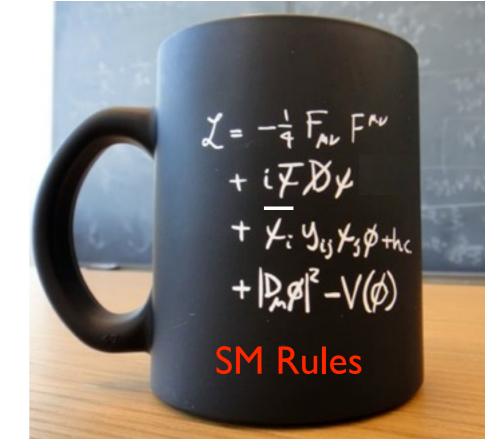
Precision QCD in the LHC era

Daniel de Florian Dpto. de Física - FCEyN- UBA Argentina

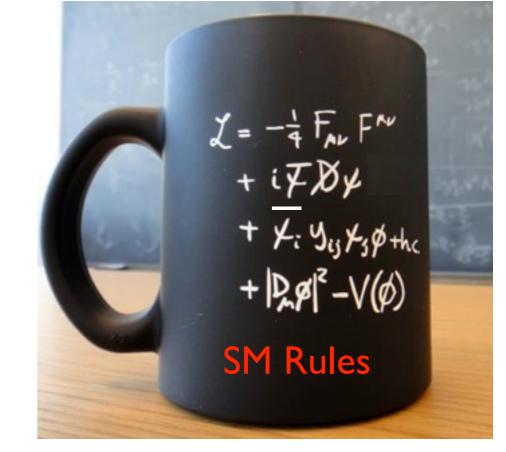
DIS 2014

Warsaw, April 28


Precision QCD in the LHC era

Daniel de Florian

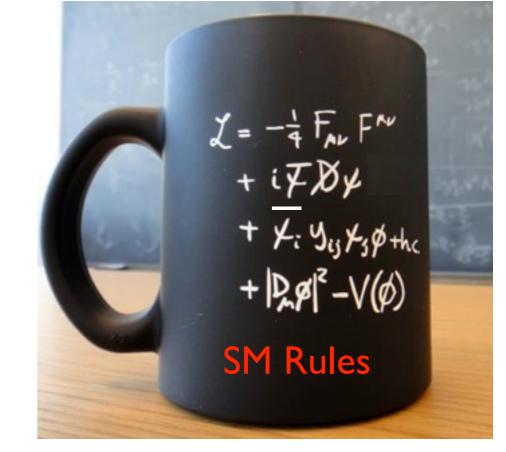
- ► LHC was incredibly successful at 7 & 8 TeV
- Everything SM like (including Higgs)



- ▶ LHC was incredibly successful at 7 & 8 TeV
- Everything SM like (including Higgs)

- ► LHC was incredibly successful at 7 & 8 TeV
- Everything SM like (including Higgs)
- New physics might be in the detail

Need to be precise on cross-sections and SM parameters $m_H,\,m_t,\,\alpha_s,\dots$


Vacuum stability in the SM at NNLO requires

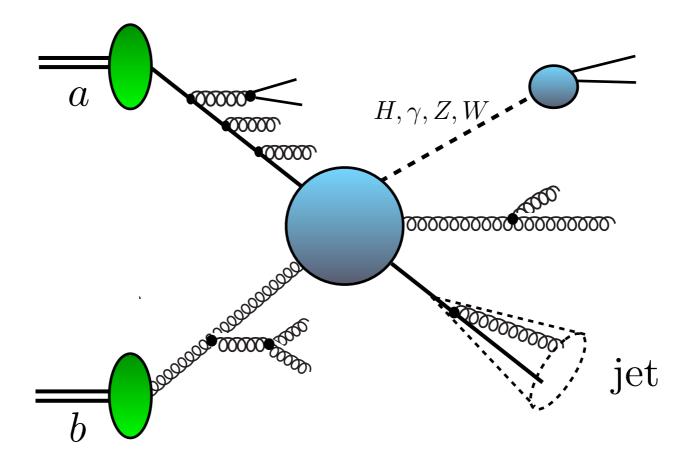
Degrassi et al; Bezrukov et al; Alekhin, Djouadi, Moch; Masina (2012)

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \,\text{GeV}}{0.9 \,\text{GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \,\text{GeV}$$

- ▶ LHC was incredibly successful at 7 & 8 TeV
- Everything SM like (including Higgs)
- New physics might be in the detail

Need to be precise on cross-sections and SM parameters $m_H, m_t, \alpha_s, ...$

Vacuum stability in the SM at NNLO requires


Degrassi et al; Bezrukov et al; Alekhin, Djouadi, Moch; Masina (2012)

 $m_H \ge 129.2 + 1.8 \times$

$$\left(\frac{m_t^{\text{pole}} - 173.2 \,\text{GeV}}{0.9 \,\text{GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \,\text{GeV}$$

In the LHC era, QCD is everywhere!

non-perturbative parton distributions

$$d\sigma = \sum_{ab} \int dx_a \int dx_b f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) \times d\hat{\sigma}_{ab}(x_a, x_b, Q^2, \alpha_s(\mu_R^2)) + \mathcal{O}\left(\left(\frac{\Lambda}{Q}\right)^m\right)$$

perturbative partonic cross-section

Partonic cross-section: expansion in $\alpha_s(\mu_R^2) \ll 1$ $d\hat{\sigma} = \alpha_s^n d\hat{\sigma}^{(0)} + \alpha_s^{n+1} d\hat{\sigma}^{(1)} + \dots$

Require precision for perturbative and non-perturbative contribution

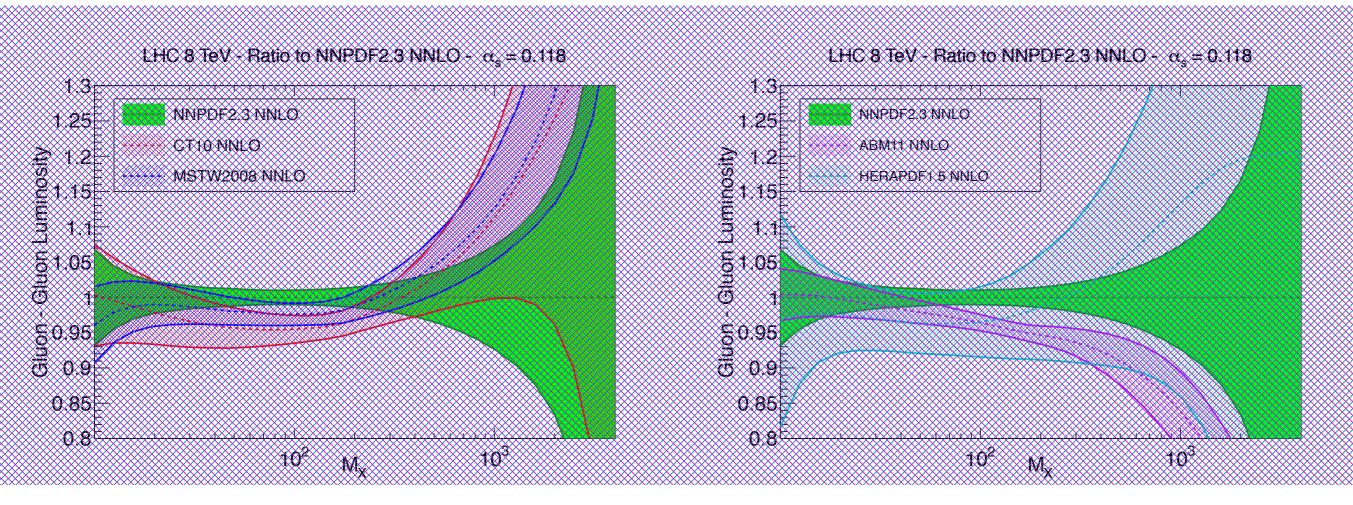
PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc

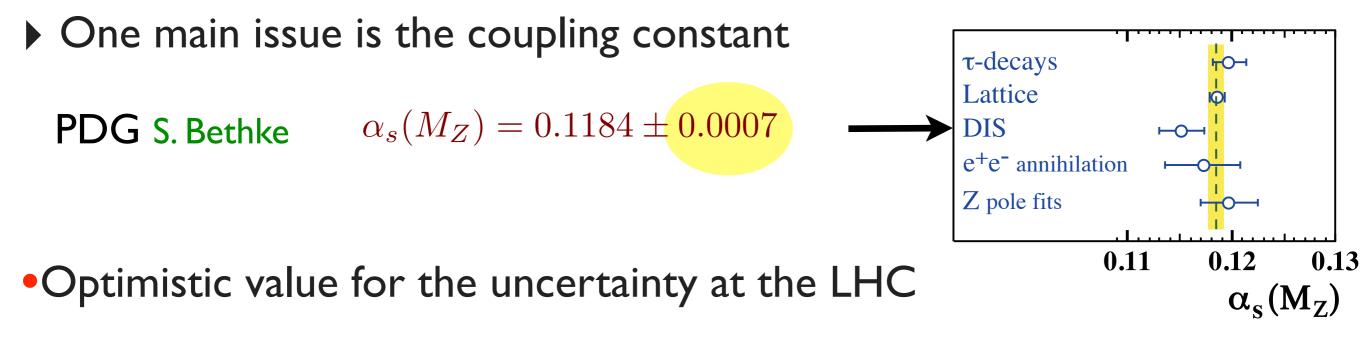
set	H.O.	data	$\alpha_s(M_Z)$ @NNLO	uncertainty	HQ	Comments
MSTW 2008	NNLO	DIS+DY+Jets	0.1171	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')	old HERA DIS
CTI0	NNLO	DIS+DY+Jets	0.118	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)	New HERA DIS
NNPDF	NNLO	DIS+DY+Jets +LHC	0.1174	Monte Carlo	GM-VFN (FONLL)	New HERA DIS
ABKM	NNLO	DIS+DY(f.t.) +DY-tT(LHC)	0.1132	Hessian	FFN BMSN	New HERA DIS
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	0.1124	Hessian	FFN (VFN massless)	valence like input pdfs
HERA PDF	NNLO	only DIS HERA	0.1176	Hessian	GM-VFN (ACOT+TR')	Latest HERA DIS

PDFs

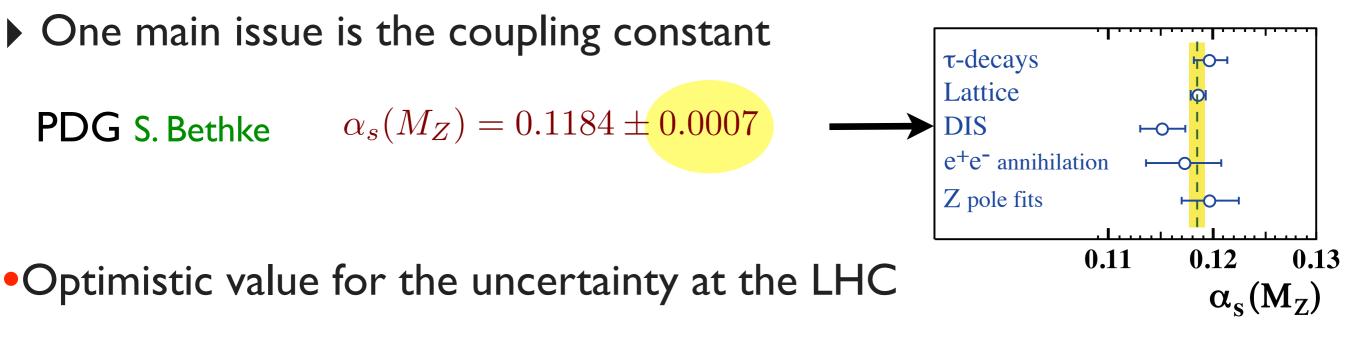
- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc


up to 5% ! >15% in Higgs cross section

set	H.O.	data	$\alpha_s(M_Z)$ @NNLO	uncertainty	HQ	Comments
MSTW 2008	NNLO	DIS+DY+Jets	0.1171	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')	old HERA DIS
CTI0	NNLO	DIS+DY+Jets	0.118	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)	New HERA DIS
NNPDF	NNLO	DIS+DY+Jets +LHC	0.1174	Monte Carlo	GM-VFN (FONLL)	New HERA DIS
ABKM	NNLO	DIS+DY(f.t.) +DY-tT(LHC)	0.1132	Hessian	FFN BMSN	New HERA DIS
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	0.1124	Hessian	FFN (VFN massless)	valence like input pdfs
HERA PDF	NNLO	only DIS HERA	0.1176	Hessian	GM-VFN (ACOT+TR')	Latest HERA DIS

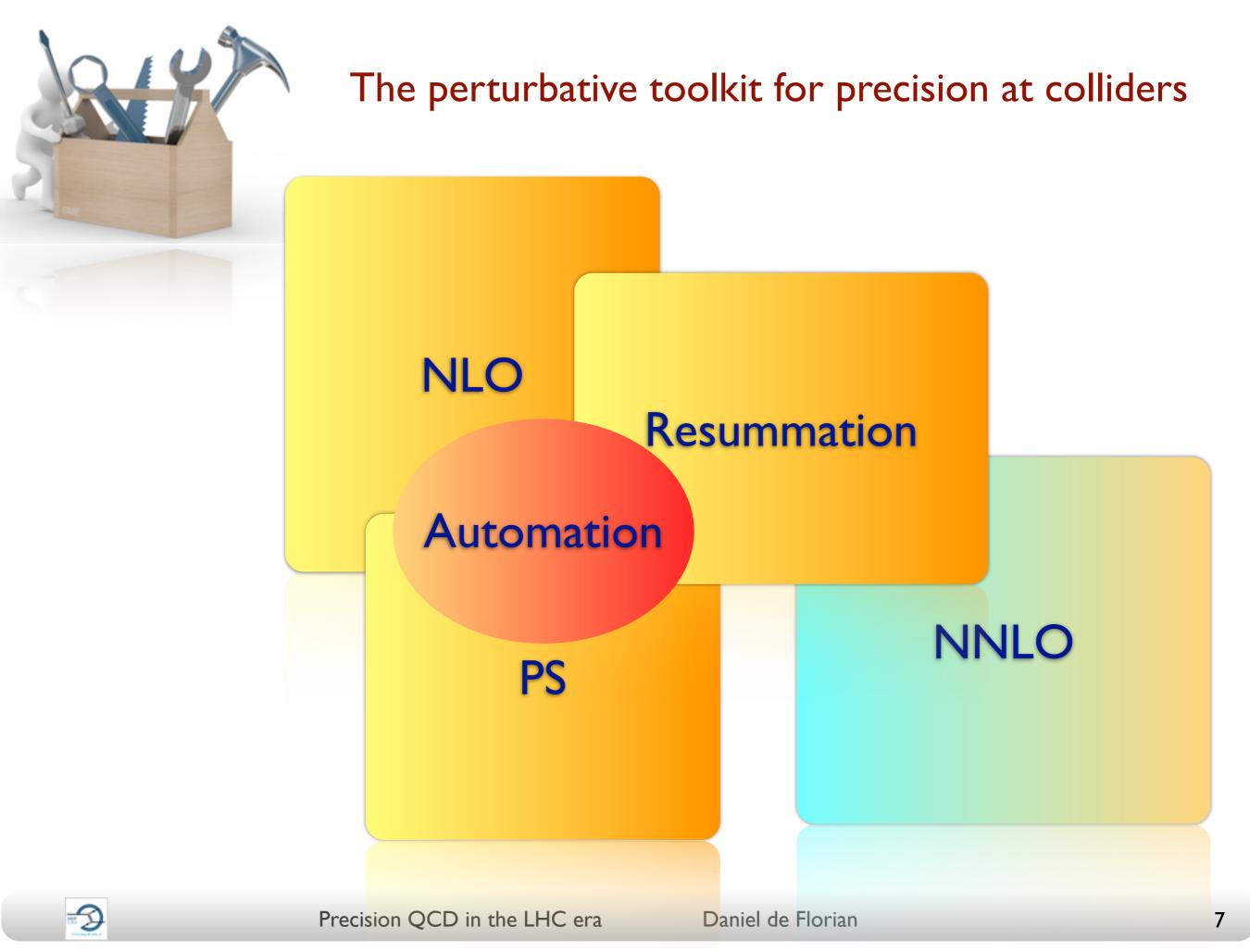

Luminosities with common $\alpha_s = 0.118$ R. Ball et al (2013) $\mathcal{L}_{ij}(\tau \equiv M_X^2/S) = \frac{1}{S} \int_{\tau}^{1} \frac{dx}{x} f_i(x, M_X^2) f_j(\tau/x, M_X^2)$

gluon-gluon


- Good agreement for global fits but deviations as large as uncertainties
- Larger differences with "non-global" results
- 2x larger uncertainties for gluon

•DIS (PDFS) not well covered : some experiments pull value down

•DIS (PDFS) not well covered : some experiments pull value down


PDF4LHC recommendation

Compute pdfs uncertainties using MSTW & CT & NNPDF (68%cl)
Obtain the envelope of all bands and use

 $\Delta \alpha_s(M_Z) = \pm 0.0012 (\pm 0.002)$ at 68% (90%) c.l.

Precise LHC data will have important effect on validation & improvement

The NLO revolution

Why NLO?

Accurate Theoretical Predictions

shape and normalization first error estimate

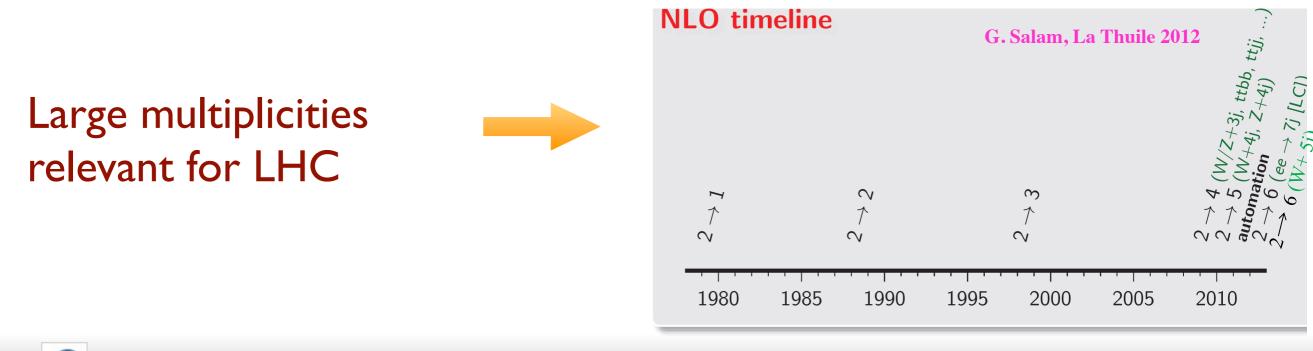
- Large Corrections : check PT Higgs
- Opening of new channels
- Effect of extra radiation

jet algorithm dependence

Amazing progress in the last few years

The NLO revolution

Why NLO?


Accurate Theoretical Predictions

shape and normalization first error estimate

- Large Corrections : check PT Higgs
- Opening of new channels
- Effect of extra radiation

jet algorithm dependence

Amazing progress in the last few years

Revolution in calculation of I-loop amplitudes

Bottleneck in the virtual contribution : large multiplicities

Feynmanian approach

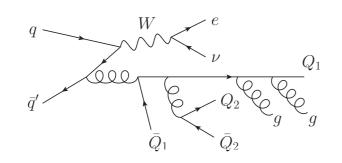
Improvements in decomposition and reduction

Denner, Dittmaier; Pozzorini; Binoth, Guillet, Heinrich, Pilon, Schubert + many others

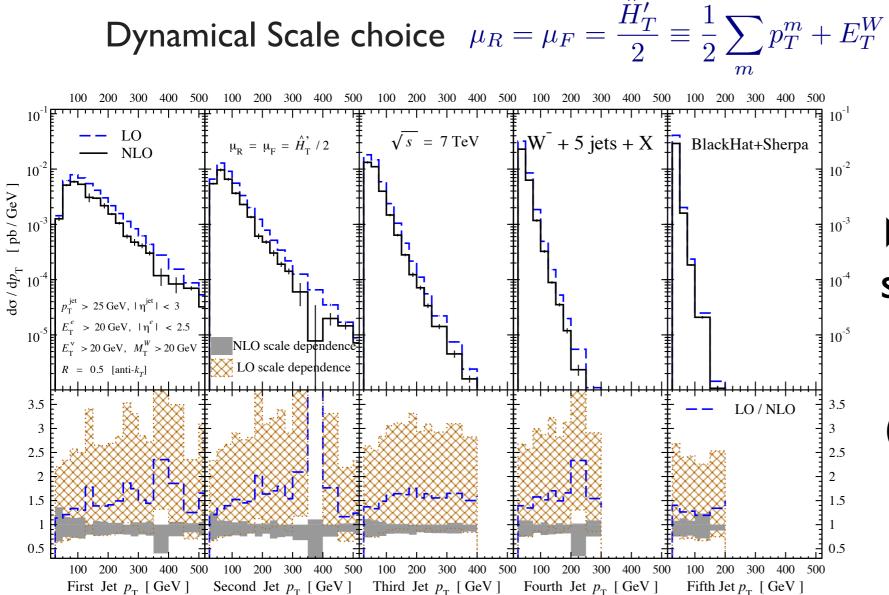
Unitarian approach

Use multi-particle cuts from generalized unitarity

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Mastrolia; Forde; Badger; Ellis, Giele, Kunszt, Melnikov + many others


OPP Ossola, Papadopoulos, Pittau

decomposition at the integrand level


A very recent example :W+5 jets !! BlackHat Co

BlackHat Collaboration, Z.Bern et al

Real $2 \rightarrow 8$ SHERPA

Virtual $2 \rightarrow 7$ BlackHat

Dramatic reduction in scale dependence (~20%)

Up to 50% correction (non-trivial in shape)

Multi-jet production

 10^{1} 10^{0} 10^{0} 10^{0} 10^{-1} 10^{-2} NJet + Sherpa $pp \rightarrow 5 jet at 7 TeV$

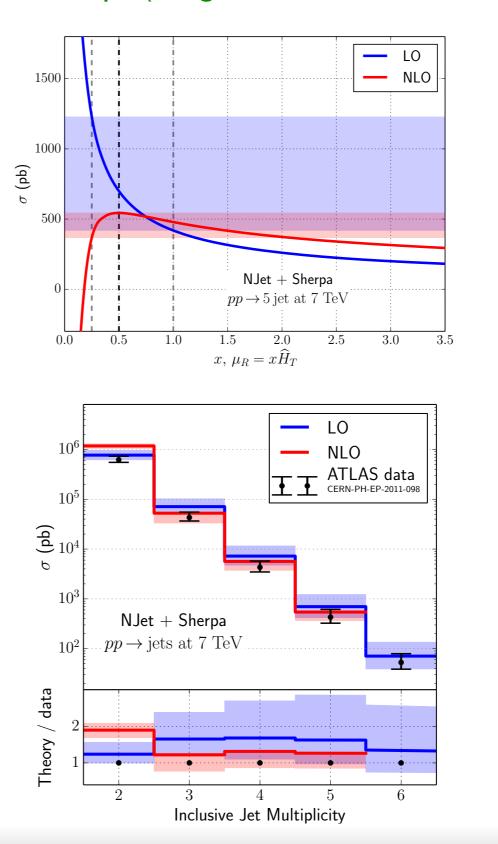
 $pp \rightarrow 5 \, \text{jets at NLO}$

Better stability

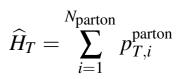
400

500

Leading jet p_T [GeV]


600

NLO in very good agreement with data!


700

800

900

Njet+Sherpa (Badger, Biedermann, Uwer, Yundin)

 $10_{2.0}^{-3}$

 $1.5 \\ 1.0 \\ 0.5$

0.0

100

200

300

Daniel de Florian

Experimenter's wish-list

Process $(V \in \{Z, W, \gamma\})$	Comments
Calculations completed since Les Houches 2005	
1. $pp \rightarrow VV$ jet	WWjet completed by Dittmaier/Kallweit/Uwer [4,5]; Campbell/Ellis/Zanderighi [6]. ZZjet completed by
2. $pp \rightarrow$ Higgs+2jets	Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7] NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel
3. $pp \rightarrow V V V$	completed by Ciccolini/Denner/Dittmaier [9,10] ZZZ completed by Lazopoulos/Melnikov/Petriello [11] and WWZ by Hankele/Zeppenfeld [12] (see also Binoth/Ossola/Papadopoulos/Pittau [13])
4. $pp \rightarrow t\bar{t}b\bar{b}$ 5. $pp \rightarrow V+3$ jets	relevant for $t\bar{t}H$ computed by Bredenstein/Denner/Dittmaier/Pozzorini [14,15] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16 calculated by the Blackhat/Sherpa [17] and Rocket [18] collaborations
Calculations remaining from Les Houches 2005	
6. $pp \rightarrow t\bar{t}$ +2jets 7. $pp \rightarrow VV b\bar{b}$, 8. $pp \rightarrow VV$ +2jets	relevant for $t\bar{t}H$ computed by Bevilacqua/Czakon/Papadopoulos/Worek [19] relevant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$ relevant for VBF $\rightarrow H \rightarrow VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [20–22]
NLO calculations added to list in 2007	
9. $pp \rightarrow b\bar{b}b\bar{b}$	$q\bar{q}$ channel calculated by Golem collaboration [23]
NLO calculations added to list in 2009	
10. $pp \rightarrow V$ +4 jets 11. $pp \rightarrow Wb\bar{b}j$ 12. $pp \rightarrow t\bar{t}t\bar{t}$ Calculations beyond NLO added in 2007	top pair production, various new physics signatures top, new physics signatures various new physics signatures
13. $gg \rightarrow W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$ 14. NNLO $pp \rightarrow t\bar{t}$ 15. NNLO to VBF and Z/γ +jet	backgrounds to Higgs normalization of a benchmark process Higgs couplings and SM benchmark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for W/Z	precision calculation of a SM benchmark

Experimenter's wish-list

Process $(V \in \{Z, W, \gamma\})$	Comments
Calculations completed since Les Houches 2005	
4 1717'	
1. $pp \rightarrow VV$ jet	<i>WW</i> jet completed by Dittmaier/Kallweit/Uwer [4,5];
	Campbell/Ellis/Zanderighi [6].
	ZZ jet completed by
	Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7]
2. $pp \rightarrow \text{Higgs+2jets}$	NLO QCD to the gg channel
	completed by Campbell/Ellis/Zanderighi [8];
	NLO QCD+EW to the VBF channel
	completed by Ciccolini/Denner/Dittmaier [9,10]
3. $pp \rightarrow V V V$	ZZZ completed by Lazopoulos/Melnikov/Petriello [11
	and WWZ by Hankel L_{PP} feld [12]
	(see also Binoth/Organa/Papadopallos/Pittau [13])
4. $pp \rightarrow t\bar{t}b\bar{b}$	relevant for A compared by
	Bredenste (Denne Ditt. ic r ozzorini [14,15]
	and Pryilac, zakon/Papadopoulos/Pittau/Worek [10
5. $pp \rightarrow V+3$ jets	cal ulated by a Black at/Sherpa [17]
	an Post [18] a aborations
Calculations remaining from Les Houches	
e e e e e e e e e e e e e e e e e e e	
6. $pp \rightarrow t\bar{t}$ +2jets	relevant for $t\bar{t}H$ computed by
11 J	P ilacqua/Czakon/Papadopoulos/Worek [19]
7. $pp \rightarrow VV b\bar{b}$,	relevant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$
8. $pp \rightarrow VV+2$ jets	relevant for VBF $\rightarrow H \rightarrow VV$
	VBF contributions calculated by
	(Bozzi/)Jäger/Oleari/Zeppenfeld [20-22]
NLO calculations added to list in 207	
9. $pp \rightarrow b\bar{b}b\bar{b}$	$q\bar{q}$ channel calculated by Golem collaboration [23]
NLO calculations added to list in 2009	
$10 m \rightarrow V / 4$ jets	ton pair production, various now physics signatures
10. $pp \rightarrow V+4$ jets 11. $pp \rightarrow Wb\bar{b}i$	top pair production, various new physics signatures
11. $pp \rightarrow Wb\bar{b}j$ 12. $mp \rightarrow t\bar{t}t\bar{t}$	top, new physics signatures
12. $pp \rightarrow t\bar{t}t\bar{t}$ Calculations beyond NLO added in 2007	various new physics signatures
Calculations beyond NLO added in 2007	
13. $gg \to W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$	backgrounds to Higgs
13. $gg \rightarrow W W O(\alpha \alpha_s)$ 14. NNLO $pp \rightarrow t\bar{t}$	normalization of a benchmark process
	Higgs couplings and SM benchmark
15. NNLO to VBF and Z/γ +jet	inggs couplings and Sivi benchinark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for W/Z	precision calculation of a SM banchmark
10. INITLO QUDHITLO EW 101 W/Z	precision calculation of a SM benchmark

Final goal: Really automatic NLO calculations zero cost for humans

- Specify the process (input card)
- Input parameters
- Define final cuts
- Automatic NLO calculation "conceptually" solved

•in a few years a number of codes (among others)

Blackhat+Sherpa GoSam + Sherpa/MadGraph CutTools **OpenLoops+Sherpa** MadLoop+MadFKS

> \checkmark compete on precision, flexibility, speed, stability, ... √ many features : uncertainties, ...

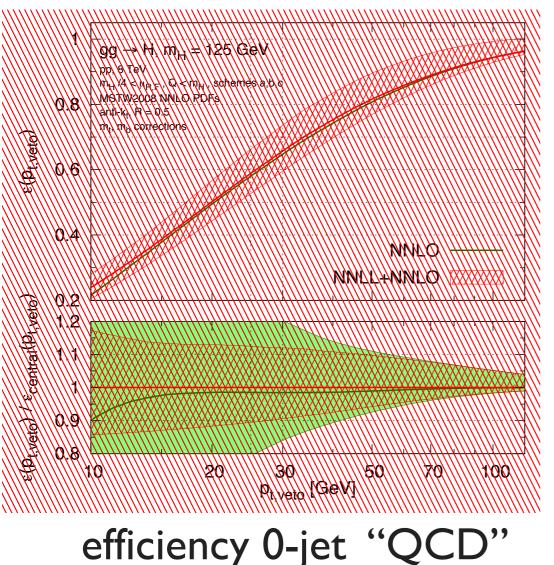
Best solution still to emerge, but not more NLO wish-list, do it yourself!

Individual calculations still relevant! \checkmark open the way to new methods

Resummation

• QCD based on convergence of perturbative expansion $\sigma = C_0 + \alpha_s C_1 + \alpha_s^2 C_2 + \alpha_s^3 C_3 + \dots$ requires $\alpha_s \ll 1$, $C_n \sim O(1)$

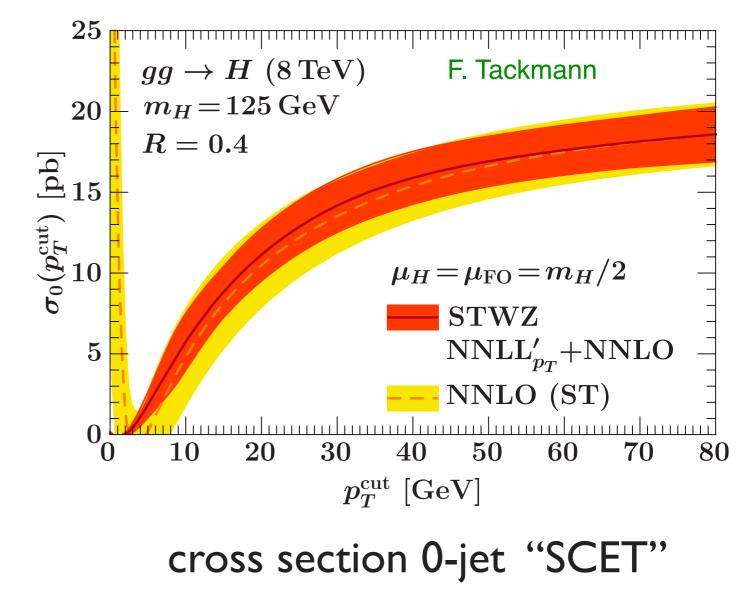
In the boundaries of phase space soft and collinear emission


unbalance cancellation of infrared singularities between real and virtual contributions

• Convergence spoiled when two scales are very different $L = |\log \frac{E_1}{E_0}| \gg 1$ $\mathcal{C}_m \sim L^n \quad n \leq 2 m_{\alpha_s} m^{2n} M^2/q_T^2$ MRST2001 2.5 low transverse momentum $\log \frac{q_T}{O}$ NLO dσ/dq_T (pb/GeV) 1.0 LO LO: $\frac{d\sigma}{dq_T} \to +\infty$ as $q_T \to 0$ Higgs NLO: $\frac{d\sigma}{da_T} \rightarrow -\infty$ as $q_T \rightarrow 0$ 0.5 0.0 10 20 50 30 40 q_T (GeV)

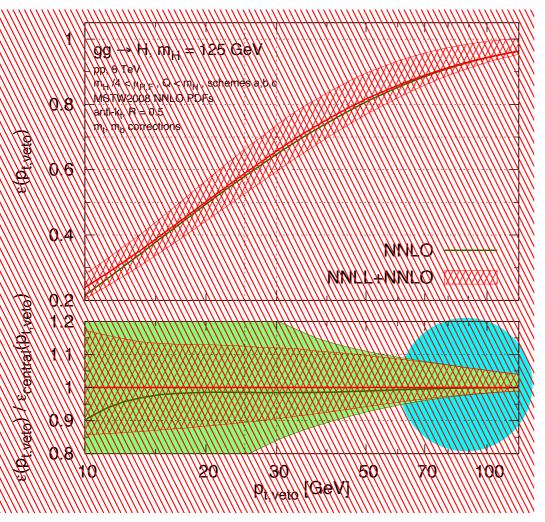
Resummation achieved by exponentiation of large logs in Sudakov factor

Most recently: jet vetos Jet veto in Higgs @ NNLL


Banfi, Monni, Salam, Zanderighi (2012) Banfi, Monni, Zanderighi (2013)

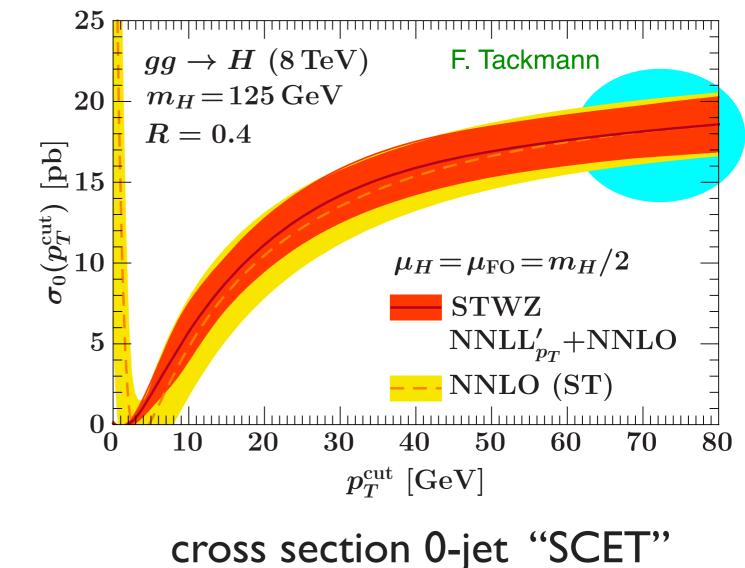
Reduction in uncertainty

Validation of tools



Resummation achieved by exponentiation of large logs in Sudakov factor

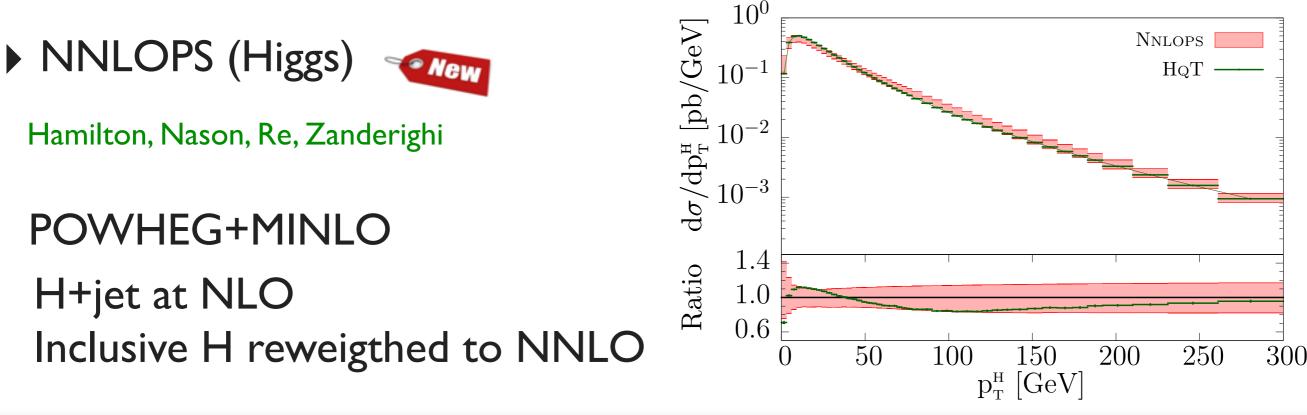
Most recently: jet vetos Jet veto in Higgs @ NNLL


Banfi, Monni, Salam, Zanderighi (2012) Banfi, Monni, Zanderighi (2013)

efficiency 0-jet "QCD"

- Reduction in uncertainty
- Validation of tools

Recover fixed order at large transverse momentum


Merging NLO with Parton Showers

- Resummation to NLL accuracy + realistic final states
- Allow to carry NLO precision to all aspects of experimental analysis
 MC@NLO Frixione, Webber
 POWHEG Nason; Frixione, Nason, Oleari
- Can be interfaced to different tools : Herwig, Phytia, Sherpa
- Treat radiation differently but formally same NL accuracy

Merging NLO with Parton Showers

- Resummation to NLL accuracy + realistic final states
- Allow to carry NLO precision to all aspects of experimental analysis
 MC@NLO Frixione, Webber
 POWHEG Nason; Frixione, Nason, Oleari
- Can be interfaced to different tools : Herwig, Phytia, Sherpa
- Treat radiation differently but formally same NL accuracy

Automation and more

- Provide large library of processes or different degree of automation
- aMC@NLO: full automation of NLO and PS in MC@NLO framework Frederix, Frixione, Hirschi, Pittau, Maltoni, Torrelli
- POWHEG-BOX framework Aioli, Nason, Oleari, re
- Sherpa : real matrix elements matching MC@NLO and POWHEG Krauss, Höche, Siegert, Schönher
- POWHEL: automation of ME from HELAC with POWHEG-Box Papadopoulos, Garzelli, Kardos, Trocsanyi
- POWHEG Box + Madgraph4 Campbell, Ellis, Frederix, Nason, Oleari, Williams
- MINLO Hamilton, Nason, Oleari, Zanderighi
- UNLOPS Lönnbland, Prestel

+ many others

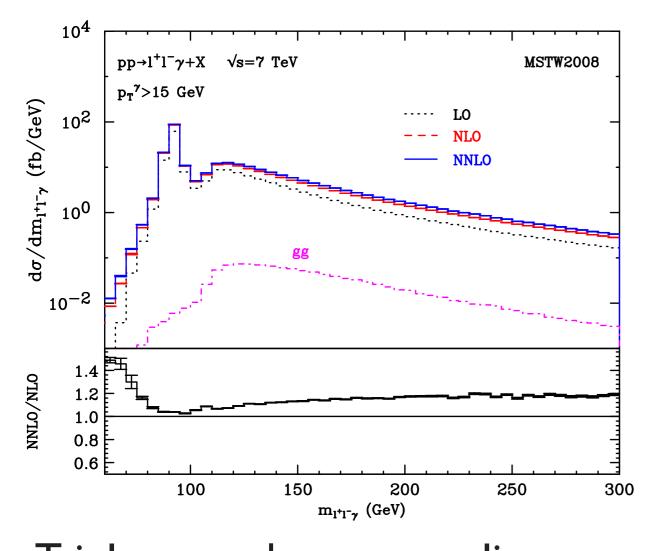
GENEVA Aioli et al

NNLO the new frontier

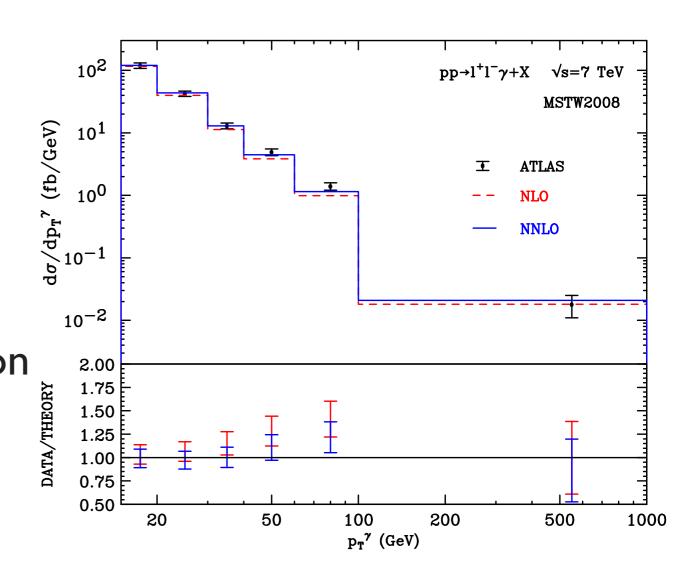
- Some measurements to few percent accuracy
- $\checkmark e^+e^- \to 3 \text{ jets}$ $e^-p \to (2+1) \text{ jets}$ $\checkmark pp \to V$ $pp \to jets \quad \text{partial}$ $pp \to V + \text{ jets}$ $\checkmark pp \to t\bar{t}$

$$\mathcal{O}(\alpha_s^2)$$

Match experimental accuracy Extract accurate information


Some processes with still (potentially) large NNLO corrections

 $\begin{array}{cccc} \checkmark & pp \rightarrow H & pp \rightarrow HH \\ \checkmark & pp \rightarrow \gamma\gamma & pp \rightarrow Z\gamma & pp \rightarrow VH \\ & pp \rightarrow VV & & \\ & pp \rightarrow H + \text{jets} & \text{partial} \end{array}$

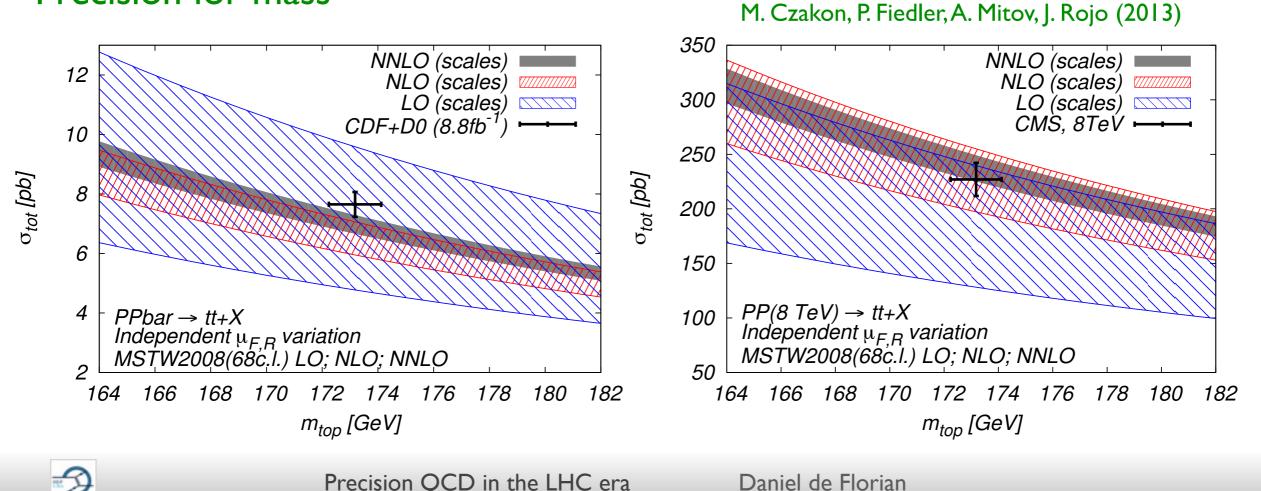


Daniel de Florian

 $pp \to Z$

NNLO ~16% at LHC
 Improvement in data/TH

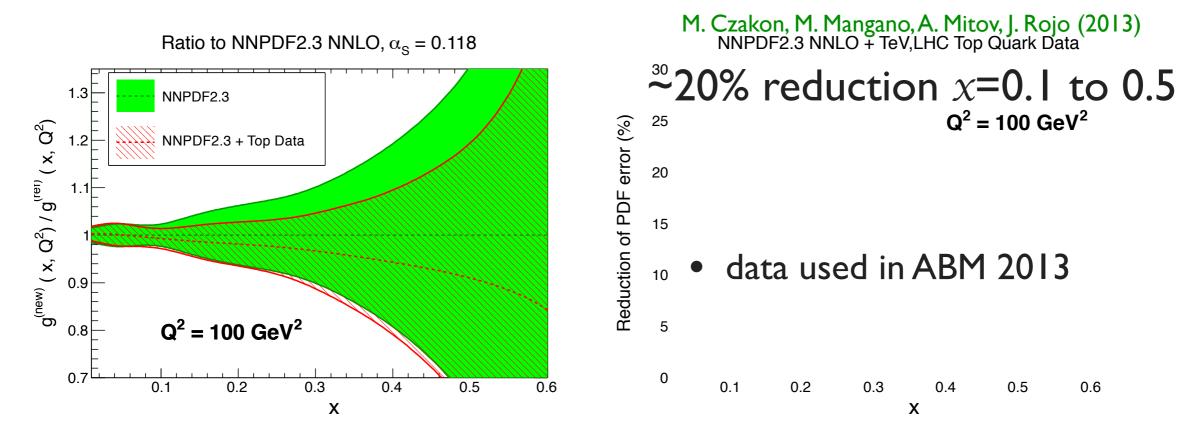
Triple gauge boson couplings
OpenLoops for amplitude generation
First step towards automation


 $pp \rightarrow tt$

- Very relevant observable at colliders
- ► LHC will reach better than 5% accuracy
- top mass, pdfs, new physics

(inclusive) Full NNLO available <5% TH uncertainties

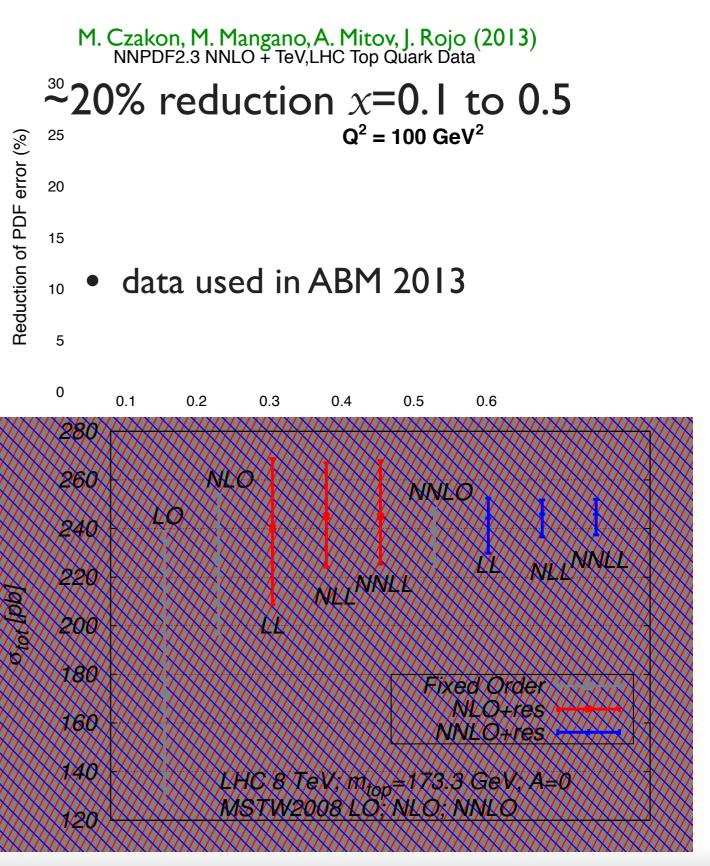
Czakon, Fiedler, Mitov (2013)


Collider	$\sigma_{\rm tot} ~[{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	$+0.110(1.5\%) \\ -0.200(2.8\%)$	$+0.169(2.4\%) \\ -0.122(1.7\%)$
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	$+6.2(2.5\%) \\ -8.4(3.4\%)$	$+6.2(2.5\%) \\ -6.4(2.6\%)$
LHC 14 TeV	953.6	$+22.7(2.4\%) \\ -33.9(3.6\%)$	+16.2(1.7%) -17.8(1.9\%)

Precision for mass

$pp \to t\bar{t}$

Precision for gluon pdf

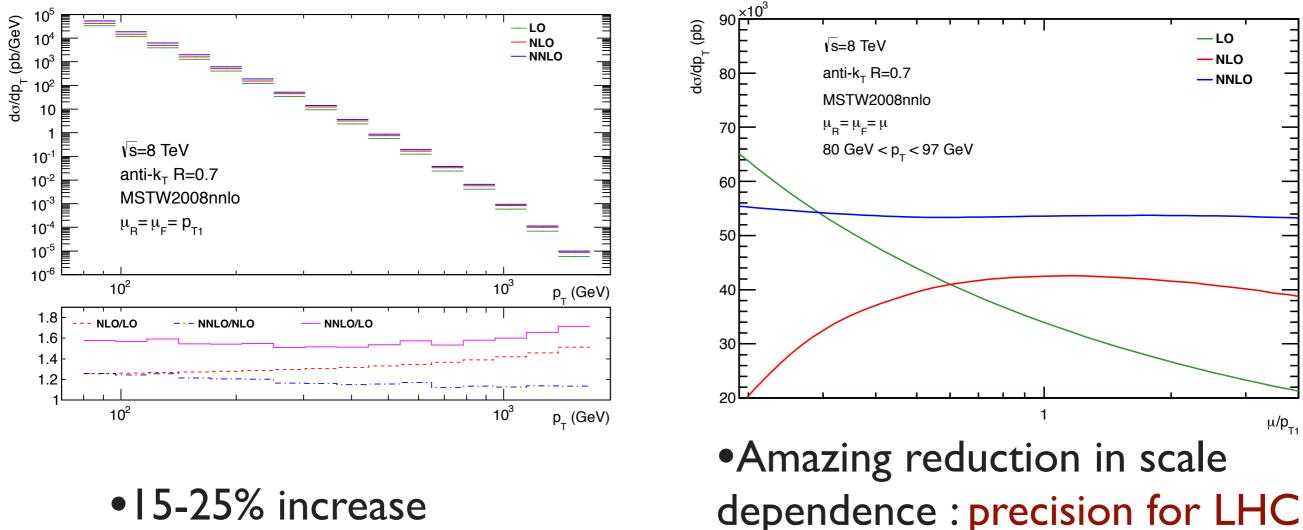


$pp \to t\bar{t}$

Precision for gluon pdf

Ratio to NNPDF2.3 NNLO, $\alpha_s = 0.118$ 1.3 NNPDF2.3 $g^{(new)}$ (x, Q^2) / $g^{(rei)}$ (x, Q^2) NNPDF2.3 + Top Data 1.2 1.1 0.9 $Q^2 = 100 \text{ GeV}^2$ 0.8 0.7 0.2 0.3 0.4 0.1 0.5 0.6 Х

• Even higher precision: threshold resummation


Precision QCD in the LHC era

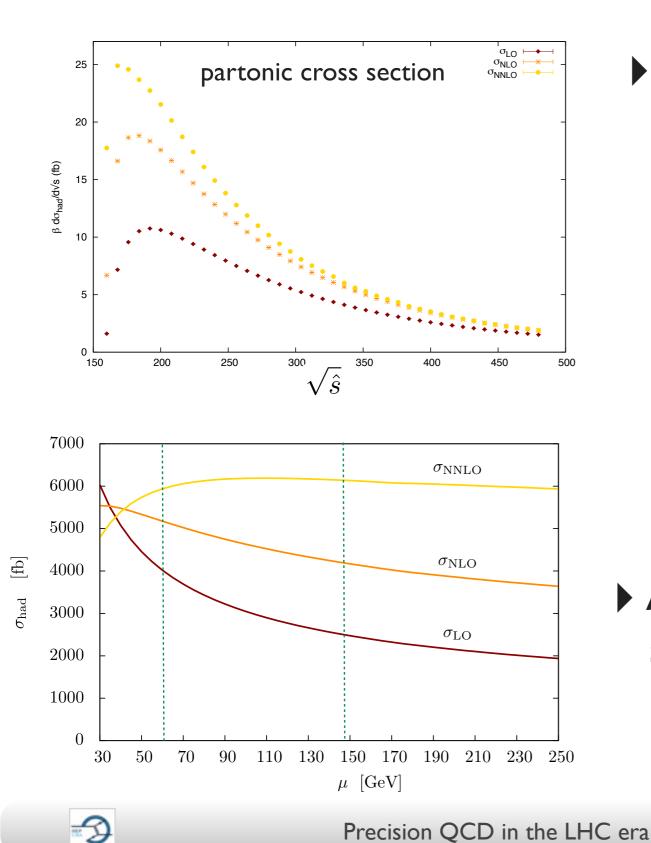
Daniel de Florian

 $pp \rightarrow 2$ jets

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, J.Pires (2013) J.Curry, A. Gehrmann-De Ridder, E.W.N. Glover, J.Pires (2013)

Pure gluon using antenna subtraction : NNLOJET

15-25% increase

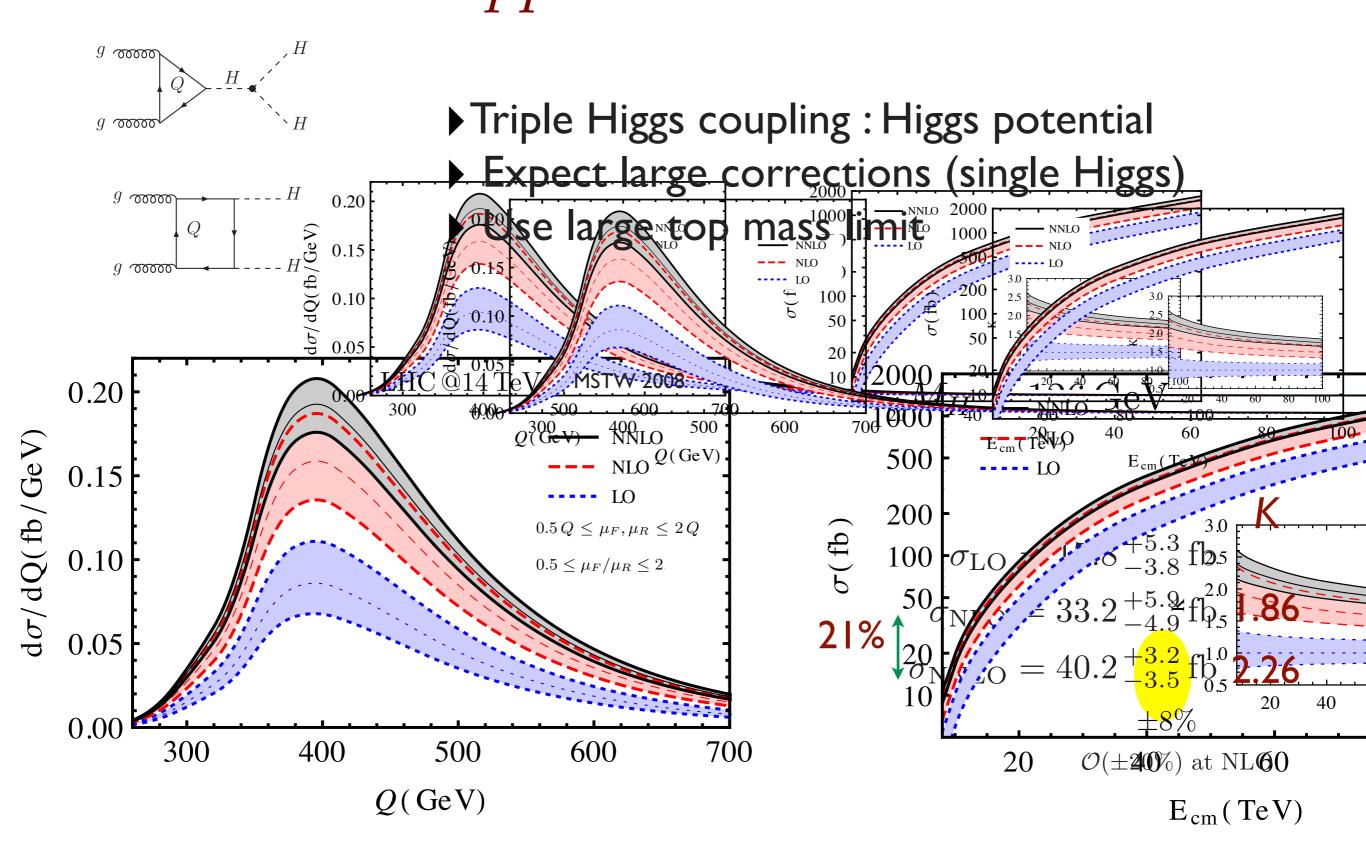

Similar results expected for other partonic channels (gg dominant at low p_T)

•But NNLO can not be predicted by NLO scale variations..

Daniel de Florian

$pp \rightarrow H + \text{jet}$

R.Boughezal, F.Caola, K.Melnikov, F.Petriello, M.Schulze (2013)


▶ Pure gluon only $p_T^{\text{jet}} > 30 \,\text{GeV}$

$$\sigma_{\rm LO}(pp \to Hj) = 2713^{+1216}_{-776} \text{ fb},$$

$$\sigma_{\rm NLO}(pp \to Hj) = 4377^{+760}_{-738} \text{ fb},$$

$$\sigma_{\rm NNLO}(pp \to Hj) = 6177^{-204}_{+242} \text{ fb}.$$

+60% NLO +30-40% NNLO

Another case of significantly reduced scale dependence ~4%

DdeF., J.Mazzitelli (2013)

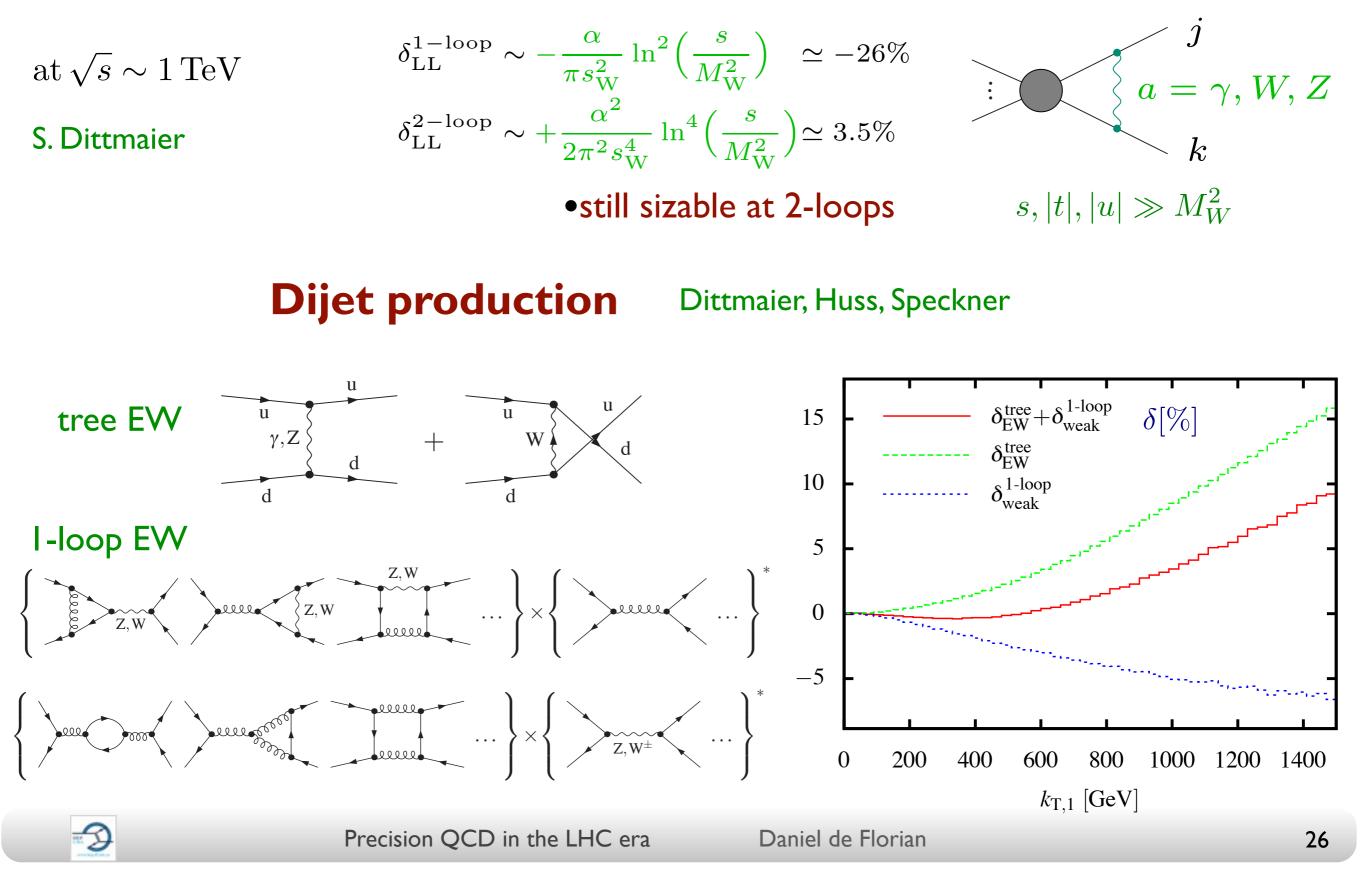
Les Houches NNLO wish-list (2013)

- Many of them doable in the next few years
- More realistic final states (V, top with decays)
- Larger multiplicities not possible yet
- Automation far away
- Shower requires increase in accuracy

NLO EW corrections needed

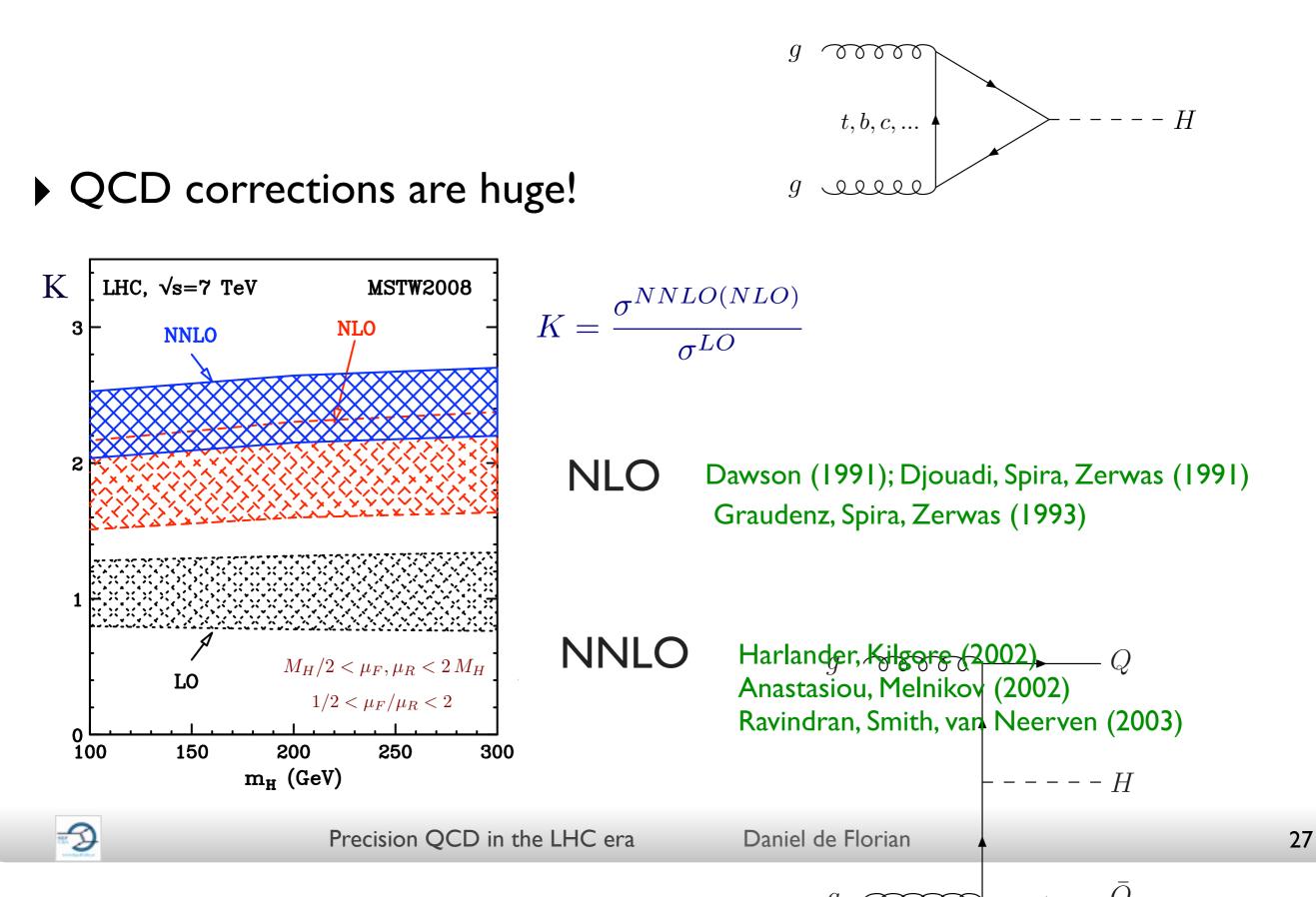
Process	known	desired	details	
tī	$\sigma_{\rm tot}$ @ NNLO QCD	$d\sigma$ (top decays)	precision top/QCD,	
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW	gluon PDF, effect of extra	
	$d\sigma$ (stable tops) @ NLO EW		radiation at high rapidity,	
			top asymmetries	
$t\bar{t}+j$	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD	
		@ NNLO QCD + NLO EW	top asymmetries	
single-top	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)	precision top/QCD, V_{tb}	
		@ NNLO QCD (t channel)		
dijet	$d\sigma$ @ NNLO QCD (g only)	$d\sigma$	Obs.: incl. jets, dijet mass	
	d σ @ NLO weak	@ NNLO QCD + NLO EW	\rightarrow PDF fits (gluon at high x)	
			$\rightarrow \alpha_s$	
			CMS http://arxiv.org/abs/1212.6660	
3j	$d\sigma$ @ NLO QCD	dσ	Obs.: $R3/2$ or similar	
		@ NNLO QCD + NLO EW	$\rightarrow \alpha_s$ at high scales	
			dom. uncertainty: scales	
			CMS http://arxiv.org/abs/1304.7498	
$\gamma + j$	$d\sigma$ @ NLO QCD	$d\sigma$ @ NNLO QCD	gluon PDF	
	$d\sigma @ NLO EW$	+NLO EW	$\gamma + b$ for bottom PDF	

Precision OCD in the LHC era


Process	known	desired	details
V	$d\sigma$ (lept. V decay) @ NNLO QCD	$d\sigma$ (lept. V decay)	precision EW, PDFs
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNNLO QCD + NLO EW	
		MC@NNLO	
V + j	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	Z + j for gluon PDF
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW	W + c for strange PDF
V + jj	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)	study of systematics of
		@ NNLO QCD + NLO EW	H + jj final state
VV′	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	off-shell leptonic decays
	$d\sigma$ (stable V) @ NLO EW	@ NNLO QCD + NLO EW	TGCs
$\mathrm{gg} \to \mathrm{VV}$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays})$	bkg. to $H \to VV$
		@ NLO QCD	TGCs
$V\gamma$	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V decay)$	TGCs
	$d\sigma(PA, V decay)$ @ NLO EW	@ NNLO QCD + NLO EW	
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD	bkg. for VH $\rightarrow \rm b\bar{b}$
	massive b	massless b	
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs
		@ NLO QCD + NLO EW	
VV'V''	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	bkg. to H, BSM searches
		@ NLO QCD + NLO EW	
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$	QGCs, EWSB
		@ NLO QCD + NLO EW	
$\gamma\gamma$	dσ @ NNLO QCD		bkg to $H \to \gamma \gamma$

Process	known	desired	details
Н	d σ @ NNLO QCD	dσ @ NNNLO QCD + NLO EW	H branching ratios
	$d\sigma @ NLO EW$	MC@NNLO	and couplings
	finite quark mass effects @ NLO	finite quark mass effects @ NNLO	
H + j	$d\sigma$ @ NNLO QCD (g only)	$d\sigma @ NNLO QCD + NLO EW$	H p_T
	$d\sigma @ NLO EW$	finite quark mass effects @ NLO	
	finite quark mass effects @ LO		
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma$ @ NNLO QCD + NLO EW	H couplings
	$d\sigma(gg)$ @ NLO QCD		
	$d\sigma(VBF)$ @ NLO EW		
H + V	dσ @ NNLO QCD	with $H \to b\bar{b}$ @ same accuracy	H couplings
	$d\sigma @ NLO EW$		
tīH	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)	top Yukawa coupling
		@ NLO QCD + NLO EW	
HH	$d\sigma @ LO QCD (full m_t dependence)$	$d\sigma @ NLO QCD (full m_t dependence)$	Higgs self coupling
	$d\sigma @$ NLO QCD (infinite m_t limit)	$d\sigma @ NNLO QCD (infinite m_t limit)$	

Daniel de Florian


Electroweak corrections at large energies

Sudakov logarithms induced by soft gauge-boson exchange

Higgs Boson

Gluon-gluon fusion dominates due to large gluon luminosity

Improved Higgs Cross-section @ LHC

- NNLL Resummation 9% at 7 TeV Catani, deF., Grazzini, Nason (2003)
- Fwo loop EW corrections not negligible ~ 5%
 Aglietti, Bonciani, Degrassi, Vicini (2004)
 Degrassi, Maltoni (2004)
 Actis, Passarino, Sturm, Uccirati (2008)
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ... Higgs Cross-Section WG

 $\label{eq:scale_pdf} \begin{array}{ll} {\rm scale_pdf} + \alpha_{\rm S} \\ \sigma(m_{\rm H} = 125\,{\rm GeV}) = 19.27^{+7.2\%}_{-7.8\%} \,\, +7.5\%_{-6.9\%} \,\, {\rm pb} \qquad {} {}^{\mbox{deF, Grazzini}} \end{array}$

- Still sizable uncertainties but great improvement over the last years
- And more precise results just arriving!!

Improved Higgs Cross-section @ LHC

- NNLL Resummation 9% at 7 TeV Catani, deF., Grazzini, Nason (2003)
- Two loop EW corrections not negligible ~ 5%
 Aglietti, Bonciani, Degrassi, Vicini (2004)
 Degrassi, Maltoni (2004)
 Actis, Passarino, Sturm, Uccirati (2008)
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ... Higgs Cross-Section WG

$$\begin{aligned} & \text{scale } pdf + \alpha_{\text{S}} \\ & \sigma(\text{m}_{\text{H}} = 125\,\text{GeV}) = 19.27^{+7.2\%}_{-7.8\%} \,\, ^{+7.5\%}_{-6.9\%} \,\, \text{pb} \\ & \text{Higher } \text{LHC data and} \end{aligned} \qquad \text{deF, Grazzini}$$

Still sizable uncertainties but great improvement over the last years

orders

And more precise results just arriving!!

more observables

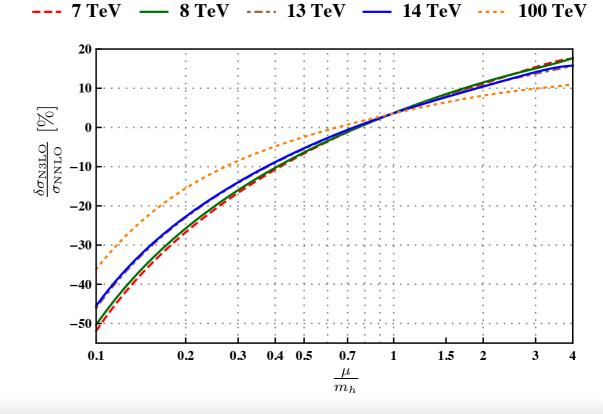
Even Higher orders : N³LO

3 loop form factor

Baikov et al (2009) Gehrmann et al (2010) Lee, Smirnov, Smirnov (2010)

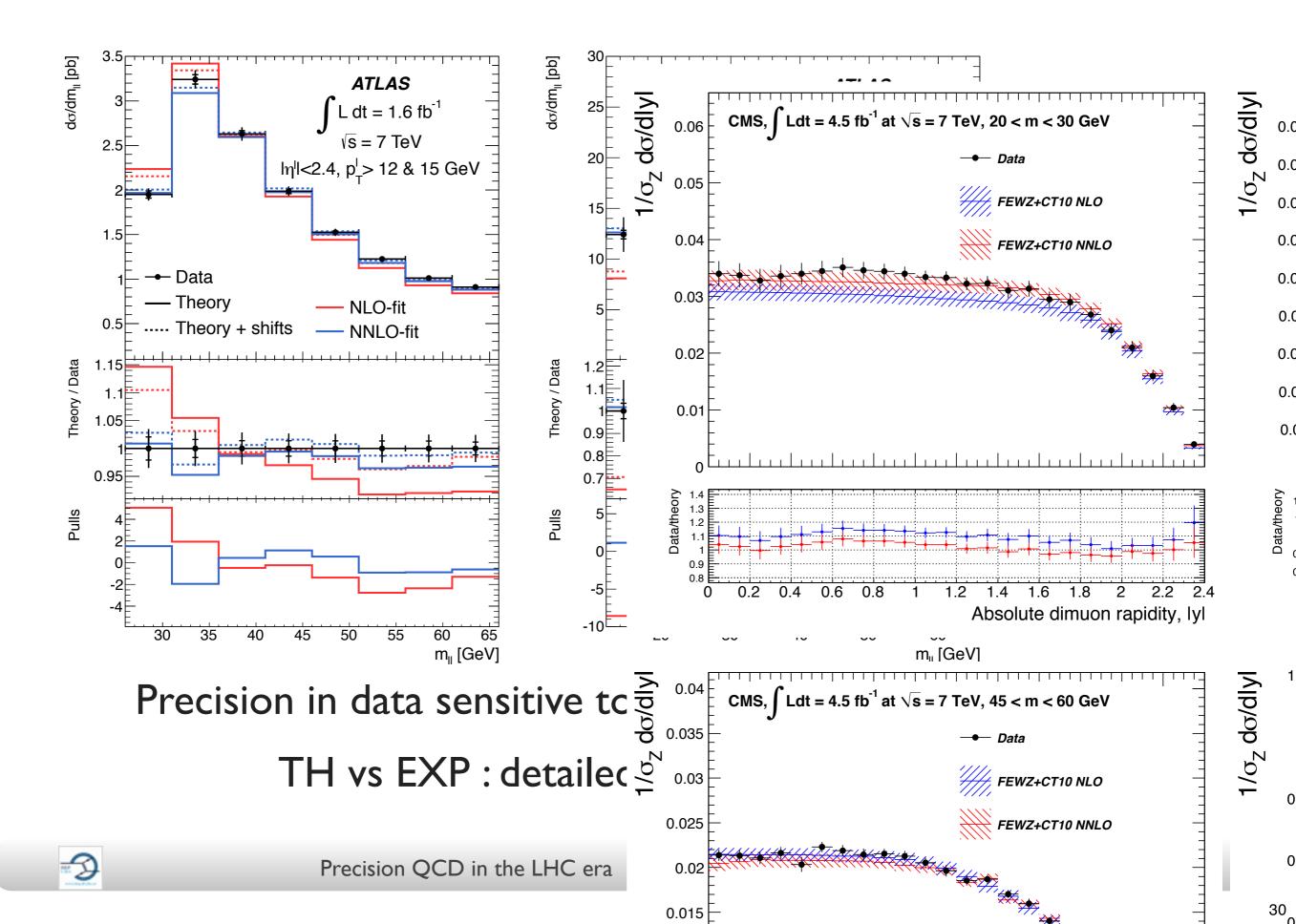
- Triple real emission : threshold expansion Anastasiou, Duhr, Dulat, Mistlberger (2013)
- 2 loop + single emission

Duhr, Gehrmann (2013); Li, Zu (2013); Gehrmann, Jaquier, Glover, Koukoutsakis (2012)

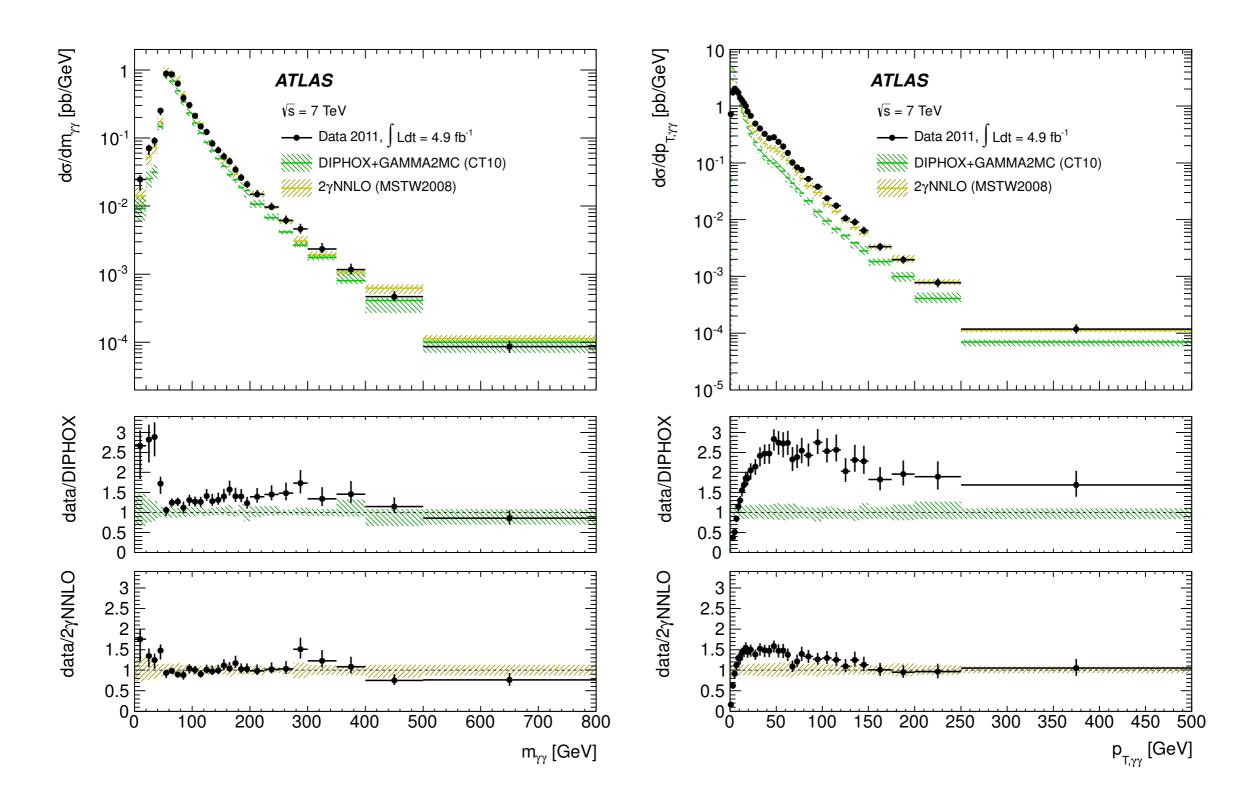

- I loop + double emission Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2013)
- Subtraction terms

Höschele, Hoff, Pak, Steinhauser, Ueda (2013) Buehler, Lazopoulos (2013)

NNNLO Soft-Virtual approximation


Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (2014)

New era in precision Further improvements expected



DATA vs TH : Drell-Yan

DATA vs TH : DiPhotons $pp \rightarrow \gamma \gamma$

Ð

Conclusions

Amazing work in the last few years — direct consequence of LHC

- PDFs: precision and uncertainties
- NLO : multileg processes and automatic!
- Solution NNLO finally reaching $2 \rightarrow 2$ processes
- Resummation setting NNLL as new standard
- Improvements for NLO+PS and high degree of automation
- Higgs moving towards N3LO
- + many other issues not discussed (including jet structure)!

Conclusions

Amazing work in the last few years — direct consequence of LHC

- PDFs: precision and uncertainties
- NLO : multileg processes and automatic!
- Solution NNLO finally reaching $2 \rightarrow 2$ processes
- Resummation setting NNLL as new standard
- Improvements for NLO+PS and high degree of automation
- Higgs moving towards N3LO
- + many other issues not discussed (including jet structure)!

Thanks to Sven Moch, Frank Tackmann, Stefan Dittmaier, Massimiliano Grazzini and Joey Huston for discussions

Thanks!

