The GPD programm at COMPASS II

Eva-Maria Kabuß

Institut für Kernphysik, Mainz University

for the $\operatorname{COMPASS}$ collaboration

XXII. International Worshop on Deep Inelastic Scattering Warsaw 28.4.-2.5.2104

Outline

- COMPASS II proposal
- GPDs at COMPASS
- Experimental challenges
- Test measurements
- Observables and predictions
- Plans

SPS proton beam: SPS proton beam: Secondary hadron beams (7, K,) 2,10⁸ /spill, 150-270 GeV/c Tertiary muon beam (80% pol) Secondary hadron beam (80% pol) Luminosity ~ 5 × 10³² cm⁻² s⁻¹ with polarised targets

SPS

COMPASS

high energy beam(s), broad kinematic range, large angular acceptance²

Improve the 1-dimensional picture of the nucleon

Study generalised parton distributions and transverse momentum dependent distributions

submitted in May 2010 for 5 years of data taking in the first phase approved in December 2010 for *initially* 3 years of data taking in 2015-2017

Generalized parton distribution (GPD)

longitudinal momentum structure plus transverse spatial structure accessible in exclusive reaction like DVCS or DVMP

Flavour separation and fragmentation in SIDIS

strange quark distribution and fragmentation functions

Transverse momentum dependent distributions (TMD)

dynamic picture using intrinsic transverse momenta of partons accessible in SIDIS and Drell-Yan processes

QCD at very low momentum transfers

 $\operatorname{pion}/\operatorname{kaon}$ polarisabilities, testing chiral perturbation theory, data taken in 2012

Why GPDs at COMPASS?

CERN high energy muon beam:

- ▶ 100–160 GeV, 80% polarisation
- μ^+ and μ^- with opposite polarisation

- unique kinematic range between HERA and HERMES/JLab
 - ▶ intermediate x_{Bj}:
 ⇒ sea and valence quarks
 - high x_{Bj} limit from acceptance
 - Q^2 up to 8GeV²

 $\implies \text{limit from cross section} \\ \text{with } L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

planned measurements:

- deeply virtual Compton scattering
- deeply virtual meson production

Generalised parton distributions

- accessible in exclusive reactions
- factorisation for Q^2 large, |t| < 1 GeV²
- GPD for each quark flavour and for gluons
- depend on 3 variables: x, ξ , t with $\xi = \frac{x_{Bj}}{2-x_{Pi}}$
- H, Ĥ 4 GPDs: conserve nucleon helicity E, Eflip nucleon helicity
 - $\begin{array}{c} H, E\\ \widetilde{H}, \widetilde{E} \end{array}$ refer to unpolarised distributions
 - refer to polarised distributions
- **limits**: PDFs q(x) = H(x, 0, 0) and formfactors $F(t) = \int dx H(x, \xi, t)$
- sensitivity in deeply virtual Compton scattering (DVCS) and hard exclusive meson production (HEMP)

GPDs and DVCS

GPDs related to Compton form factors \mathcal{H} Im $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{H}(\xi, \xi, t)$ Re $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{P} \int_{-1}^{1} dx \ \text{H}(x, \xi, t) \frac{1}{x-\xi}$ $\mathcal{H} = \Sigma e_{f}^{2} \mathcal{H}^{f}$

Ji's sumrule

$$J^{f} = rac{1}{2} \lim_{t \to 0} \int_{-1}^{1} \mathrm{d}x \; x \; \left[\mathrm{H}^{f}(x,\xi,t) + \mathrm{E}^{f}(x,\xi,t)
ight]$$

 J^{f} : total angular momentum contribution of quark f

- unpolarised hydrogen target ⇒ GPD H
- transversely polarised target ⇒ GPD E

What we do measure

for COMPASS: 160 GeV, $Q^2 = 2 \,\text{GeV}^2/c^2$, $|t| = 0.1 \,\text{GeV}^2/c^2$

Azimuthal dependence

cross section (polarised beam and unpolarised target)

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{BH} + \mathrm{d}\sigma^{DVCS}_{unpol} + \frac{P_{\mu}}{\mu} \,\mathrm{d}\sigma^{DVCS}_{pol} + \frac{e_{\mu}}{\mu} a^{BH} \mathrm{Re} \; A^{DVCS} + \frac{e_{\mu}}{\mu} P_{\mu} a^{BH} \mathrm{Im} \; A^{DVCS}$$

contributions

$$\begin{array}{rcl} \mathrm{d}\sigma^{BH} & \propto & c_0^{BH} + c_1^{BH}\cos\phi + c_2^{BH}\cos2\phi \\ \mathrm{d}\sigma^{DVCS}_{unpol} & \propto & c_0^{DVCS} + c_1^{DVCS}\cos\phi + c_2^{DVCS}\cos2\phi \\ \mathrm{d}\sigma^{DVSC}_{pol} & \propto & s_1^{DVCS}\sin\phi \\ a^{BH}\mathrm{Re}\; A^{DVCS} & \propto & c_0^{1} + c_1^{1}\cos\phi + c_2^{1}\cos2\phi + c_3^{1}\cos3\phi \\ a^{BH}\mathrm{Im}\; A^{DVCS} & \propto & s_1^{1}\sin\phi + s_2^{1}\sin2\phi \end{array}$$

Twist-2 >> (Twist-3, Twist-2 gluon)

► measurement with µ⁺ and µ⁻ yields Re(H) and Im(H)

$$\mu^{\mu^{\prime} \phi} \gamma^{*} \gamma^{*} \rho$$

Feasibility study for detection of DVCS/BH events

Set-up

- exclusive measurements
- ▶ 40 cm long IH₂ target
- short recoil proton detector (for triggering and PID)
- two ECALs
- subset of triggers

- prediction from MC simulation (using VGG for DVCS) including detector acceptance
- low x data dominated by BH, high x data dominated by DVCS

Signal in 2009

• vertex with μ,μ' , no other charged track, 1 high energy γ , proton in RPD

- result confirms expectations: 54 events observed with 20 from BH, excess of 34 events (2/3 DVCS, 1/3 π⁰)
- shape in ϕ determined by current photon acceptance in ECAL1/2
- \blacktriangleright ECAL0 needed for more uniform acceptance in ϕ

 \implies clear DVCS signal observed at $Q^2 > 1$ GeV², $x_{Bj} > 0.03$

New target region for DVCS

COMPASS

Exclusive measurements

- 2.5m long liquid hydrogen target
- 4m long recoil proton detector (CAMERA)
- hermetic coverage with electromagnetic calorimetry
- new ECAL0 added partial in 2012

• measurement with 160 GeV μ^+ (1/3) and μ^- (2/3)

pilot run 2012

Mounting in clean area at CERN

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

and the second

ECALO

18-10-2012

Observables

Phase 1: DVCS experiment to constrain GPD H

Beam charge & Spin Sum:

 $S_{CS,U} \equiv \mathrm{d}\sigma^{+\downarrow} + \mathrm{d}\sigma^{-\uparrow} = 2(\mathrm{d}\sigma^{BH} + \mathrm{d}\sigma^{DVCS}_{unpol} + e_{\mu}P_{\mu}a^{BH}\operatorname{Im}A^{DVCS})$

$$\stackrel{\text{LO}}{\propto} \mathrm{d}\sigma^{BH} + c_0^{DVCS} + s_1^I \sin\phi$$

- integration over ϕ and subtraction of BH: $d\sigma_{unpol}^{DVCS}$
- ϕ dependence: $\mathbf{s}_{1}^{\mathsf{I}} \propto \operatorname{Im}(\mathbf{F}_{1}\mathcal{H}), F_{1}$ Dirac form factor
- Beam charge & Spin Difference:

$$\mathcal{D}_{CS,U} \equiv \mathrm{d}\sigma^{+\downarrow} - \mathrm{d}\sigma^{-\uparrow} = 2P_{\mu}\mathrm{d}\sigma^{DVCS}_{pol} + e_{\mu}a^{BH}\mathrm{Re}\;A^{DVCS}$$

$$\stackrel{\rm LO}{\propto} c_0' + c_1' \cos \phi$$

- ϕ dependence: $\mathbf{c}_0^{\mathsf{I}}, \mathbf{c}_1^{\mathsf{I}} \propto \operatorname{Re}\left(\mathsf{F}_1 \mathcal{H}\right)$
- ▶ alternatively beam charge & spin asymmetry: $A_{CS,U} = D_{CS,U} / S_{CS,U}$

Nucleon tomography

$\boldsymbol{b}_{\perp} {:}$ distance to center of momentum

 r_{\perp} : transverse size of nucleon

$$r_{\perp} = b_{\perp}/(1-x)$$

extraction only slightly model dependent

Transverse Imaging

► integration of $S_{CS,U}$ over ϕ and BH subtraction yields $d\sigma^{DVCS}/d|t| \propto \exp(-B|t|)$ with $B(x) \sim 1/2 \langle r_{\perp}^2(x) \rangle$

• Ansatz at small x_{Bj} : $x \approx x_{Bj}$, $B(x_{Bj}) = B_0 + 2\alpha' \ln \frac{x_0}{x_{Bj}}$

▶ 2012: 2 weeks data taking with nearly complete set-up

 \implies 1/20 of proposal stat.

Azimuthal dependence analysis

comparison to different models

projections with 2 years of data $\varepsilon_{global} = 10\%$ $L = 1222 \text{ pb}^{-1}$

 $\Longrightarrow \mathsf{c}_1^\mathsf{I} \propto \operatorname{Re}(\mathsf{F}_1 \mathcal{H})$

New predictions by Kroll, Moutarde and Sabatié

-0.4

-0.6<mark>6</mark> 0.1 0.2 2 0.3 -t [GeV²] 0.4 0.5

(f=0.26)

ECAL1 and ECAL2

- COMPASS: 160 GeV, 280 days

32 [GeV2]

-0.4

measurements with transversely polarised target

$$\mathcal{D}_{CS,T} \equiv d\sigma_{T}(\mu^{+\downarrow}) - d\sigma_{T}(\mu^{-\uparrow})$$

$$\stackrel{\text{LO}}{\propto} \sin(\phi - \phi_{S})(c_{0T}^{\prime} + c_{1T}^{\prime} \cos \phi)$$

$$c_{1T}^{\prime} \propto \text{Im} \left((2 - x) F_{1} \mathcal{E} - 4 \frac{1 - x}{2 - x} F_{2} \mathcal{H} \right)$$

$$\stackrel{\text{projections with}}{= c_{global} = 10\%}$$
1.2 m pol. NH₃
target (f=0.26)

(o) COMPASS

HERMES

10⁻²

 $|t_{min}| = 0.10 (0.14) \text{ GeV}^2$

х

10⁻¹

-0.4

23 / 24

Outlook

Ongoing

- Analysis of 2012 data
- Optimisation of set-up for DVCS and HEMP measurment
- First cross section extraction possible

Future

- Long DVCS data taking in 2016/17
- Study of x_{Bj} dependence of transverse nucleon radius
- Extraction of Re(H) and Im(H) (model dependent.)
- In parallel: SIDIS measurements for multiplicities and TMDs
- Phase 2:

Measurements with transverse target polarisation and recoil detector Extraction of GPD E to access Ji's sumrule