, after adding all Tevatron and LHC data and adding only the Tevatron

and LHC 7 TeV data points. The slight improvement of an already good quantitative

description can be seen. As expected, the agreement of the prediction with LHC8 data,

when only Tevatron and LHC7 data are used, is a non-trivial consistency check of the

whole procedure.12

Given that the constraints from top quark data in a global PDF fit such as NNPDF2.3

are already substantial, we expect even larger constrains in PDF sets based on reduced

11Note that, as shown by Fig. 1, the typical x ranges covered by the theory predictions at LHC 7, 8

and 14 TeV are quite similar, justifying the extrapolation of lower LHC energy data to improve the theory

predictions at higher LHC center of mass energies.
12The small change of the χ2 between TEV+LHC data and TEV+LHC7 data is due to statistical fluc-

tuations, reflecting the fact that the 8 TeV data are still not precise enough to provide constraints on the

gluon PDF.
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Fig. 2. – Scale dependence of the predicted cross-section at LO, NLO and NNLO at the LHC
as a function of

√
s (left). On the right plot: detailed breakdown of scale uncertainty for LHC

8 TeV at LO, NLO and NNLO including also soft-gluon resummation at LL, NLL and NNLL.

resummation. Inclusion of resummation with logarithmic accuracy at NLL or NNLL
also noticeably decreases the scale dependence of the theoretical prediction, as expected.
The absolute size of the resulting reduction in scale dependence is also at the 2% level.

An alternative way of assessing the impact of soft-gluon resummation is shown in
fig. 3 (which updates fig. 1 of Ref. [18] by including the exact NNLO result). Plotted
is the relative error of the cross-section at the LHC as a function of the collider energy.
We consider a broad range of energies, starting from slightly above the tt̄ production
threshold and going up to 45 TeV which is far above threshold. In all cases we observe
that the inclusion of soft gluon resummation extends the validity of the perturbative
prediction closer to threshold. For large collider energies the enhanced tt̄ threshold
contribution gets reduced and, indeed, we observe that the resummed and unresummed
predictions converge to each other in this case. We also notice that the difference between
NLL and NNLL is small and is more pronounced when added on top of the NLO result
(as anticipated). Finally we note that the inclusion of soft-gluon resummation on top
of the NNLO result makes the relative scale uncertainty practically independent of the
collider energy, except of course for the immediate threshold region which, a posteriori,
is another justification for the use of soft-gluon resummation.

5. – Application to searches for physics beyond the Standard Model

In addition to being a powerful tool for testing the Standard Model, the high precision
of the total inclusive tt̄ production cross-section presents an opportunity for devising new
strategies for searches of physics beyond the Standard Model. A first exploration of the
improvements in BSM searches arising from NNLO top data was presented in Ref. [9],
where it was shown that the use of top quark data in a NNLO global PDF fit leads to
an improved determination of the poorly known large-x gluon PDF. This improvement
then translates into more accurate predictions for BSM heavy particle production and
for the large mass tail of the Mtt distribution, the latter used in searches of new heavy
resonances which decay into top quarks.

While the above examples illustrate the indirect improvement in BSM searches due
to top quark data, high-precision top production can also impact BSM studies directly,

• Even higher precision: 
   threshold resummation

•Precision for gluon pdf
pp ! tt̄
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‣ Pure gluon using antenna subtraction : NNLOJET

•15-25% increase 

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J.Pires (2013)

pp ! 2 jets

2

liders to NNLO accuracy. The program consists of three
integration channels:

dσ̂gg,NNLO =

∫

dΦ4

[

dσ̂RR
gg,NNLO − dσ̂S

gg,NNLO

]

+

∫

dΦ3

[

dσ̂RV
gg,NNLO − dσ̂T

gg,NNLO

]

+

∫

dΦ2

[

dσ̂V V
gg,NNLO − dσ̂U

gg,NNLO

]

, (1)

where each of the square brackets is finite and well be-
haved in the infrared singular regions. For the all-gluons
channel, the construction of the three subtraction terms
dσ̂S,T,U

ij,NNLO was described in Refs. [39–41].
In the three-parton and four-parton channel, the phase

space has been decomposed into multiple wedges (6
three-parton wedges and 30 four-parton wedges), each
containing only a subset of possible infrared singular con-
tributions. Inside each wedge, the generation of multiple
phase space configurations related by angular rotation of
unresolved pairs of particles around their common mo-
mentum axis ensures a local convergence of the antenna
subtraction term to the relevant matrix element. Owing
to the symmetry properties of the all-gluon final state,
many wedges yield identical contributions, thereby al-
lowing a substantial speed-up of their evaluation.
Jets in hadronic collisions can be produced through

a variety of different partonic subprocesses, and the all-
gluon process is only one of them. Our results on this
process can therefore not be directly compared with ex-
perimental data. The all-gluon process does however al-
low to establish the calculational method, and to qualify
the potential impact of NNLO corrections on jet observ-
ables. It should be noted that the NLO corrections to
hadronic two- and three-jet production were also first
derived in the all-gluon channel [42–44], well before full
results could be completed [6, 7, 45]. In both cases, the
all-gluon results were extremely vital both for establish-
ing the methodology and for assessing the infrared sensi-
tivity of different jet algorithms [44].
Our numerical studies for proton-proton collisions at

centre-of-mass energy
√
s = 8 TeV concern the single

jet inclusive cross section (where every identified jet in
an event that passes the selection cuts contributes, such
that a single event potentially enters the distributions
multiple times) and the two-jet exclusive cross section
(where events with exactly two identified jets contribute).
Jets are identified using the anti-kT algorithm with res-

olution parameter R = 0.7. Jets are accepted at central
rapidity |y| < 4.4, and ordered in transverse momentum.
An event is retained if the leading jet has pT1 > 80 GeV.
For the dijet invariant mass distribution, a second jet
must be observed with pT2 > 60 GeV.
All calculations are carried out with the

MSTW08NNLO gluon distribution function [46],
including the evaluation of the LO and NLO contri-
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FIG. 1: Inclusive jet transverse energy distribution, dσ/dpT ,
for jets constructed with the anti-kT algorithm with R = 0.7
and with pT > 80 GeV, |y| < 4.4 and

√
s = 8 TeV at NNLO

(blue), NLO (red) and LO (dark-green). The lower panel
shows the ratios of NNLO, NLO and LO cross sections.

butions [47]. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions
to the parton-level subprocess. Factorization and
renormalization scales (µF and µR) are chosen dynami-
cally on an event-by-event basis. As default value, we
set µF = µR ≡ µ and set µ equal to the transverse
momentum of the leading jet so that µ = pT1.
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FIG. 2: Scale dependence of the inclusive jet cross section for
pp collisions at

√
s = 8 TeV for the anti-kT algorithm with
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NNLO (blue), NLO (red) and LO (green).

In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with

Similar results expected for other 
partonic channels (gg dominant at low pT)
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liders to NNLO accuracy. The program consists of three
integration channels:

dσ̂gg,NNLO =

∫

dΦ4

[

dσ̂RR
gg,NNLO − dσ̂S

gg,NNLO

]

+

∫

dΦ3

[

dσ̂RV
gg,NNLO − dσ̂T

gg,NNLO

]

+

∫

dΦ2

[

dσ̂V V
gg,NNLO − dσ̂U

gg,NNLO

]

, (1)

where each of the square brackets is finite and well be-
haved in the infrared singular regions. For the all-gluons
channel, the construction of the three subtraction terms
dσ̂S,T,U

ij,NNLO was described in Refs. [39–41].
In the three-parton and four-parton channel, the phase

space has been decomposed into multiple wedges (6
three-parton wedges and 30 four-parton wedges), each
containing only a subset of possible infrared singular con-
tributions. Inside each wedge, the generation of multiple
phase space configurations related by angular rotation of
unresolved pairs of particles around their common mo-
mentum axis ensures a local convergence of the antenna
subtraction term to the relevant matrix element. Owing
to the symmetry properties of the all-gluon final state,
many wedges yield identical contributions, thereby al-
lowing a substantial speed-up of their evaluation.
Jets in hadronic collisions can be produced through

a variety of different partonic subprocesses, and the all-
gluon process is only one of them. Our results on this
process can therefore not be directly compared with ex-
perimental data. The all-gluon process does however al-
low to establish the calculational method, and to qualify
the potential impact of NNLO corrections on jet observ-
ables. It should be noted that the NLO corrections to
hadronic two- and three-jet production were also first
derived in the all-gluon channel [42–44], well before full
results could be completed [6, 7, 45]. In both cases, the
all-gluon results were extremely vital both for establish-
ing the methodology and for assessing the infrared sensi-
tivity of different jet algorithms [44].
Our numerical studies for proton-proton collisions at

centre-of-mass energy
√
s = 8 TeV concern the single

jet inclusive cross section (where every identified jet in
an event that passes the selection cuts contributes, such
that a single event potentially enters the distributions
multiple times) and the two-jet exclusive cross section
(where events with exactly two identified jets contribute).
Jets are identified using the anti-kT algorithm with res-

olution parameter R = 0.7. Jets are accepted at central
rapidity |y| < 4.4, and ordered in transverse momentum.
An event is retained if the leading jet has pT1 > 80 GeV.
For the dijet invariant mass distribution, a second jet
must be observed with pT2 > 60 GeV.
All calculations are carried out with the

MSTW08NNLO gluon distribution function [46],
including the evaluation of the LO and NLO contri-
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FIG. 1: Inclusive jet transverse energy distribution, dσ/dpT ,
for jets constructed with the anti-kT algorithm with R = 0.7
and with pT > 80 GeV, |y| < 4.4 and

√
s = 8 TeV at NNLO

(blue), NLO (red) and LO (dark-green). The lower panel
shows the ratios of NNLO, NLO and LO cross sections.

butions [47]. This choice of parameters allows us to
quantify the size of the genuine NNLO contributions
to the parton-level subprocess. Factorization and
renormalization scales (µF and µR) are chosen dynami-
cally on an event-by-event basis. As default value, we
set µF = µR ≡ µ and set µ equal to the transverse
momentum of the leading jet so that µ = pT1.
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FIG. 2: Scale dependence of the inclusive jet cross section for
pp collisions at

√
s = 8 TeV for the anti-kT algorithm with

R = 0.7 and with |y| < 4.4 and 80 GeV < pT < 97 GeV at
NNLO (blue), NLO (red) and LO (green).

In Fig. 1 we present the inclusive jet cross section for
the anti-kT algorithm with R = 0.7 and with pT >
80 GeV, |y| < 4.4 as a function of the jet pT at LO,
NLO and NNLO, for the central scale choice µ = pT1.
The NNLO/NLO k-factor shows the size of the higher
order NNLO effect to the cross section in each bin with

•Amazing reduction in scale 
dependence : precision for LHC

•But NNLO can not be predicted 
by NLO scale variations.. 
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H+jet at NNLO
R.Boughezal, F.Caola, K.Melnikov, F.Petriello, M.Schulze (2013)

3.2.4 Numerical results
We present here initial numerical results for Higgs production in association with one or more jets at
NNLO. A detailed series of checks on the presented calculation were performed in Ref. [44], and we
do not repeat this discussion here. We compute the hadronic cross section for the production of the
Higgs boson in association with one or more jets at the 8 TeV LHC through NNLO in perturbative QCD.
We reconstruct jets using the k⊥-algorithm with ∆R = 0.5 and p⊥,j = 30 GeV. The Higgs mass is
taken to be mH = 125 GeV and the top-quark mass mt = 172 GeV. We use the latest NNPDF parton
distributions [57, 58] with the number of active fermion flavors set to five, and numerical values of the
strong coupling constant αs at various orders in QCD perturbation theory as provided by the NNPDF
fit. We note that in this case αs(mZ) = [0.130, 0.118, 0.118] at leading, next-to-leading and next-to-
next-to-leading order, respectively. We choose the central renormalization and factorization scales to be
µR = µF = mH .

In Fig. 9 we show the partonic cross section for gg → H + j multiplied by the gluon luminosity
through NNLO in perturbative QCD:

β
dσhad

d
√

s
= β

dσ(s,αs, µR, µF )

d
√

s
× L(

s

shad
, µF ), (20)

where β measures the distance from the partonic threshold,

β =

√

1−
E2

th

s
, Eth =

√
m2

h + p2
⊥,j + p⊥,j ≈ 158.55 GeV. (21)

The partonic luminosity L is given by the integral of the product of two gluon distribution functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)
. (22)

It follows from Fig. 9 that NNLO QCD corrections are significant in the region
√

s < 500 GeV. In par-
ticular, close to partonic threshold

√
s ∼ Eth, radiative corrections are enhanced by threshold logarithms

lnβ that originate from the incomplete cancellation of virtual and real corrections. There seems to be
no significant enhancement of these corrections at higher energies, where the NNLO QCD prediction for
the partonic cross section becomes almost indistinguishable from the NLO QCD one.

We now show the integrated hadronic cross sections in the all-gluon channel. We choose to vary
the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After convolu-
tion with the parton luminositites, we obtain

σLO(pp→ Hj) = 2713+1216
−776 fb,

σNLO(pp→ Hj) = 4377+760
−738 fb,

σNNLO(pp→ Hj) = 6177−204
+242 fb.

(23)

We note that NNLO corrections are sizable, as expected from the large NLOK−factor, but the perturba-
tive expansion shows marginal convergence. We also evaluated PDF errors using the full set of NNPDF
replicas, and found it to be of order 5% at LO, and of order 1-2% at both NLO and NNLO, similarly to
the inclusive Higgs case [58]. The cross section increases by about sixty percent when we move from LO
to NLO and by thirty percent when we move from NLO to NNLO. It is also clear that by accounting for
the NNLO QCD corrections we reduce the dependence on the renormalization and factorization scales
in a significant way. The scale variation of the result decreases from almost 50% at LO, to 20% at NLO,
to less than 5% at NNLO. We also note that a perturbatively-stable result is obtained for the scale choice
µ ≈ mH/2. In this case the ratio of the NNLO over the LO cross section is just 1.5, to be compared
with 2.3 for µ = mH and 3.06 for µ = 2mH , and the ratio of NNLO to NLO is 1.2. A similar trend was

48

 0

 5

 10

 15

 20

 25

 150  200  250  300  350  400  450  500

β 
dσ

ha
d/d

√s
 (f

b)

√s

Partonic cross section x luminosity, µ = mh

σLO
σNLO
σNNLO

Fig. 9: Results for the product of partonic cross sections gg → H + jet and parton luminosity in consecutive
orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

0

1000

2000

3000

4000

5000

6000

7000

30 50 70 90 110 130 150 170 190 210 230 250

σ
h
a
d

[f
b
]

µ [GeV]

σLO

σNLO

σNNLO

Fig. 10: Scale dependence of the hadronic cross section in consecutive orders in perturbative QCD. See the text
for details.

observed in the calculation of higher-order QCD corrections to the Higgs boson production cross section
in gluon fusion. The reduced scale dependence is also apparent from Fig. 10, where we plot total cross
section as a function of the renormalization and factorization scale µ in the region p⊥,j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results for cross
sections and K-factors that we report. We note that at leading and next-to-leading order, quark-gluon
collisions increase the H + j production cross section by about 30 percent, for the input parameters
that we use in this paper. At the same time, the NLO K-factors for the full H + j cross section are
smaller by about 10−15% than the ‘gluons-only’K-factors, presumably because quark color charges are
smaller than the gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable
phenomenological estimates of perturbative K-factors but adding quark channels will be essential for
achieving precise results for the H + j cross section.
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observed in the calculation of higher-order QCD corrections to the Higgs boson production cross section
in gluon fusion. The reduced scale dependence is also apparent from Fig. 10, where we plot total cross
section as a function of the renormalization and factorization scale µ in the region p⊥,j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results for cross
sections and K-factors that we report. We note that at leading and next-to-leading order, quark-gluon
collisions increase the H + j production cross section by about 30 percent, for the input parameters
that we use in this paper. At the same time, the NLO K-factors for the full H + j cross section are
smaller by about 10−15% than the ‘gluons-only’K-factors, presumably because quark color charges are
smaller than the gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable
phenomenological estimates of perturbative K-factors but adding quark channels will be essential for
achieving precise results for the H + j cross section.
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FIG. 2. Higgs pair invariant mass distribution at LO (dotted
blue), NLO (dashed red) and NNLO (solid black) for the LHC
at c.m. energy Ecm = 14TeV. The bands are obtained by
varying µF and µR in the range 0.5Q ≤ µF , µR ≤ 2Q with
the constraint 0.5 ≤ µF /µR ≤ 2.

Again, we already included the counter-terms in the

definition of σ̂(c+)
qg and σ̂(c−)

gq . Finally, for the quark-
antiquark subprocess we have

σ̂b
qq̄ =

∫

d cos θ1 dθ2 dy

√

z(z − 4M2
H/s)

512 π4
fqq̄(y, z, θ1, θ2) .

(17)
The expressions for fqg, fgq and fqq̄ can be found in the
appendix.
Summarizing, Eqs. (3), (14), (16) and (17) contain

all the contributions to the partonic cross section up to
NNLO accuracy. We find agreement with Ref. [16] with
respect to the NLO results.‡

III. PHENOMENOLOGY

We present here the phenomenological results for the
LHC. In all cases we use the MSTW2008 [30] sets of
parton distributions and QCD coupling at each corre-
sponding order. The bands are obtained by varying in-
dependently the factorization and renormalization scales
in the range 0.5Q ≤ µF , µR ≤ 2Q, with the constraint
0.5 ≤ µF /µR ≤ 2. We recall that we always normalize
our results with the exact top and bottom-mass depen-
dence at LO. We use MH = 126GeV, Mt = 173.18GeV
and Mb = 4.75GeV.
Given that at one-loop order the corrections to the ef-

fective vertex ggHH are the same than those of ggH , we

will assume for the phenomenological results that C(2)
HH =

C(2)
H . We analysed the impact of this still unknown co-

efficient varying its value in the range 0 ≤ C(2)
HH ≤ 2C(2)

H

‡ We notice that the exact LO is taken into account in a slightly
different way in Ref. [16]. The numerical effect is anyway small.
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FIG. 3. Total cross section as a function of the c.m. energy
Ecm for the LO (dotted blue), NLO (dashed red) and NNLO
(solid black) prediction. The bands are obtained by varying
µF and µR as indicated in the main text. The inset plot shows
the corresponding K-factors.

and found a variation in the total cross section of less
than 2.5%.

In Figure 2 we show the hadronic cross section for the
LHC as a function of the Higgs pair invariant mass, for
a c.m. energy Ecm =

√
sH = 14TeV, at LO, NLO and

NNLO accuracy. We can observe that it is only at this
order that the first sign of convergence of the perturbative
series appears, finding a non-zero overlap between the
NLO and NNLO bands. Second order corrections are
sizeable, this is noticeable already at the level of the total
inclusive cross sections

σLO = 17.8+5.3
−3.8 fb

σNLO = 33.2+5.9
−4.9 fb (18)

σNNLO = 40.2+3.2
−3.5 fb

where the uncertainty arises from the scale variation.
The increase with respect to the NLO result is then of
O(20%), and the K-factor with respect to the LO pre-
diction is about KNNLO = 2.3. The scale dependence is
clearly reduced at this order, resulting in a variation of
about ±8% around the central value, compared to a total
variation of O(±20%) at NLO.

In Figure 3 we present the total cross section as a func-
tion of the c.m. energy Ecm, in the range from 8TeV to
100TeV. We can observe that the size of the perturba-
tive corrections is smaller as the c.m. energy increases.
Again, in the whole range of energies the scale depen-
dence is substantially reduced when we consider the sec-
ond order corrections. In Table I we show the value of
the NNLO cross section for Ecm = 8, 14, 33 and 100TeV.

The ratio between NNLO and NLO predictions as a
function of the c.m. energy is quite flat. In order to ease
the use of our NNLO results, we provide the following
approximated analytic expression for the K factor, valid
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Again, we already included the counter-terms in the

definition of σ̂(c+)
qg and σ̂(c−)

gq . Finally, for the quark-
antiquark subprocess we have

σ̂b
qq̄ =

∫
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z(z − 4M2
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512 π4
fqq̄(y, z, θ1, θ2) .

(17)
The expressions for fqg, fgq and fqq̄ can be found in the
appendix.
Summarizing, Eqs. (3), (14), (16) and (17) contain

all the contributions to the partonic cross section up to
NNLO accuracy. We find agreement with Ref. [16] with
respect to the NLO results.‡

III. PHENOMENOLOGY

We present here the phenomenological results for the
LHC. In all cases we use the MSTW2008 [30] sets of
parton distributions and QCD coupling at each corre-
sponding order. The bands are obtained by varying in-
dependently the factorization and renormalization scales
in the range 0.5Q ≤ µF , µR ≤ 2Q, with the constraint
0.5 ≤ µF /µR ≤ 2. We recall that we always normalize
our results with the exact top and bottom-mass depen-
dence at LO. We use MH = 126GeV, Mt = 173.18GeV
and Mb = 4.75GeV.
Given that at one-loop order the corrections to the ef-

fective vertex ggHH are the same than those of ggH , we

will assume for the phenomenological results that C(2)
HH =

C(2)
H . We analysed the impact of this still unknown co-

efficient varying its value in the range 0 ≤ C(2)
HH ≤ 2C(2)

H

‡ We notice that the exact LO is taken into account in a slightly
different way in Ref. [16]. The numerical effect is anyway small.
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LHC as a function of the Higgs pair invariant mass, for
a c.m. energy Ecm =
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sH = 14TeV, at LO, NLO and

NNLO accuracy. We can observe that it is only at this
order that the first sign of convergence of the perturbative
series appears, finding a non-zero overlap between the
NLO and NNLO bands. Second order corrections are
sizeable, this is noticeable already at the level of the total
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−4.9 fb (18)
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where the uncertainty arises from the scale variation.
The increase with respect to the NLO result is then of
O(20%), and the K-factor with respect to the LO pre-
diction is about KNNLO = 2.3. The scale dependence is
clearly reduced at this order, resulting in a variation of
about ±8% around the central value, compared to a total
variation of O(±20%) at NLO.

In Figure 3 we present the total cross section as a func-
tion of the c.m. energy Ecm, in the range from 8TeV to
100TeV. We can observe that the size of the perturba-
tive corrections is smaller as the c.m. energy increases.
Again, in the whole range of energies the scale depen-
dence is substantially reduced when we consider the sec-
ond order corrections. In Table I we show the value of
the NNLO cross section for Ecm = 8, 14, 33 and 100TeV.
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the use of our NNLO results, we provide the following
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‣ Expect large corrections (single Higgs)
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F△, F! and G! approach constant values in the infinite top quark mass limit,

F△ →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F△, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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‣Many of them doable in the next few years

‣More realistic final states (V, top with decays)

‣Larger multiplicities not possible yet 

‣Automation far away

‣Shower requires increase in accuracy

‣NLO EW corrections needed 
Process known desired details

H d� @ NNLO QCD d� @ NNNLO QCD + NLO EW H branching ratios

d� @ NLO EW MC@NNLO and couplings

finite quark mass e↵ects @ NLO finite quark mass e↵ects @ NNLO

H+ j d� @ NNLO QCD (g only) d� @ NNLO QCD + NLO EW H pT

d� @ NLO EW finite quark mass e↵ects @ NLO

finite quark mass e↵ects @ LO

H + 2j �
tot

(VBF) @ NNLO(DIS) QCD d� @ NNLO QCD + NLO EW H couplings

d�(gg) @ NLO QCD

d�(VBF) @ NLO EW

H+V d� @ NNLO QCD with H ! bb̄ @ same accuracy H couplings

d� @ NLO EW

tt̄H d�(stable tops) @ NLO QCD d�(top decays) top Yukawa coupling

@ NLO QCD + NLO EW

HH d� @ LO QCD (full mt dependence) d� @ NLO QCD (full mt dependence) Higgs self coupling

d� @ NLO QCD (infinite mt limit) d� @ NNLO QCD (infinite mt limit)

Table 1: Wishlist part 1 – Higgs (V = W,Z)

Process known desired details

tt̄ �
tot

@ NNLO QCD d�(top decays) precision top/QCD,

d�(top decays) @ NLO QCD @ NNLO QCD + NLO EW gluon PDF, e↵ect of extra

d�(stable tops) @ NLO EW radiation at high rapidity,

top asymmetries

tt̄ + j d�(NWA top decays) @ NLO QCD d�(NWA top decays) precision top/QCD

@ NNLO QCD + NLO EW top asymmetries

single-top d�(NWA top decays) @ NLO QCD d�(NWA top decays) precision top/QCD, Vtb

@ NNLO QCD (t channel)

dijet d� @ NNLO QCD (g only) d� Obs.: incl. jets, dijet mass

d� @ NLO weak @ NNLO QCD + NLO EW ! PDF fits (gluon at high x)

! ↵s

CMS http://arxiv.org/abs/1212.6660

3j d� @ NLO QCD d� Obs.: R3/2 or similar

@ NNLO QCD + NLO EW ! ↵s at high scales

dom. uncertainty: scales

CMS http://arxiv.org/abs/1304.7498

� + j d� @ NLO QCD d� @ NNLO QCD gluon PDF

d� @ NLO EW +NLO EW � + b for bottom PDF

Table 2: Wishlist part 2 – jets and heay quarks

Process known desired details

V d�(lept. V decay) @ NNLO QCD d�(lept. V decay) precision EW, PDFs

d�(lept. V decay) @ NLO EW @ NNNLO QCD + NLO EW

MC@NNLO

V+ j d�(lept. V decay) @ NLO QCD d�(lept. V decay) Z + j for gluon PDF

d�(lept. V decay) @ NLO EW @ NNLO QCD + NLO EW W+ c for strange PDF

V + jj d�(lept. V decay) @ NLO QCD d�(lept. V decay) study of systematics of

@ NNLO QCD + NLO EW H+ jj final state

VV0 d�(V decays) @ NLO QCD d�(V decays) o↵-shell leptonic decays

d�(stable V) @ NLO EW @ NNLO QCD + NLO EW TGCs

gg ! VV d�(V decays) @ LO QCD d�(V decays) bkg. to H ! V V

@ NLO QCD TGCs

V� d�(V decay) @ NLO QCD d�(V decay) TGCs

d�(PA, V decay) @ NLO EW @ NNLO QCD + NLO EW

Vbb̄ d�(lept. V decay) @ NLO QCD d�(lept. V decay) @ NNLO QCD bkg. for VH ! bb̄

massive b massless b

VV0� d�(V decays) @ NLO QCD d�(V decays) QGCs

@ NLO QCD + NLO EW

VV0V00 d�(V decays) @ NLO QCD d�(V decays) QGCs, EWSB

@ NLO QCD + NLO EW

VV0 + j d�(V decays) @ NLO QCD d�(V decays) bkg. to H, BSM searches

@ NLO QCD + NLO EW

VV0 + jj d�(V decays) @ NLO QCD d�(V decays) QGCs, EWSB

@ NLO QCD + NLO EW

�� d� @ NNLO QCD bkg to H ! ��

Table 3: Wishlist part 3 – EW gauge bosons (V = W,Z)

Les Houches NNLO wish-list (2013)

25

25



Precision QCD in the LHC era                Daniel de Florian

Electroweak corrections at large energies

‣ Sudakov logarithms induced by soft gauge-boson exchange

at
p
s ⇠ 1TeV

S. Dittmaier

•still sizable at 2-loops

Weak radiative corrections to dijet production at the LHC Alexander Huss

(a)

⎧

⎪

⎨

⎪

⎩

Z,W
Z,W

Z,W

. . .

⎫

⎪

⎬

⎪

⎭

×

⎧

⎪

⎨

⎪

⎩

. . .

⎫

⎪

⎬

⎪

⎭

∗

(b)

⎧

⎪

⎨

⎪

⎩

. . .

⎫

⎪

⎬

⎪

⎭

×

⎧

⎪

⎨

⎪

⎩

Z,W± . . .

⎫

⎪

⎬

⎪

⎭

∗

Figure 2: The virtual corrections of O
(

α2s αw
)

illustrated by terms of some typical interferences.

and squared contributions ofO
(

αsα , α2
)

. The different diagrams and their respective contribution
to the different orders in case of the subprocess ud→ ud are shown in Fig. 1. Note that only the
product between the t-channel and u-channel diagram gives a non-vanishing contribution to the
interference term of O (αsα) due to the colour structure. In the LO cross section the photonic
contributions are fully taken into account.

At NLO we restrict our calculation to the purely weak corrections at the order α2s αw with a
selection of diagrams for the virtual corrections shown in Fig. 2. Contributions at this order can be
obtained by considering weak O (αw) corrections to the Born QCD cross section (O

(

α2s
)

) or by
considering QCD O (αs) corrections to the LO interference terms (O (αsαw)). A strict separation
of the corrections is not possible, owing to the appearance of diagrams of the type such as the third
one-loop diagram in Fig. 2 (a), which could be attributed to both. Instead, one has to consistently
take into account all corrections defined by the order in perturbation theory. A more extensive
discussion of the calculational details can be found in Ref. [4].

3. Numerical results

We define a dijet event by requiring at least two jets with a transverse momentum kT > 25 GeV
each and a rapidity y with |y| < 2.5, where we employ the anti-kT algorithm with the angular
separation parameter of R= 0.6 for the jet definition. Further details on the numerical input can be
found in Ref. [4]. The NLO correction relative to the Born cross section σ 0 is defined via σNLO =

σ 0× (1+ δ 1-loopweak ). In order to quantify the impact of the LO EW contributions of O
(

αsα , α2
)

which are omitted in purely QCD predictions, we further introduce a relative correction factor δ treeEW
with respect to the Born QCD cross section, σ 0 = σ 0QCD× (1+δ treeEW).

The results for the LHC with the CM energy of
√
s= 8 TeV are shown in Figs. 3 (a,b) for the

differential distributions with respect to the dijet invariant massM12 and the transverse momentum
of the leading jet, kT,1, respectively. The weak radiative corrections show the typical behaviour ex-
pected from the Sudakov-type logarithms which are negative throughout and increase in magnitude
at higher scales. However, they turn out to be only of moderate size in case of the M12 distribution
reaching approximately −3% for an invariant mass of M12 = 2 TeV. This can be understood by
the fact that the high-M12 tail of the distribution is not dominated by the Sudakov regime where all
scales (Mandelstam variables ŝ, t̂, û) are simultaneously required to be much larger than the gauge-

3
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reaching approximately −3% for an invariant mass of M12 = 2 TeV. This can be understood by
the fact that the high-M12 tail of the distribution is not dominated by the Sudakov regime where all
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Note: differences to QED / QCD where Sudakov log’s cancel
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↪→ no need to add “real W, Z radiation”
• non-Abelian charges of W, Z are “open” → Bloch–Nordsieck theorem not applicable
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1. Introduction

The inclusive dijet production pp→ j j+X is an important process to test the Standard Model
in the previously unexplored region that is now accessible at the LHC as well as in the search for
physics beyond the Standard Model, see e.g. Ref. [1]. Furthermore, it delivers crucial constraints in
the fit of the parton distribution functions (PDF), in particular for the gluon PDF at high momentum
fraction x.

The next-to-leading order (NLO) QCD corrections have been calculated a long time ago [2],
and a substantial effort is currently put into the computation of the corrections at next-to-next-
to-leading order (NNLO) in QCD, where the results for the purely gluonic channel have been
presented in Ref. [3] recently. Here we report on our calculation [4] of the purely weak radiative
corrections of O

(

α2s α
)

to dijet production. Corrections at this order have been previously calcu-
lated for the single-jet-inclusive cross section in Ref. [5], and preliminary results to dijet production
were shown in Ref. [6].

In spite of the suppression by the small value of the coupling constant α , it is well known that
the electroweak (EW) corrections can become large in the high-energy domain due to the appear-
ance of Sudakov-type and other high-energy logarithms. Considering that the data collected with
the LHC running at the centre-of-mass (CM) energy of

√
s= 7 TeV was already able to probe this

high-energy domain of dijet invariant masses M12 and jet transverse momenta kT up to approxi-
mately 5 TeV and 2 TeV, respectively, it is important to investigate the impact of these electroweak
corrections. Guided by the aforementioned logarithmic enhancements, we have restricted ourselves
to the calculation of the purely weak radiative corrections at the order α2s α in the first step, which
will be denoted by α2s αw in the following. They form a well-defined gauge-invariant subset of the
full EW corrections which can be supplemented by the remaining photonic QED corrections at a
later time.

2. Dijet production at hadron colliders

When investigating the EW effects in dijet production one first has to note that already at
leading order (LO) there are EW contributions in case of the four-quark processes given by the
exchange of an electroweak gauge boson between the two quark lines. This leads to the Born cross
section not only consisting of the purely QCD contributions of O

(

α2s
)

, but also from interference
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Figure 1: The tree-level contributions to the process ud→ ud of the orders (a) α2s , (b) α2, and (c) αsα .
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Figure 3: Differential distributions with respect to (a) the dijet invariant mass M12 and (b) the transverse
momentum of the leading jet kT,1 at the LHC for a CM energy of 8 TeV. Left: absolute predictions; right:
relative contributions δ (taken from Ref. [4]).

boson mass (ŝ, |t̂|, |û| ≫ M2
W), but instead are dominated by the Regge (forward) region where ŝ

is large but |t̂| or |û| remain small. In case of the transverse-momentum distribution, on the other
hand, the high-kT,1 domain probes the Sudakov-regime, and we observe larger NLO weak correc-
tions, reaching around −6% for leading-jet transverse momenta of kT,1 = 1.5 TeV. The tree-level
EW contributions are similar in size, but opposite in sign, leading to significant cancellations in the
sum. The rise of δ treeEW with higher scales can be understood by inspecting the parton luminosities:
At lower values of M12 and kT,1 the cross section is dominated by the gluon-induced processes
which do not contribute to the LO EW cross section. The only non-vanishing contribution to δ treeEW
comes from the four-quark processes which gain in importance for higher scales, in contrast to the
gluon-induced processes which become more and more suppressed due to the rapidly decreasing
gluon luminosity. In order to explain the larger corrections observed in the kT,1 distribution com-
pared to the M12 distribution one needs to inspect the dominant contribution to δ treeEW coming from
the O (αsα) interference terms of the valence quark–quark scattering: q1q2→ q1q2, qi ∈ {u,d}. In

4
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Higgs Boson

‣ Gluon-gluon fusion dominates due to large gluon luminosity
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‣ QCD corrections are huge!

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002) 
Ravindran, Smith, van Neerven (2003)

Graudenz, Spira, Zerwas (1993)
Dawson (1991); Djouadi, Spira, Zerwas (1991)NLO

NNLOMH/2 < µF , µR < 2MH

1/2 < µF /µR < 2

K =
�NNLO(NLO)

�LO
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Improved Higgs Cross-section  @ LHC

deF, Grazzini 

scale pdf + ↵S

‣ Still sizable uncertainties but great improvement over the last years

�(mH = 125GeV) = 19.27+7.2%
�7.8%

+7.5%
�6.9% pb

‣ And more precise results just arriving!!

Anastasiou et al (2008) ‣ Mixed EW-QCD effects evaluated in EFT approach 

Aglietti, Bonciani, Degrassi, Vicini (2004)
Degrassi, Maltoni (2004)

Actis, Passarino, Sturm, Uccirati (2008)
‣  Two loop EW corrections not negligible ~ 5%

‣  NNLL Resummation 9% at 7 TeV Catani, deF., Grazzini, Nason (2003)

‣ + Mass effects, Line-shape, interferences, ... Higgs Cross-Section WG
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LHC data and 
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Even Higher orders : N3LO
Baikov et al (2009)
Gehrmann et al (2010)
Lee, Smirnov, Smirnov (2010)

‣ NNNLO Soft-Virtual approximation 

‣ Triple real emission : threshold expansion Anastasiou, Duhr, Dulat, Mistlberger (2013)

‣ 3 loop form factor

‣ 2 loop + single emission 

‣ Subtraction terms Höschele, Hoff, Pak, Steinhauser, Ueda (2013)
Buehler, Lazopoulos (2013)

29

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, 
Herzog, Mistlberger (2014)

‣ 1 loop + double emission Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2013)

Duhr,  Gehrmann (2013); Li, Zu (2013);
Gehrmann, Jaquier, Glover, Koukoutsakis (2012)
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FIG. 1: Percent change from the ihixs cross-section at
NNLO σNNLO to the N3LO cross-section estimate at thresh-
old for

√

s = 7, 8, 13 and 14 TeV respectively, as a function of
the scale µ = µR = µF .

torize the Wilson coefficient at all orders, as in Eq. (4),
in both numerator and denominator, and it cancels in
the ratio. We find that the pure N3LO threshold cor-
rection is approximately −2.27% of the leading order.
We observe that the δ-term which we computed for the
first time in this publication is as large as the sum of
the plus-distribution terms which were already known
in the literature and cancels almost completely against
them for µR = µF = mH . We note, however, that by
choosing a different functional form for the function g(z)
in Eq. (11), the conclusion can be substantially different.
For example, by choosing g(z) = 1, z, z2, 1/z we find that
the threshold correction to the hadronic cross-section at
N3LO normalized to the leading order cross-section is
−2.27%, 8.19%, 30.16%, 7.73% respectively.
In Fig. 1 we present the percentual change of the N3LO

threshold corrections to an existing Higgs cross-section
estimate based on previously known corrections (NNLO,
electroweak, quark-mass effects) in ihixs [2] and the set-
tings of Ref. [16]. The new N3LO correction displayed in
this plot includes the full logarithmic dependence on the
renormalization and factorization scales, as they can be
predicted from renormalization group and DGLAP evo-
lution, the Wilson coefficient at N3LO and the threshold
limit of Eq. (10). The function g(z) of Eq. (11) is fixed
to unity. σNNLO and δσN3LO are defined after expanding
the product of the Wilson coefficient and the partonic
cross-sections in αs. We conclude that N3LO corrections
are important for a high precision estimation of the Higgs
cross-section.
Our result of the N3LO cross-section at threshold

demonstrates that it is, in principle, possible to calcu-
late all loop and phase-space integrals required for N3LO
QCD corrections for hadron collider processes, albeit in a
kinematic limit. With this publication, we open up a new
era in precision phenomenology which promises the com-
putation of full N3LO corrections for Higgs production
and other processes in the future.
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Precision in data sensitive to NNLO effects

TH vs EXP : detailed comparison just began at LHC

DATA vs TH : Drell-Yan 
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Figure 7. The measured di↵erential cross section d�
dm``

for (a) the nominal and (b) the extended-
analysis as a function of invariant mass m`` compared to the NLO and NNLO QCD fits (solid lines).
The inner error bars show the total uncorrelated experimental uncertainty, and the outer error bars
represent the total experimental uncertainty, excluding the luminosity uncertainties. The dashed
lines correspond to the QCD fit after applying the adjustments of the fitted nuisance parameters
for each correlated error source. The lower half of each figure shows the ratio of theory expectations
to data in the upper part, and the �2 pull contribution in the lower part.

HERA. The NNLO fit performs significantly better than the NLO fit in describing the

data.
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Figure 6: The DY rapidity spectrum normalized to the Z-peak region (1/sZ d2s/d|y|), plot-
ted for different mass regions within the detector acceptance, as measured and as predicted
by NLO FEWZ+CT10 PDF and NNLO FEWZ+CT10 PDF calculations. There are six mass bins
between 20 and 1500 GeV, from left to right and from top to bottom. The uncertainty bands
in the theoretical predictions combine the statistical and the PDF uncertainties (shaded bands).
The statistical component is negligible. The smaller plots show the ratio of data to theoretical
expectation.
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FIG. 7. The measured di↵erential cross section for isolated-photon plus jet production (dots) as a function of M�j, ���j and
| cos ✓�j| [21]. The NLO QCD calculations from Jetphox using the Cteq6.6 (solid lines), Mstw2008 (dashed lines) and Ct10
(dotted lines) PDF sets are also shown. The bottom part of the figure shows the ratio between the NLO QCD calculations and
the measured cross section. The inner (outer) error bars represent the statistical uncertainties (the statistical and systematic
uncertainties added in quadrature) and the hatched band represents the theoretical uncertainty.
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FIG. 8. Invariant mass distribution of the leading photon pairs m�� (left and center) and transverse momentum pT,�� of the
di-photon system (right) [22]. Black dots correspond to data with error bars for their total uncertainties. The data are compared
to LO MC generators (left), Pythia and Sherpa, NNLO, 2�nnlo, and NLO, Diphox++Gamma2MC calculations (center
and right). The uncertainty on the cross sections predicted by LO MC generators include only statistical uncertainties, while
uncertainties on the NLO and NNLO QCD predictions include contributions from the limited size of the simulated sample,
from the scale choice and from uncertainties on the parton distribution functions and on the hadronization and underlying
event corrections.
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and sin(✓⇤⌘) is given by

sin(✓⇤⌘) =

s

1� tanh2

(⌘(`�)� ⌘(`+))

2

�
. (6)

The �⇤
⌘ observable has been shown to be correlated to

the Z transverse momentum, but it has a better reso-
lution at low transverse momentum with typical purity
of & 85%. The measurement of the di↵erential �⇤

⌘ spec-
trum has been presented in [29]; in Fig. 12 it is displayed
normalized to the ResBos prediction and is reported in
Fig. 12. The ratio of the data to ResBos are compared
to two di↵erent predictions shown by a dashed line: a
NLO+NLL QCD calculation from Ref. [35] and a NNLO
QCD prediction obtained with Fewz2.1. The data are

DATA vs TH : DiPhotons pp ! ��
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Conclusions

Amazing work in the last few years

 NLO :  multileg processes and automatic!

 Resummation setting NNLL as new standard

 Improvements for NLO+PS and high degree of automation

 NNLO finally reaching          processes2 ! 2

direct consequence of LHC

 + many other issues not discussed (including jet structure)!

 PDFs: precision and uncertainties

32

 Higgs moving towards N3LO
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Thanks!

33


