

Precision proton-proton and proton-nucleus collision studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

Jean-Philippe Lansberg IPN Orsay, Université Paris-Sud

April 27, 2014 - May 2, 2014 - Warsaw - Poland

thanks to M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPNO), J.P. Didelez (IPNO), E.G. Ferreiro (USC), F. Fleuret (LLR), B. Genolini (IPNO), Y. Gao (Tsinghua), C. Hadjidakis (IPNO), C. Lorcé (IPNO), R. Mikkelsen (Aarhus), A. Rakotozafindrabe (CEA), P. Rosier (IPNO), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus), R. Ulrich (KIT), Y. Zhang (Tsinghua)

Part I

Introduction

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 2 / 29

Decisive advantages of Fixed-target experiments

 Fixed-target experiments offer specific advantages that are still nowadays difficult to challenge by collider experiments

Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**
- They exhibit 4 decisive features,
 - accessing the high Feynman x_F domain ($x_F \equiv \frac{p_z}{p_{z_{max}}}$)
 - achieving high luminosities with dense targets,
 - varying the atomic mass of the target almost at will,
 - polarising the target.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

• In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM: $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}^{\prime} = p_T)$

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

•
$$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$
 $(p_{z,CM} = 0, E_{CM}' = p_T)$

• $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM} > 0$) within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$ [$y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$]

• pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

 $\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \, \mathrm{GeV}$

- In a symmetric collider mode, $\sqrt{s} = 2E_{\rho}$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_{\rho}} \simeq 60$
 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 - $\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$ $(p_{z,CM} = 0, E_{CM}^{\gamma} = p_T)$
 - $p_{z,Lab} \simeq 60 p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{Z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• The entire forward CM hemisphere ($y_{CM} > 0$) within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$

 $[y_{CM}\,{=}\,0 \Rightarrow y_{Lab}\,{\simeq}\,4.8]$

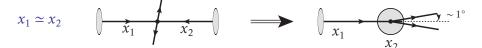
- Good thing: small forward detector \equiv large acceptance
- Bad thing: high multiplicity \Rightarrow absorber \Rightarrow physics limitation

• Let's adopt a novel strategy and look at larger angles

- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - \cdot reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice

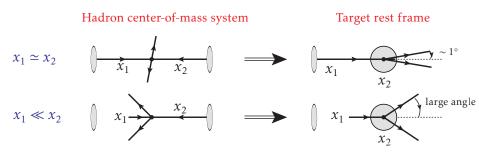
not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

< ロ > < 同 > < 回 > < 回 >

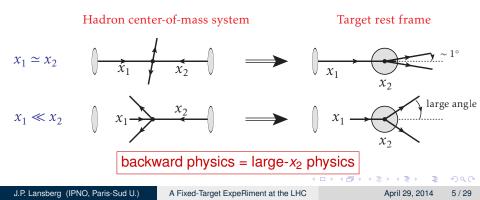

- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice

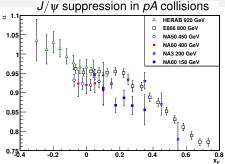
not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

Hadron center-of-mass system

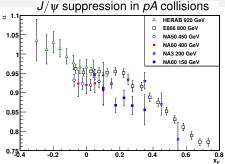

Target rest frame

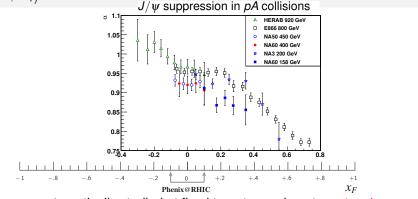
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - \cdot reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - · last, but not least, the beam pipe is in practice


not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$

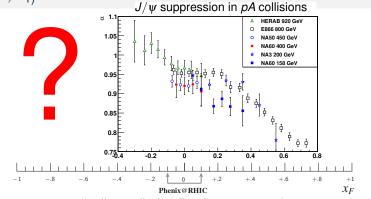
- Let's adopt a novel strategy and look at larger angles
- Advantages:
 - · reduced multiplicities at large(r) angles
 - \cdot access to partons with momentum fraction $x \rightarrow 1$ in the target
 - \cdot last, but not least, the beam pipe is in practice


not a geometrical constrain at $\theta_{CM} \simeq 180^{\circ}$


• x_F systematically studied at fixed target experiments up to +1

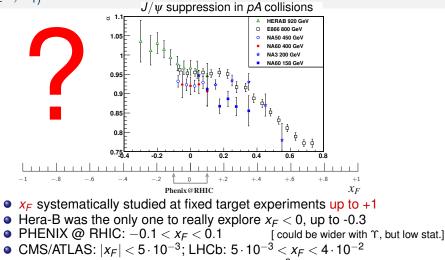
6/29

x_F systematically studied at fixed target experiments up to +1
 Hera-B was the only one to really explore *x_F* < 0, up to -0.3


6/29

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

글 🕨 🖌 글


4 A N

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore x_F < 0, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ , but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

4 A N

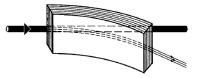
→ ∃ →

• If we measure $\Upsilon(b\bar{b})$ at $y_{\rm cms} \simeq -2.5 \Rightarrow x_F \simeq \frac{2m_{\Upsilon}}{\sqrt{s}} \sinh(y_{\rm cms}) \simeq -1$

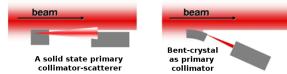

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

4 A N

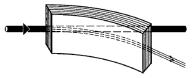

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131



★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131


★ Illustration for collimation

< ロ > < 同 > < 回 > < 回 >

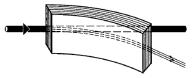
★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

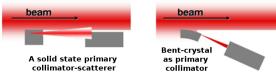
★ Illustration for collimation

 \star Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC


J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC


April 29, 2014 7 / 29

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

★ Illustration for collimation

★ Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC

★ 2 crystals to be installed in the LHC beampipe in 2014

J.P. Lansberg (IPNO, Paris-Sud U.)

• Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$

イロト 不得 トイヨト イヨト 二日

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

< ロ > < 同 > < 回 > < 回 >

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Luminosities

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \ p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{beam} imes N_{target} = N_{beam} imes (
ho imes \ell imes \mathscr{N}_{A}) / A$$

[*l*: target thickness (for instance 1cm)]

• Integrated luminosity: $\int dt \mathscr{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called	LHC	years]
----------------	-----	--------

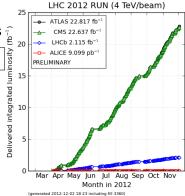
Target	ρ (g.cm -3)	A	£ (μb ⁻¹ .s ⁻¹)	∫£ (pb-¹.yr-¹)
Sol. H ₂	0.09	1	26	260
Liq. H ₂	0.07	1	20	200
Liq. D ₂	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
w	19.1	185	31	310
Pb	11.35	207	16	160

April 29, 2014 8 / 29

≣ →

• 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51, ...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$


3

イロト イポト イヨト イヨト

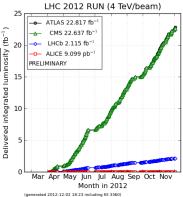
Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

4 A N

★ ∃ ► 4


Luminosities

Luminosities

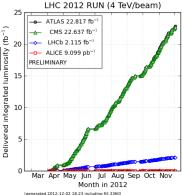
- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{f_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan • Run14pp 12 pb⁻¹ @ $\sqrt{s_{MN}} = 200 \text{ GeV}$
 - Run14pp 12 pb $@\sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{ Run14} d\text{Au 0.15 pb}^{-1} @ \sqrt{s_{NN}} = 200 \text{ GeV}$

4 A N

Luminosities


Luminosities

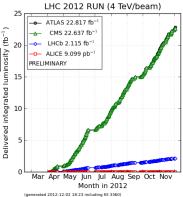
- 1 meter-long liquid $H_2 \& D_2$ targets can be used (see NA51,...)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets $\hat{r_g}$

a luminosity comparable to the LHC itself !

- PHENIX lumi in their decadal plan • Run14pp 12 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Run14*d*Au 0.15 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
- AFTER vs PHENIX@RHIC:

3 orders of magnitude larger

(4) (5) (4) (5)


Luminosities

Luminosities

- 1 meter-long liquid H₂ & D₂ targets can be used (see NA51....)
- This gives: $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$
- Recycling the LHC beam loss, one gets \hat{f}_{g}

a luminosity comparable to the LHC itself !

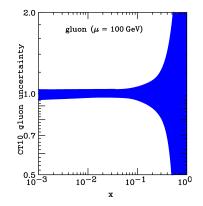
- PHENIX lumi in their decadal plan · Run14pp 12 pb⁻¹ @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - $\cdot \text{Run14}d\text{Au} \ 0.15 \text{ pb}^{-1} \ @ \sqrt{s_{NN}} = 200 \text{ GeV}$
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
- Lumi for Pb runs in the backup slides (roughly 10 times that planned for the LHC)

< ロ > < 同 > < 回 > < 回 >

Part II

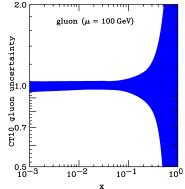
AFTER: flagship measurements

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed-Target ExpeRiment at the LHC

April 29, 2014 10 / 29

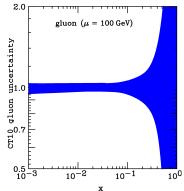
• Gluon distribution at mid, high and ultra-high *x*_B in the proton


4 6 1 1 4

- Gluon distribution at mid, high and ultra-high *x*_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

- Gluon distribution at mid, high and ultra-high *x*_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

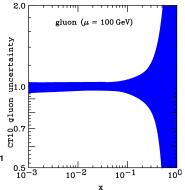


- Gluon distribution at mid, high and ultra-high *x*_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069



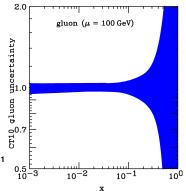
- Gluon distribution at mid, high and ultra-high *x*_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties
- Accessible thanks gluon sensitive probes,
 - quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl. Phys. B860 (2012) 311

- Gluon distribution at mid, high and ultra-high *x*_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties


Accessible thanks gluon sensitive probes,

quarkonia

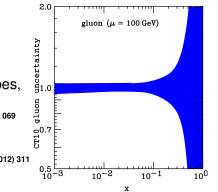
see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,


quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

Isolated photon

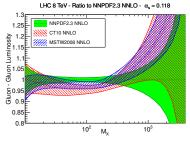
see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

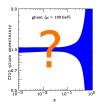
Multiple probes needed to check factorisation

- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - Very large uncertainties

Accessible thanks gluon sensitive probes,

quarkonia

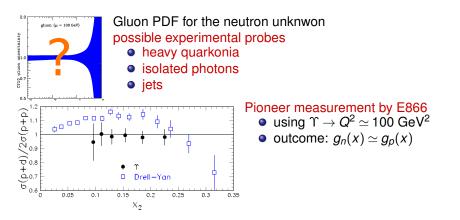

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

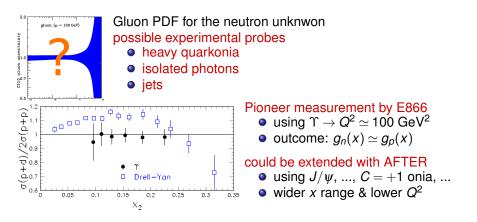

Isolated photon

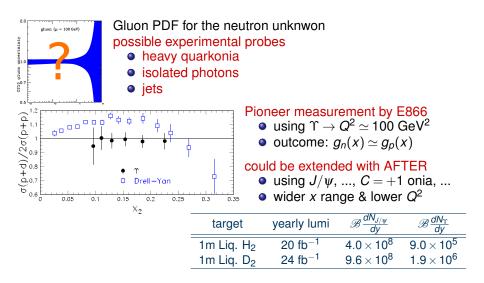
see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

● jets (*P*_{*T*} ∈ [20,40] GeV)

Large-x gluons: important for BSM searches at the LHC

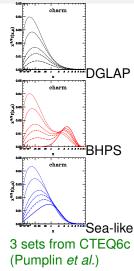



Gluon PDF for the neutron unknwon



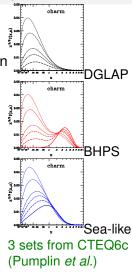
Gluon PDF for the neutron unknwon possible experimental probes heavy guarkonia

- isolated photons
- jets

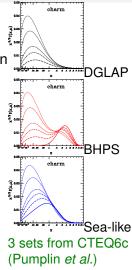


< A >

• Heavy-quark distributions (at high *x_B*)


The Sec. 74

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last



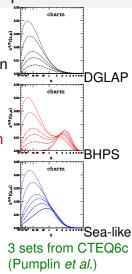
A b

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$) requires

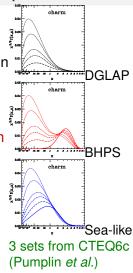
- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires


• several complementary measurements

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

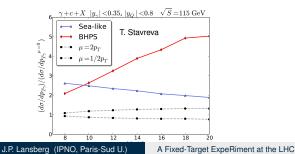
requires

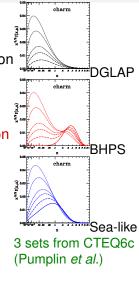

- several complementary measurements
- good coverage in the target-rapidity region

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B




3 + 4 = +

- Heavy-quark distributions (at high *x_B*)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B

프 > < 프

April 29, 2014

13/29

• Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin

A (10) > A (10) > A (10)

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia
$$(J/\psi, \Upsilon, \chi_c, ...)$$

F. Yuan, PRD 78 (2008) 014024

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

• B & D meson production

- Gluon Sivers effect: correlation between the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$

A. Bacchetta, et al., PRL 99 (2007) 212002 J.W. Qiu, et al., PRL 107 (2011) 062001

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ A. Bacchetta, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x^{\uparrow} where the k_T -spin correlation is the largest

- Gluon Sivers effect: correlation between
 - the gluon transverse momentum & the proton spin
 - Transverse single spin asymetries

using gluon sensitive probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, ...)$

F. Yuan, PRD 78 (2008) 014024

- B & D meson production
- γ , γ -jet, $\gamma \gamma$ A. Bacchetta, *et al.*, PRL 99 (2007) 212002 J.W. Qiu, *et al.*, PRL 107 (2011) 062001
- the target-rapidity region corresponds to high x[↑] where the k_T-spin correlation is the largest
- In general, one can carry out an extensive spin-physics program

3 > 4 3

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

3

(a) < (a) < (b) < (b)

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

 Low P_T C-even quarkonium production is a good probe of the gluon Boer-Mulder functions

< ロ > < 同 > < 回 > < 回 >

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

 Low P_T C-even quarkonium production is a good probe of the gluon Boer-Mulder functions

Boer-Mulders effect: correlation between the **parton** k_T and its spin (in an unpolarized nucleon)

Access to gluon Boer-Mulder functions

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low P_T C-even quarkonium production is a good probe of the gluon Boer-Mulder functions
- Affect the low *P*_T spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$

(R involves the BM fcts)

Boer-Mulders effect: correlation between the **parton** k_T and its spin (in an unpolarized nucleon)

< ロ > < 同 > < 回 > < 回 >

Access to gluon Boer-Mulder functions

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low P_T C-even quarkonium production is a good probe of the gluon Boer-Mulder functions
- Affect the low *P*_T spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$
(*R* involves the BM fcts)

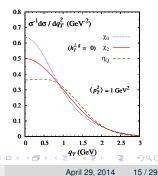
 The boost is of great help to access low P_T P-wave quarkonia Boer-Mulders effect: correlation between the **parton** k_T and its spin (in an unpolarized nucleon)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Access to gluon Boer-Mulder functions

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER


Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

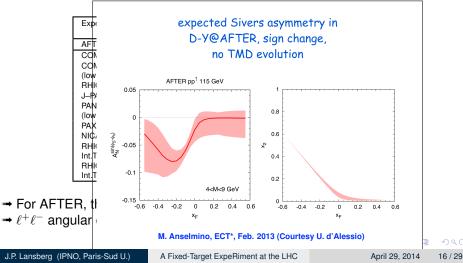
- Low P_T C-even quarkonium production is a good probe of the gluon Boer-Mulder functions
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ (*R* involves the BM fcts)
- The boost is of great help to access low P_T P-wave quarkonia

Boer-Mulders effect: correlation between the **parton** k_T and its spin (in an unpolarized nucleon)

SSA and DY

SSA in Drell-Yan studies with AFTER@LHC

Relevant parameters for the future proposed polarized DY experiments. S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 239 V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65 (2010) 267.


Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_{ρ}^{\uparrow}	$\begin{pmatrix} \mathscr{L} \\ (nb^{-1}s^{-1}) \end{pmatrix}$
AFTER	$p + p^{\uparrow}$	7000	115	$0.01 \div 0.9$	1
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	$0.2 \div 0.3$	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	\sim 0.05	2
(low mass)					
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	2
Int.Target 1					
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	60
Int.Target 2	-				

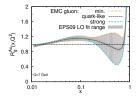
→ For AFTER, the numbers correspond to a 50 cm polarized *H* target. → $\ell^+ \ell^-$ angular distribution: separation Sivers vs. Boer-Mulders effects SSA and DY

SSA in Drell-Yan studies with AFTER@LHC

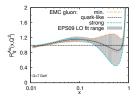
Relevant parameters for the future proposed polarized DY experiments. S.J. Brodsky, F. Fleuret, C. Hadiidakis, JPL, Phys. Rep. 522 (2013) 239

V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65 (2010) 267.

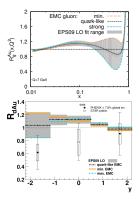
pA studies: large-*x* gluon content of the nucleus

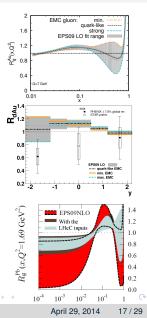

J.P. Lansberg (IPNO, Paris-Sud U.) A

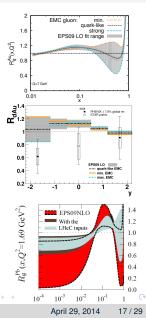
A Fixed-Target ExpeRiment at the LHC


April 29, 2014 17 / 29

프 > < 프


- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown


- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown


- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Strongly limited in terms of statistics after 10 years of RHIC (now 3 points from STAR):

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Strongly limited in terms of statistics after 10 years of RHIC (now 3 points from STAR):
- DIS contribution expected for low *x* mainly projected contribution of LHeC:

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from ↑ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC (now 3 points from STAR):
- DIS contribution expected for low *x* mainly projected contribution of LHeC:
- AFTER allows for extensive studies of gluon sensitive probes in pA
- Unique potential for gluons at x > 0.1

More with AFTER: photoproduction and "beyond" DY

• $\gamma + p$ interaction via ultra-peripheral collisions

12 N A 12

More with AFTER: photoproduction and "beyond" DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,lab}^{max} \simeq \gamma_{lab}^{beam} imes 30$ MeV (1/ $R_{Pb} \simeq 30$ MeV)

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

No pile-up

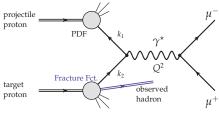
More with AFTER: photoproduction and "beyond" DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,lab}^{max} \simeq \gamma_{lab}^{beam} imes 30$ MeV (1/ $R_{Pb} \simeq 30$ MeV)

•
$$\sqrt{s_{\gamma p}} = \sqrt{2 m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions

J.P. Lansberg (IPNO, Paris-Sud U.)


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

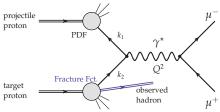
More with AFTER: photoproduction and "beyond" DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319


< ロ > < 同 > < 回 > < 回 >

More with AFTER: photoproduction and "beyond" DY

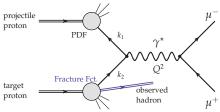
- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

< ロ > < 同 > < 回 > < 回 >


 privileged region for the identified hadron: either the projectile- or target-rapidity region

More with AFTER: photoproduction and "beyond" DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

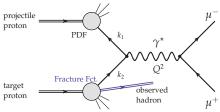
•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron

L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

< ロ > < 同 > < 回 > < 回 >

 privileged region for the identified hadron: either the projectile- or target-rapidity region

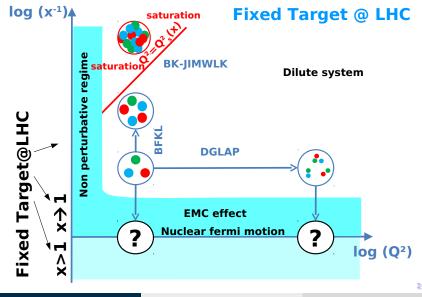

the fixed-target mode is ideal for such studies

More with AFTER: photoproduction and "beyond" DY

- $\gamma + p$ interaction via ultra-peripheral collisions
 - $\gamma_{\text{lab}}^{\text{beam}} \simeq 7000 \ (E_{\rho} = 7000 \ \text{GeV})$
 - $E_{\gamma,\text{lab}}^{\text{max}} \simeq \gamma_{\text{lab}}^{\text{beam}} imes 30 \text{ MeV} (1/R_{\text{Pb}} \simeq 30 \text{ MeV})$

•
$$\sqrt{s_{\gamma p}} = \sqrt{2m_p E_\gamma}$$
 up to 20 GeV

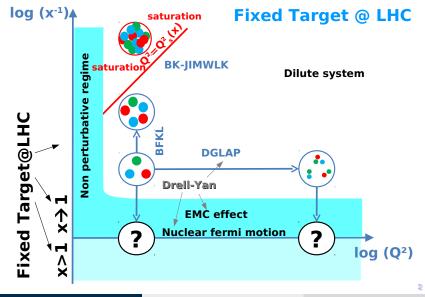
- No pile-up
- Fracture functions
 - via Drell-Yan pair production
 + identified hadron


L. Trentadue, G. Veneziano, PLB 323 (1994) 201 F. Ceccopieri, L. Trentadue, PLB 668 (2008) 319

privileged region for the identified hadron: either the projectile- or

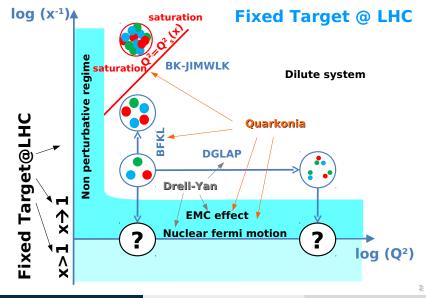
target-rapidity region

- the fixed-target mode is ideal for such studies
- good prospects for fracture-function studies with AFTER

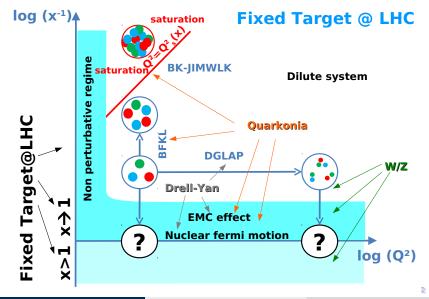

Overall

J.P. Lansberg (IPNO, Paris-Sud U.)

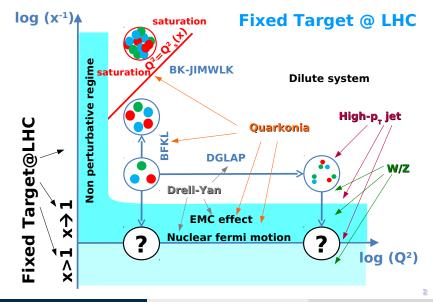
A Fixed-Target ExpeRiment at the LHC


Overall

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed-Target ExpeRiment at the LHC

Overall


A Fixed-Target ExpeRiment at the LHC

Overall

A Fixed-Target ExpeRiment at the LHC

Overall

A Fixed-Target ExpeRiment at the LHC

More details in

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

⁸ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratorire Leprince Ringuet, Ecole polytechnique, CNRS/N2P3, 91128 Palaiseau, France ^c IPRO, Université Paris-Sud. ORS/N2P3, 91460 Orsav, France

Contents

1. 2.		duction numbers and features	6	
3.	Nucle	eon partonic structure		
	3.1.	Drell-Yan		
	3.2.	Gluons in the proton at large x		
		3.2.1. Quarkonia		
		3.2.2. Jets	7.	
		3.2.3. Direct/isolated photons		
	3.3.	Gluons in the deuteron and in the neutron	8.	
	3.4.	Charm and bottom in the proton		
		3.4.1. Open-charm production		
		3.4.2. $J/\psi + D$ meson production		
		3.4.3. Heavy-guark plus photon production		
4.	Spin	physics		
	4.1.	Transverse SSA and DY	9.	
	4.2.	Quarkonium and heavy-quark transverse SSA		
	4.3.	Transverse SSA and photon		
	4.4.	Spin asymmetries with a final state polarization		
5.	Nucle	ear matter	10	
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp		
	5.2.	Gluon nPDF		
		5.2.1. Isolated photons and photon-jet correlations		
		5.2.2. Precision quarkonium and heavy-flavour studies		

.3.	Color filtering,	energy los	Sudakov suppression	n and hadron break-u	p in the nucleus

5.	Decon	finement in heavy-ion collisions
	6.1.	Quarkonium studies
	6.2.	let quenching
	6.3.	Direct photon
	6.4.	Deconfinement and the target rest frame
	6.5.	Nuclear-matter baseline
	W and	Z boson production in pp, pd and pA collisions
	7.1.	First measurements in pA
	7.2.	W/Z production in pp and pd
t	Exclus	ive, semi-exclusive and backward reactions
	8.1.	Ultra-peripheral collisions
	8.2.	Hard diffractive reactions
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -1$.
	8.4.	Very backward physics
	8.5.	Direct hadron production
).	Furthe	r potentialities of a high-energy fixed-target set-up.
	9.1.	D and B physics
	9.2.	Secondary beams
	9.3.	Forward studies in relation with cosmic shower
).	Conclu	isions
	Acknow	wledgments
	Refere	nces

A Fixed-Target ExpeRiment at the LHC

.

Part III

First simulations

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 21 / 29

3 → 4 3

first simulations

First simulation: is the boost an issue ?

J.P. Lansberg (IPNO, Paris-Sud U.) A Fix

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 22 / 29

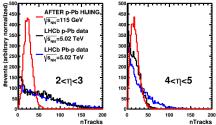
• LHCb has successfully carried out *p*Pb and Pb*p* analyses at 5 TeV

See e.g. M. Adinolfi's talk, WG2, Thursday at 8H50

A (10) A (10) A (10)

• LHCb has successfully carried out *p*Pb and Pb*p* analyses at 5 TeV

See e.g. M. Adinolfi's talk, WG2, Thursday at 8H50

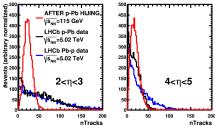

• We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING)

- A TE N - A TE N

• LHCb has successfully carried out pPb and Pbp analyses at 5 TeV

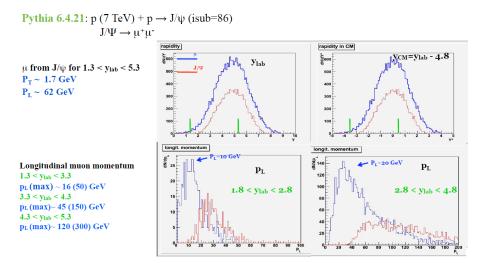
See e.g. M. Adinolfi's talk, WG2, Thursday at 8H50

• We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING)

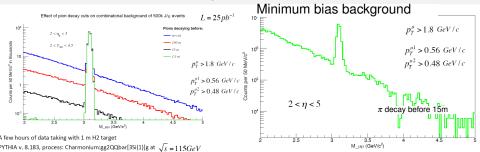

 Despite the boost, the number of tracks in the LHCb acceptance [forward η] is lower in the fixed mode than in the collider mode

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

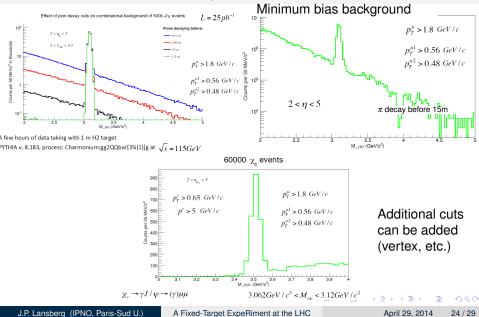
• LHCb has successfully carried out pPb and Pbp analyses at 5 TeV


See e.g. M. Adinolfi's talk, WG2, Thursday at 8H50

• We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING)


- Despite the boost, the number of tracks in the LHCb acceptance [forward η] is lower in the fixed mode than in the collider mode
- Very encouraging indication that the boost is not issue, but really an asset

Some quarkonium and decay-product distributions at 115 GeV in the backward hemisphere ($y_{Lab} < 4.8$)


first simulations

First look at some backgrounds

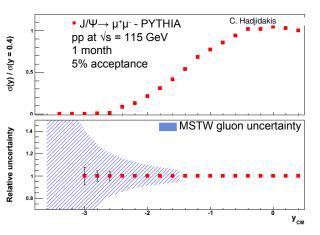
first simulations

First look at some backgrounds

Accessing the large x glue with quarkonia:

PYTHIA simulation $\sigma(y) / \sigma(y=0.4)$ statistics for one month 5% acceptance considered

Statistical relative uncertainty Large statistics allow to access very backward region


Gluon uncertainty from MSTWPDF - only for the gluon content of the target - assuming

$$x_g = M_{J/\Psi}/\sqrt{s} e^{-yCM}$$

 $\begin{array}{l} J/\Psi \\ y_{\text{CM}} \sim \ 0 \ \rightarrow x_{\text{g}} = 0.03 \\ y_{\text{CM}} \sim -3.6 \ \rightarrow x_{\text{g}} = 1 \end{array}$

 $\begin{array}{l} \text{Y: larger } x_{g} \text{ for same } y_{\text{CM}} \\ \text{y}_{\text{CM}} &\sim 0 \\ \text{y}_{\text{CM}} &\sim -2.4 \\ \text{or } x_{g} = 1 \end{array}$

J.P. Lansberg (IPNO, Paris-Sud U.)

⇒ Backward measurements allow to access large x gluon pdf

Assuming that we understand the quarkonium-production mechanisms

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 25 / 29

Part IV

Conclusion and outlooks

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 26 / 29

э

3 > 4 3

Conclusion

• Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments

< 6 b

- Both p and Pb LHC beams can be extracted without disturbing the other experiments
 Extraction a few per cent of the beam of Ext 10⁸ protono per cent
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec

- Both p and Pb LHC beams can be extracted without disturbing the other experiments
 Extraction a few per cent of the beam of Ex 10⁸ pretons per cent
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements: DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- LHC long shutdown (LS2 ? in 2018) needed

to install the extraction system

- Both *p* and *Pb* LHC beams can be extracted without disturbing the other experiments
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec
- This allows for high luminosity *pp*, *pA* and *PbA* collisions at $\sqrt{s} = 115 \text{ GeV}$ and $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Example: precision quarkonium studies taking advantage of
 - high luminosity (reach in y, P_T , small BR channels)
 - target versatility (nuclear effects, strongly limited at colliders)
 - modern detection techniques (e.g. γ detection with high multiplicity)
- This would likely prepare the ground for $g(x, Q^2)$ extraction
- A wealth of possible measurements:
 DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- LHC long shutdown (LS2 ? in 2018) needed

to install the extraction system

• Very good complementarity with electron-ion programs

• First physics paper Physics Reports 522 (2013) 239

2

イロト イポト イヨト イヨト

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

• We are looking for more partners to

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are starting fast simulations)

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
 - think about possible designs

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case (cosmic rays, flavour physics, ...)

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014

http://indico.in2p3.fr/event/AFTER@LesHouches
and 3-day workshop in Orsay with LUA9 on November 18-20, 2013
http://indico.in2p3.fr/event/LUA9-AFTER-1113

- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case

(cosmic rays, flavour physics, ...)

```
Webpage: http://after.in2p3.fr
```

3

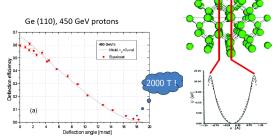
イロト 不得 トイヨト イヨト

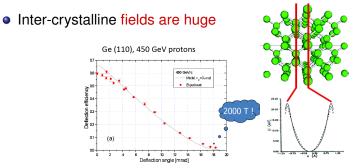
Further readings

- Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. [arXiv:1401.6269 [hep-ph]]. Phys.Rev. D89 (2014) 074020.
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)
 By T. Liu, B.Q. Ma. [arXiv:1203.5579 [hep-ph]]. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. [arXiv:1208.3642 [hep-ph]]. Phys.Rev. D86 (2012) 094007.
- Ultra-relativistic heavy-ion physics with AFTER@LHC
 By A. Rakotozafindrabe, et al. [arXiv:1211.1294 [nucl-ex]]. Nucl.Phys. A904-905 (2013) 957c.
- Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) By A. Rakotozafindrabe, et al. .[arXiv:1301.5739 [hep-ex]]. Phys.Part.Nucl. 45 (2014) 336.
- Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

Part V

Backup slides

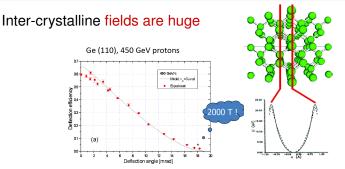

J.P. Lansberg (IPNO, Paris-Sud U.)


A Fixed-Target ExpeRiment at the LHC

April 29, 2014 30 / 29

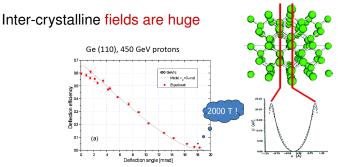
æ

• Inter-crystalline fields are huge


• The channeling efficiency is high for a deflection of a few mrad

J.P. Lansberg (IPNO, Paris-Sud U.) A Fixed-Target ExpeRiment at the LHC April 29, 2014

4 6 1 1 4


31/29

•

The channeling efficiency is high for a deflection of a few mrad
One can extract a significant part of the beam loss (10⁹p⁺s⁻¹)

< 6 b

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss $(10^9 p^+ s^{-1})$
- Simple and robust way to extract the most energetic beam ever:

Beam extraction

• Beam extraction @ LHC

... there are extremely promising possibilities to extract 7 TeV protons from the circulating beam by means of a bent crystal.

••• The idea is to put a bent, single crystal of either Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\simeq 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

... ions with the same momentum per charge as protons are deflected in a crystal with similar efficiencies

If the crystal is positioned at the kicking section, the whole dump system can be used for slow extraction of parts of the beam halo, the particles that are anyway lost subsequently at collimators.

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 imes 10^8~p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \text{ km.s}^{-1}/27 \text{ km} \simeq 11 \text{ kHz}$

Backup slides

A few figures on the (extracted) proton beam

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 imes 10^8 \ p^+ {
 m s}^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - $\bullet~$ the crystal sees $2808 \times 11000~s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,

no pile-up !

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhoj, UJ Uggerhoj, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - $\bullet~$ the crystal sees $2808 \times 11000~s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

no pile-up !

- Beam loss: 10⁹ p⁺s⁻¹
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss) E. Uggerhej, UJ Uggerhej, NIM B 234 (2005) 31
- Number of p^+ : 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5~km.s^{-1}/27~km\simeq 11~kHz$
- Extracted "mini" bunches:
 - $\bullet~$ the crystal sees $2808 \times 11000~s^{-1} \simeq 3.10^7$ bunches s^{-1}
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

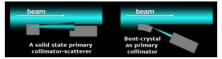
イロト 不得 トイヨト イヨト

similar figures for the Pb-beam extraction

no pile-up !

Backup slides

The beam extraction: news


[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

UA9 installation in the SPS

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

April 29, 2014 34 / 29

Backup slides

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5+20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

Towards an installation in the LHC : propose and install during LSI a min. number of devices

• 2 crystals

Long term plan is ambitious : propose a collimation system based on bent crystals for the upgrade of the current LHC collimation system

Backup slides

Luminosities

• Instantaneous Luminosity:

$$\mathscr{L} = \Phi_{\textit{beam}} \times \textit{N}_{\textit{target}} = \textit{N}_{\textit{beam}} \times (\rho \times \ell \times \mathscr{N}_{\textit{A}}) / \textit{A}$$

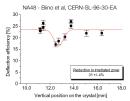
 $\Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \ \ell = 1 \text{ cm} \text{ (target thickness)}$

- Integrated luminosity $\int dt \mathscr{L} = \mathscr{L} \times 10^6$ s for Pb
- Expected luminosities with 2×10⁵Pb s⁻¹ extracted (1cm-long target)

Target	ρ (g.cm -³)	Α	⊥ (mb ⁻¹ .s ⁻¹)=∫⊥ (nb ⁻¹ .yr ⁻¹)
Sol. H ₂	0.09	1	11
Liq. H ₂	0.07	1	8
Liq. D ₂	0.16	2	10
Ве	1.85	9	25
Cu	8.96	64	17
w	19.1	185	13
Pb	11.35	207	7

- Planned lumi for PHENIX Run15AuAu 2.8 nb⁻¹ (0.13 nb⁻¹ at 62 GeV)
- Nominal LHC lumi for PbPb 0.5 nb⁻¹

J.P. Lansberg (IPNO, Paris-Sud U.)


Backup slides

Simone Montesano - February 11th, 2013 - Physics at AFTER using the LHC beams

Crystal resistance to irradiation

- IHEP U-70 (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10¹⁴ protons every 9.6 s, several minutes irradiation
 - equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - · 5 mm silicon crystal, channeling efficiency unchanged
- · SPS North Area NA48 (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5 x 10¹² protons every 14.4 s, one year irradiation, 2.4 x 10²⁰ protons/cm² in total,
 - · equivalent to several year of operation for a primary collimator in LHC
 - 10 x 50 x 0.9 mm³ silicon crystal, 0.8 x 0.3 mm² area irradiated, channeling efficiency reduced by 30%.
- HRMT16-UA9CRY (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 µs, 1.1 x 10¹¹ protons per bunch (3 x 10¹³ protons in total)
 - · energy deposition comparable to an asynchronous beam dump in LHC
 - 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - · accurate FLUKA simulation of energy deposition and residual dose

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop, Physics at AFTER using the LHC beams (Feb. 2013)

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 36 / 29

The lead-ion beam

• Design LHC lead-beam energy: 2.76 TeV per nucleon

The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$

The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

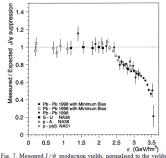
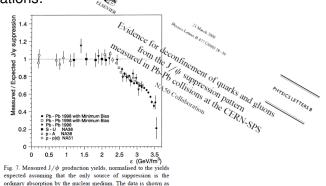


Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC


April 29, 2014 37 / 29

글 🕨 🖌 글

< A >

The lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72 \text{ GeV}$
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

April 29, 2014

37 / 29

a function of the energy density reached in the several collision A Fixed-Target ExpeRiment at the LHC

systems.

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	Ν(Υ) yr -1 =Α <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

A

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

• 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC

38/29

Numbers are for only one unit of rapidity about 0

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region

Interpolating the world data set:

Target	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr ⁻¹ = A£βσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

- 1000 times higher than at RHIC;comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
- Probe of the (very) large x in the target

Many hopes were put in quarkonium studies to extract gluon PDF

12 N A 12

< 6 b

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling

Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu cohr, '12)$ hard(-m) and (3) which behaves as $\sigma(X) - 1/\sqrt{x}$ at small x. J/ϕ and promph hoton hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. W, Z, and gir production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σu directly measured to Dilder are well described but do may a soft the collider measurements to yield information on the number of light neutrinos and the mass of the top quark. Finally we discuss how the gluon distribution at very small x may be directly measured at DESY HERA.

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 39 / 29

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gloon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu_0 n^2$, $(2)^{-1} \alpha n^2$, and (1) which behave as $\sigma(X) - 1/\sqrt{x}$ at small x. J_0^{+} and prompt photon hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. M', Z_{-} and gir production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_{μ} directly measured at DESY HERA.

• Production $puzzle \rightarrow quarkonium$ not used anymore in global fits

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 39 / 29

- Many hopes were put in quarkonium studies to extract gluon PDF
 - in photo/lepto production (DIS)
 - but also pp collisions in gg-fusion process
 - mainly because of the presence of a natural "hard" scale: m_Q
 - and the good detectability of a dimuon pair

PHYSICAL REVIEW D

VOLUME 37, NUMBER 5

1 MARCH 1988

Structure-function analysis and ψ , jet, W, and Z production: Determining the gluon distribution

> A. D. Martin Department of Physics, University of Durham, Durham, England

R. G. Roberts Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling Department of Physics, University of Durham, Durham, England (Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) $\nu cohr, '12)$ hard(-m) and (3) which behaves as $\sigma(X) - 1/\sqrt{x}$ at small x. J/ϕ and promph hoton hadroproduction data are used to discriminate between the three sets. Set 1, with the "soft"-gluon distribution, is favored. W, Z, and gir production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σu directly measured to Dilder are well described but do may a soft the collider measurements to yield information on the number of light neutrinos and the mass of the top quark. Finally we discuss how the gluon distribution at very small x may be directly measured at DESY HERA.

Production puzzle → quarkonium not used anymore in global fits
With systematic studies, one would restore its status as gluon probe

J.P. Lansberg (IPNO, Paris-Sud U.)

April 29, 2014 39 / 29

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 10 ⁷	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

• In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for

40 / 29

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 104	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA

Target	Α	∫£ (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr-1 =A <i>L</i> ℬσ _r
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10°	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10-4	1.0 10 ⁷	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10-4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 ⁻⁶	1.2 10 ⁴	18

- In principle, one can get 300 times more J/ψ –not counting the likely wider *y* coverage– than at RHIC, allowing for
 - χ_c measurement in *pA* via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
 - Ratio ψ' over direct J/ψ measurement in pA
 - not to mention ratio with open charm, Drell-Yan, etc ...

• The target versatility of a fixed-target experiment is undisputable

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects

< ロ > < 同 > < 回 > < 回 >

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements

E 5 4 E

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies

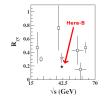
< ロ > < 同 > < 回 > < 回 >

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

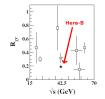
- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)

< 口 > < 同 > < 回 > < 回 > < 回 > <

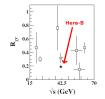

- The target versatility of a fixed-target experiment is undisputable
- A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects
- Strong need for cross checks from various measurements
- The backward kinematics is very useful for large-*x_{target}* studies
 - What is the amount of Intrinsic charm ? Is it color filtered ?
 - Is there an EMC effect for gluon ? (reminder: EMC region 0.3 < x < 0.7)
- One should be careful with factorization breaking effects:

This calls for multiple measurements to (in)validate factorization

• Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)

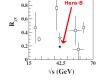

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states


HERA-B PRD 79 (2009) 012001, and ref. therein

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o cc̄ recombination

HERA-B PRD 79 (2009) 012001, and ref. therein


- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o cc̄ recombination
- Open heavy-flavour measurement down to P_T = 0 thanks to the boost.

HERA-B PRD 79 (2009) 012001, and ref. therein

- Very precise *pp* and *pA* baselines (yields, *A* & *y* dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC:
 QGP should be formed w/o cc̄ recombination

HERA-B PRD 79 (2009) 012001, and ref. therein

 Real hope of being able to look at the quarkonium sequential suppression

• Luminosities and yields with the extracted 2.76 TeV Pb beam

Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 $(\sqrt{s_{NN}} = 72 \text{ GeV})$

• Luminosities and yields with the extracted 2.76 TeV Pb beam

				$(\sqrt{s_{NN}} =$	72 GeV)
Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB£ℬσ _Υ	
1 m Liq. H ₂	207.1	800	3.4 106	6.9 10 ³	
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³	
1cm Cu	207.64	17	4.3 106	0.9 10 ³	
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴	
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴	
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴	
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴	
RHIC AuAu 62GeV	198.198	0.13	4.0 104	61	

- Yields similar to those of RHIC at 200 GeV,
 - 100 times those of RHIC at 62 GeV

• Luminosities and yields with the extracted 2.76 TeV Pb beam

$(\sqrt{s_{NN}} = 72 \text{ GeV})$					
N(J/Ψ) yr-1	N(Ƴ) yr⁻¹				
$= \mathbf{AB} \mathcal{L} \mathcal{B} \sigma_{\Psi}$	=AB <i>L</i> ℬσ _Υ				

Target	A.B	∫£ (nb-1.yr-1)	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr ⁻¹ =AB <i>L</i> ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

• Luminosities and yields with the extracted 2.76 TeV Pb beam

				(v = iviv)
Target	A.B	∫£ (nb ^{.1} .yr ^{.1})	N(J/Ψ) yr-1 = AB£ℬσ _Ψ	N(Υ) yr-1 =AB£ℬσ _Υ
1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61

 $(\sqrt{s_{NN}} = 72 \text{ GeV})$

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour

Observation of J/ψ sequential suppression seems to be hindered by • the Cold Nuclear Matter effects: non trivial and

... not well understood

∃ ► < ∃</p>

What for ?

Observation of J/ψ sequential suppression seems to be hindered by

• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC

What for ?

Observation of J/ψ sequential suppression seems to be hindered by

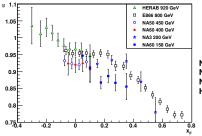
• the Cold Nuclear Matter effects: non trivial and

... not well understood

- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - ψ(2S) not yet studied in AA collisions at RHIC
- the possibilities for *cc* recombination
 - Open charm studies are difficult where recombination matters most

i.e. at low P_T

• Only indirect indications –from the y and P_T dependence of R_{AA}–

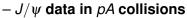

that recombination may be at work

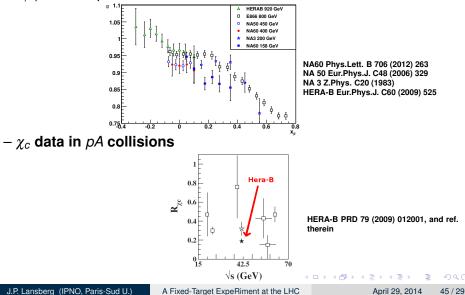
イロト 不得 トイヨト イヨト

• CNM effects may show a non-trivial y and P_T dependence ...

SPS and Hera-B

$-J/\psi$ data in *pA* collisions




NA60 Phys.Lett. B 706 (2012) 263 NA 50 Eur.Phys.J. C48 (2006) 329 NA 3 Z.Phys. C20 (1983) HERA-B Eur.Phys.J. C60 (2009) 525

J.P. Lansberg (IPNO, Paris-Sud U.)

3 > 4 3

SPS and Hera-B

A Fixed-Target ExpeRiment at the LHC

Nuclear Instruments and Methods in Physics Research A 333 (1993) 125-135 North-Holland

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

LHB, a fixed target experiment at LHC to measure CP violation in B mesons Flavio Costantini

University of Pisa and INFN. Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels $B^0 \rightarrow J/\psi +$ $K_{e}^{0}, B^{0} \rightarrow \pi^{+} \pi^{-}$. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻³s⁻¹ luminosity [5].

イロト イポト イヨト イヨト

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

¹⁰ $B\overline{B}$ pairs per year

• *B*-factories: 1 ab⁻¹ means 10⁹*B* \bar{B} pairs

< ロ > < 同 > < 回 > < 回 >

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- *B*-factories: 1 ab⁻¹ means 10⁹ *B* B pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV

BB pairs per year

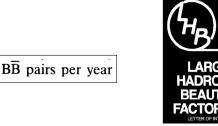
< ロ > < 同 > < 回 > < 回 >

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.

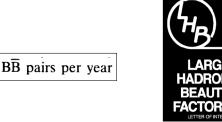

BB pairs per year

< ロ > < 同 > < 回 > < 回 >

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].



- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions

1. Introduction

...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- B-factories: 1 ab⁻¹ means 10⁹ BB pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\overline{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- $\bullet\,$ Nowadays, degradation is known to be $\simeq 6\%$ per $10^{20}\,$ particles/cm^2
- 10²⁰ particles/cm² : one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

(Multiply) heavy baryons:

æ

イロト イポト イヨト イヨト

(Multiply) heavy baryons:

• $\Lambda_b \rightarrow \Lambda J/\psi$

э

イロト イポト イヨト イヨト

(Multiply) heavy baryons:

•
$$\Lambda_b
ightarrow \Lambda J/\psi$$

• $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

э

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

3

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? $(\Xi_{cc}, \Omega^{++}(ccc), ...)$

イロト 不得 トイヨト イヨト ニヨー

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? $(\Xi_{cc}, \Omega^{++}(ccc), ...)$
 - Ξ_{cc} , ..., cross sections in the central region are being calculated with the MC generator GENXICC

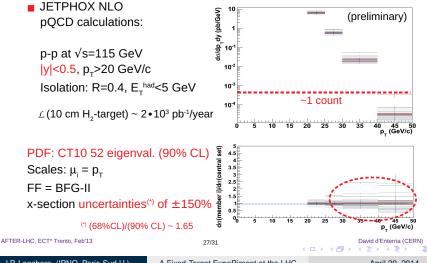
C.H. Chang, J.X. Wang, X.G. Wu. Comput.Phys.Commun. 177 (2007) 467

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0}\gtrsim$ 100 nb
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$
 - $\mathscr{B}(b \to \Lambda_b) \times \mathscr{B}(\Lambda_b \to J/\psi\Lambda) = 5.8 \pm 0.8 \times 10^{-5}$ $(\mathscr{B}(J/\psi \to \mu\mu) = 6\%)$
 - 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement see e.g. LHCb arXiv:1302.5578 [hep-ex]
- discovery potential ? (Ξ_{cc} , $\Omega^{++}(ccc)$, ...)
 - Ξ_{cc} , ..., cross sections in the central region are being calculated with the MC generator GENXICC

A D N A B N A B N

• they should also be calculated for $x_F \rightarrow -1$


where IQ could dominate

C.H. Chang, J.X. Wang, X.G. Wu. Comput.Phys.Commun. 177 (2007) 467

Backup slides

Isolated- γ in p(7 TeV)-p(rest): $\sqrt{s} \sim 115$ GeV

■ p-p photon kinematics at fixed-target LHC (central rapidities): To access x > 0.3 one needs isolated- γ at: $p_{\tau} = x_{\tau} \sqrt{s/2} > 20$ GeV/c

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

April 29, 2014 48 / 29