

Quarkonia in hadronic collisions with ALICE at the LHC

- Motivations
- \triangleright p-p collisions at $\sqrt{s} = 2.76$ and 7 TeV
- \triangleright Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- \triangleright p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Loïc Manceau for the ALICE Collaboration INFN Torino Imanceau@to.infn.it

Hadronic collisions and nuclear effects

- No nuclear effects
- > Test for hadroproduction models
- Baseline for pA and AA studies

- ➤ Cold Nuclear Matter (CNM) effects
- > No medium created
- Estimate of Cold Nuclear Matter effects in AA collisions

- > CNM effects
- ➤ Deconfinement of quarks and gluons → creation of the Quark-Gluon Plasma (QGP)
 - → hot nuclear matter effects

- ➤ The centrality of AA collisions can be expressed as a number of participant nucleons
- > Nuclear modification factor:
 - Key observable for nuclear matter effects
 - Relative particle production in AA or pA with respect to pp collisions
 - $R_{pA(AA)} \neq 1 \rightarrow Nuclear effects$

$$R_{pA(AA)} = rac{oldsymbol{\sigma}_{pA(AA)}}{N_{coll} \cdot oldsymbol{\sigma}_{pp}}$$

Nuclear matter effects and quarkonia

- Cold Nuclear Matter effects:
 - Shadowing → modification of gluon distribution functions in the nucleus
 - Color Glass Condensate (CGC) → Low x _{biorken} color saturation
 - Coherent energy loss → the incoming partons and the pre-resonance states radiate gluons when passing through the CNM
 - Final state effects → absorption or break up of the quarkonia in the CNM

- ➤ Hot Nuclear Matter effects:
- Signature of the deconfinement (Matsui and Satz, PLB 178 (1986) 416)
 - → Quarkonium suppression by color screening
- Temperature probe → Sequential suppression of quarkonia

(Digal et al. PRD 64 (2001) 0940150)

• Possible (re-)generation if heavy quark multiplicity is important in the medium (Andronic et al., PLB 571(2003) 36, Rafelski et al. PRC 63 (2001) 0549057)

Quarkonium measurements in ALICE

• Tracking: ITS, TPC

Identification: TPC

Tracking

Identification

 $\Psi(2S) \rightarrow \mu^{+}\mu^{-}$ $\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}$ $\Upsilon(2S) \rightarrow \mu^{+}\mu^{-}$

Quarkonium measurements in ALICE

 $\Upsilon(2S) \rightarrow \mu^{+}\mu^{-}$

Quarkonia in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV

Quarkonia in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV

Quarkonia in Pb-Pb collisions at √s_{NN} = 2.76 TeV

- > Shown here:
 - J/ψ at forward and mid-rapidity
- > Also available, preliminary results on:
 - ψ(2S) at forward rapidity
 - Υ(1S) at forward rapidity
 (paper in preparation, see you at Quark Matter 2014)

- Factor 10 increase in energy from RHIC to LHC
 - → Larger charm quark multiplicity at LHC
 - → More regeneration expected at LHC
- Confirmed by the following indications:
 - In central collisions, inclusive J/ ψ much less suppressed at LHC than at RHIC
 - Nuclear modification factor much less dependent on centrality at LHC

- \triangleright Models including (re-)generation reproduce rather well the data:
 - Transport models: color screening + in-medium recombination of charm quarks
 - Statistical hadronisation model: all J/ ψ are created when the QGP cools down and becomes an hadron gas (phase boundary)

$> J/\psi$ less suppressed at low p_t than at high p_t :

- Contrary to what is observed at RHIC
- As predicted by transport models

- In peripheral collisions collective motions are expected to occur in the QGP
- Collective motions can be quantified with the elliptic flow (v_2) which corresponds to the second harmonic of the particle azimuthal angle distribution with respect to the reaction plane

Non zero J/ψ eliptic flow at low p_{t:}

- Charm quarks may take part to collective motions in the QGP before recombining and forming J/ψ
- Data rather well reproduced by transport models

Quarkonia in p-Pb collisions at √s_{NN} = 5.02 TeV

- > Shown here:
 - J/ψ at forward and mid-rapidity
 - ψ(2S) at forward rapidity
 - Υ(1S) at forward rapidity
- ➤ Not shown here:
 - Υ(2S) at forward rapidity (common Υ(1S) paper in preparation, see you at QM2014)

J/ψ and CNM effects in p-Pb collisions

- Backward rapidity: almost no suppression
- > Forward rapidity: significant suppression
- > Data in fair agreement with:
 - Shadowing calculations using the EPS09 parametrization
 - Models including a contribution from coherent partonic energy loss
- > CGC model disfavored

J/ψ and CNM effects in p-Pb collisions

- > At high p_t, data are in fair agreement with:
 - Shadowing calculations using the EPS09 parametrization
 - Models including a contribution from coherent partonic energy loss
- Models including a contribution from coherent partonic energy loss underestimate the data at low p_t
- CGC model disfavored

J/ψ and CNM effects in Pb-Pb collisions

Different transverse momentum dependencies of nuclear modification factors in Pb-Pb and p-Pb

J/ψ and CNM effects in Pb-Pb collisions

- ➤ CNM effects measured in p-Pb collisions are extrapolated to Pb-Pb collisions given the two following assumptions:
 - $2\rightarrow 1$ kinematics (e.g. LO CEM)
 - factorization of nuclear effects (e.g. only shadowing as CNM)
- > Results of the extrapolation are compared to Pb-Pb results
- Hints for hot nuclear matter effects in addition to CNM effects in Pb-Pb collisions

J/ψ and CNM effects in Pb-Pb collisions

- ➤ CNM effects measured in p-Pb collisions are extrapolated to Pb-Pb collisions given the two following assumptions:
 - $2\rightarrow 1$ kinematics (e.g. LO CEM)
 - factorization of nuclear effects (e.g. only shadowing as CNM)
- > Results of the extrapolation are compared to Pb-Pb results
- \triangleright Hint of J/ ψ enhancement at low p_t and suppression at high p_t due to hot nuclear matter effects in Pb-Pb collisions (forward rapidity)

Ψ(2S) and CNM effects in p-Pb collisions

- \rightarrow ψ (2S) more suppressed than J/ ψ \rightarrow different CNM effects for the two quarkonia
- > Shadowing and coherent energy loss models treat identically $\psi(2S)$ and J/ψ and don't reproduce $\psi(2S)$ results
 - \rightarrow ψ (2S) have a lower binding energy than J/ ψ and are more affected by final state effects (e.g. pair break up) in the CNM

Y(1S) and CNM effects in p-Pb collisions

- Backward rapidity: compatible with no suppression
- Forward rapidity: hints for a stronger suppression
- \triangleright Y(1S) and J/ ψ suppressions are compatible
- \triangleright Shadowing calculations based on EPS09 parametrization reproduce the $\Upsilon(1S)$ data within large uncertainties.

Y(1S) and CNM effects in p-Pb collisions

- \triangleright Model including a contribution from coherent partonic energy loss reproduces $\Upsilon(1S)$ data within large uncertainties.
- \triangleright The CGC model reproduces $\Upsilon(1S)$ data, but is disvafoured by J/ψ data

Conclusion

- \triangleright pp collisions at $\sqrt{s} = 2.76$ and 7 TeV
 - Many results that can be used as stringent tests for quarkonium hadroproduction models
- \triangleright Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
 - Hints of strong regeneration of J/ψ at LHC energies
- \triangleright p-Pb collsions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - Shadowing calculations based on EPS09 parametrization and models including a contribution of coherent parton energy loss reproduce J/ ψ data
 - The same models are not ruled out by $\Upsilon(1S)$ data, given large uncertainties
 - $\psi(2S)$ and J/ψ are not affected in the same way by CNM effects
 - \rightarrow Sizeable final state effects for $\psi(2S)$

Back up

Toward ALICE physics

 \triangleright Extensive results on J/ ψ from SPS (fixed target) to RHIC (collider):

- Observation of a suppression of inclusive J/ψ beyond CNM effects
- Suppression compatible with the dissociation of higher mass charmonia
- Suppression similar at RHIC and SPS despite an increase in energy by a factor about 10
- > Are J/ψ not dissociated or an other mecanism sets in?
- ➤ At RHIC, PHENIX measured a larger suppression at forward than at mid-rapidity despite the larger energy density expected at mid-rapidity
- ➤ Development of (re-)generation models

Ψ(2S) in Pb-Pb collisions

- > Challenging but promising measurement
- > Let's wait for more data

J/ψ p_t broadening with event multiplicity

Event multiplicity measured with the VO

- > Studying quarkonia properties as a function of the event multiplicity (or activity) can bring information on Multiple Partonic Interactions or interaction of the quarkonia with the surrounding environment
- \triangleright At forward rapidity the J/ ψ mean p_t increases with the event multiplicity

R_{FB} of the J/ψ

$\Upsilon(1S)$ R_{pA} in p-Pb and Pb-p collisions at $Vs_{NN} = 5.02$ TeV EPS09 LO and EPS09 NLO

- $\succ \Upsilon(1S)$ and J/ ψ suppressions are compatible
- > EPS09 NLO and LO predictions reproduce the data
- \triangleright EPS09 NLO tends to underestimate the $\Upsilon(1S)$ suppression at forward rapidity
- > Better agreement with J/ψ data

$\Upsilon(1S)$ R_{pA} in p-Pb and Pb-p collisions at $Vs_{NN} = 5.02$ TeV Energy Loss and CGC models

- > Coherent parton energy loss:
 - Medium induced energy loss
 - Longed-lived, color octet heavy quark pairs
 - Single free parameter q₀

- ➤ Heavy quark pairs produced by a dense medium made of gluons of small x_{bjorken} (saturation)
- ➤ Quarkonia production: CEM
- The energy loss model reproduces the data but tends to underestimate the Υ(1S) suppression at forward rapidity
- \triangleright The CGC model is disfavored by J/ ψ data, results are better with $\Upsilon(1S)$ data

Forward-Backward ratio of inclusive $\Upsilon(1S)$: R_{FB}

- ightharpoonup In the R_{pPb}/R_{Pbp} ratio the reference pp cross section and associated uncertainties are washed out but less statistics is available in the common y_{cms} range
- \triangleright The $\Upsilon(1S)$ R_{FB} is compatible with the unity
- \rightarrow The J/ ψ R_{FB} is significantly smaller than for $\Upsilon(1S)$
- \triangleright Models describe $\Upsilon(1S)$ R_{FB}