

CMS Experiment at LHC, CERN Data recorded: Tue May 25 06:24:04 2010 CEST Run/Event: 136100 / 103078800 Lumi section: 348



## University of Ioannina

#### Jet production measurements at CMS

#### P.Kokkas University of Ioannina, Greece

#### **On behalf of the CMS Collaboration**

DIS 2014 : XXII International Workshop on Deep-Inelastic Scattering and Related Subjects, 28 Apr-2 May 2014, Warsaw (Poland)

Co-funded by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF).







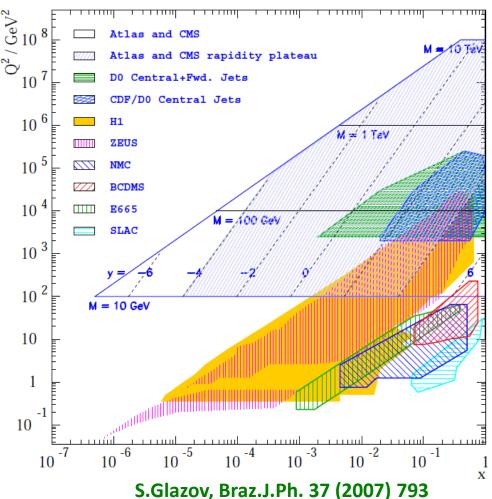
European Union European Social Fund MANAGING AUTHORITY



## Outline

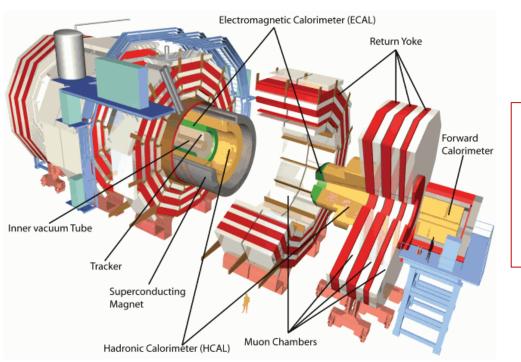


- Introduction
- CMS Detector and Integrated Luminosity
- Jet Reconstruction and Energy Scale Calibration
- Jet Measurements
  - Inclusive jet cross section
  - Dijet cross section
  - 3-jet mass cross section
  - Ratio of incl. jet cross sections using anti- $k_{\scriptscriptstyle T}$  with R=0.5 and R=0.7
  - Hadronic event shapes
  - Color coherence
- Summary




### Introduction

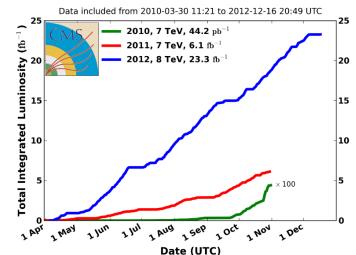



- QCD processes are dominant @ LHC.
   LHC is a jet factory.
- Jet measurements at LHC are very important:
  - They provide a test of pQCD in a previously unexplored energy region. A huge new phase space is accessible at LHC.
  - Check SM predictions at high energy scales.
  - Measure and understand the main background to many new physics searches.
  - Determine α<sub>s</sub> and provide constraints on PDF's.

#### Kinematic plane of process $Q^2 vs x$






## **CMS Detector and Integrated Luminosity**



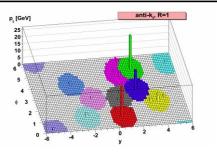
#### CMS detector pseudorapidity coverage:

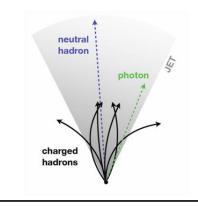
- Tracking: |η|<2.5
- Central Calorimetry: |η|<3</li>
- Forward Calorimetry: 3<|η|<5

#### CMS Integrated Luminosity, pp



Very successful LHC operation and CMS data recording during Run 1:


- 7 TeV (2010 & 2011)
- 8 TeV (2012)




## Jet Reconstruction and Energy Scale Calibration

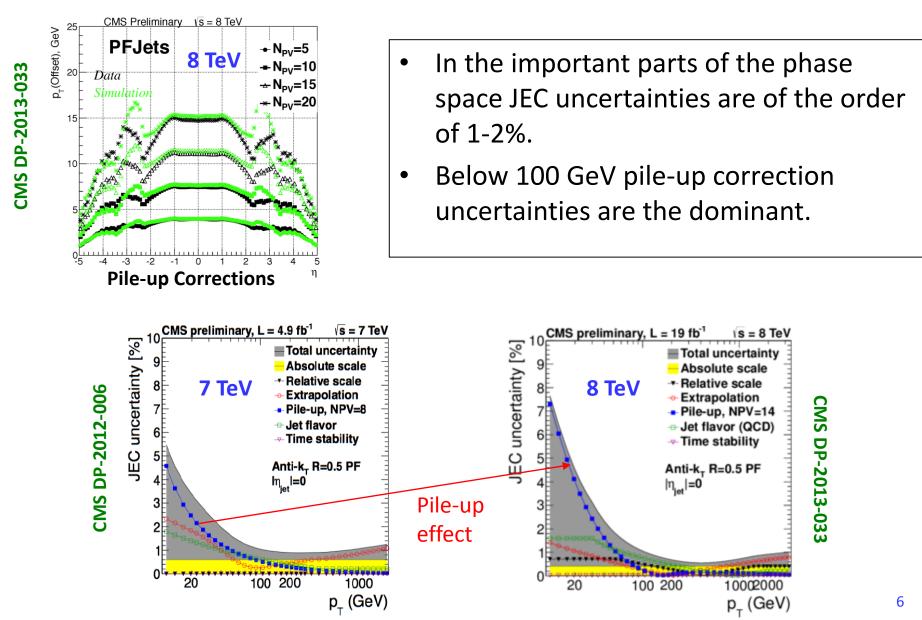


• Anti-k<sub>T</sub> clustering algorithm : Infrared and collinear safe. Used with R=0.5 and 0.7.





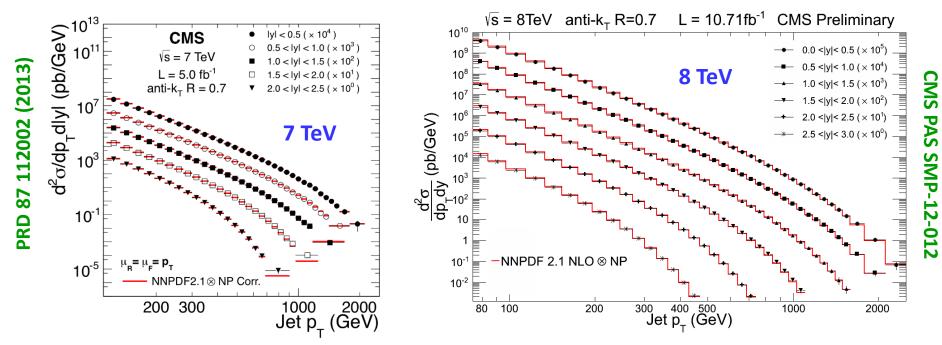
- Particle Flow Jets (PF Jets) : Clustering of Particle Flow candidates constructed by combining information from all subdetector systems.
- For the jet energy scale calibration CMS adopted a Factorized approach.




- **Offset**  $\rightarrow$  substruction  $\rho \times A_{jet}$  ( $\rho$  : the global energy density,  $A_{jet}$ : the jet area)
- **Relative** → derived from Di-jet Balance
- **Absolute**  $\rightarrow$  derived from  $\gamma + jet$  and Z + jet (p<sub>T</sub> balance and MPF)



## **Jet Energy Scale Calibration**






# University of Ioannias

## Inclusive Jet cross section at 7 and 8 TeV





• Measurement of the Inclusive jet production cross section in  $p_T$  and y at 7 and 8 TeV.

$$\frac{d^2\sigma}{dp_T dy} \qquad 7 \text{ TeV}: |\mathbf{y}| \le 2.5 \text{ with } \Delta |\mathbf{y}| = 0.5 \text{ and jet } \mathbf{p}_T 114 \text{ GeV} - 2 \text{ TeV}$$
$$8 \text{ TeV}: |\mathbf{y}| \le 3.0 \text{ with } \Delta |\mathbf{y}| = 0.5 \text{ and jet } \mathbf{p}_T 74 \text{ GeV} - 2.5 \text{ TeV}$$

• 8 TeV analysis uses the half of the statistics. Analysis with full statistics in progress.



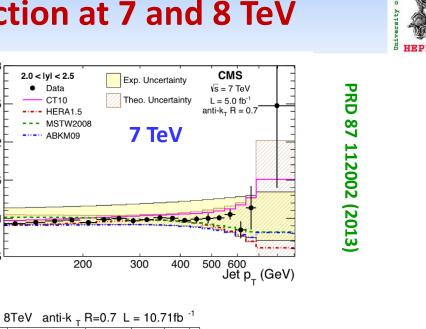
Ratio to NNPDF2.1

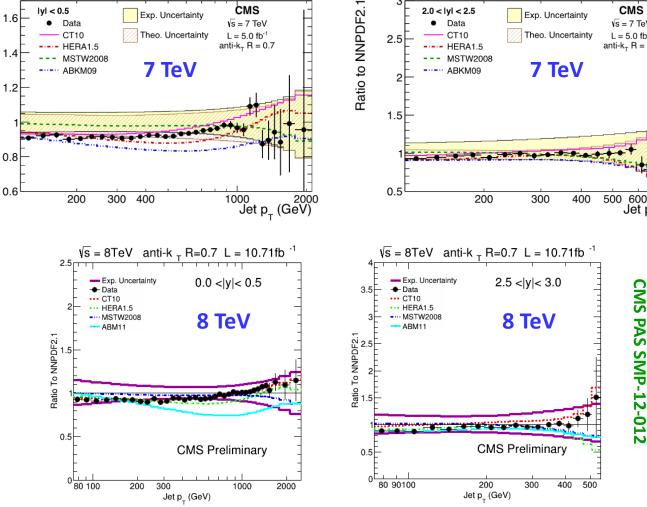
1.6

1.4

lyl < 0.5

Data


CT10


HERA1.5

MSTW2008

#### Inclusive Jet cross section at 7 and 8 TeV

2.5





ĊMS

vs = 7 TeV

 $L = 5.0 \text{ fb}^{-1}$ 

anti- $k_{T} R = 0.7$ 

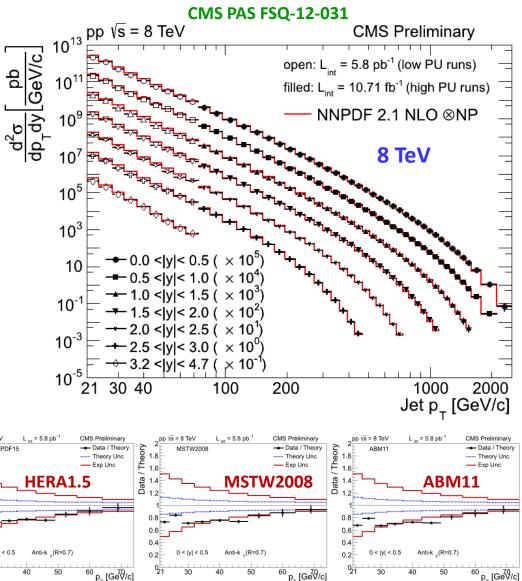
Exp. Uncertainty

Theo. Uncertainty

Agreement is observed between data and theory for most PDF sets in all rapidity bins.



Theor


Anti-k (B=0.7

′p<sub>+</sub> [GeُV/c]

## Low $p_T$ Inclusive Jet cross section at 8 TeV



- Additional study in the low-p<sub>T</sub> region using low pile-up data (5.8 pb<sup>-1</sup>).
  - Seven rapidity bins up to |y|=4.7
  - Lower jet  $p_T = 21$  GeV.
- pQCD is able to describe the results
  - Over 2 orders of magnitude in p<sub>T</sub>
  - Over 14 orders of magnitude in the inclusive cross section.
- Agreement is observed between data and theory.



P.Kokkas, Univ. of Ioannina

Theory Unc

′′ p\_ [GeV/c1

Data

- Exp Unc

CT10

Anti-k (R=0.7



## **Dijet cross section at 7 TeV**

 $d^{2}\sigma/dM_{jj}dlyl_{max}$  (pb/GeV)  $_{1}^{0}$   $_{9}^{01}$   $_{1}^{0}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^{01}$   $_{1}^$ 

10<sup>-3</sup>

10<sup>-6</sup>

200

CMS

 $\sqrt{s} = 7 \text{ TeV}$ 

 $L = 5.0 \text{ fb}^{-1}$ 

anti- $k_{\tau} R = 0.7$ 

1000

2000



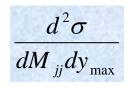
PRD

87

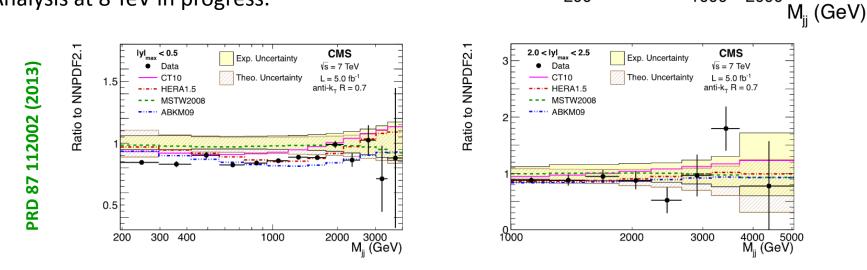
112002

(2013)

 $|y|_{max} < 0.5 ( \times 10^{0} )$ 


 $0.5 < |y|_{max} < 1.0 ( \times 10^{1})^{1}$ 

 $1.0 < |y|_{max} < 1.5 ( \times 10^2 )$ 


 $1.5 < |y|_{max} < 2.0 ( \times 10^3 )^{-1}$ 

 $2.0 < |y|_{max}^{max} < 2.5 ( \times 10^4 )_{-1}^{max}$ 

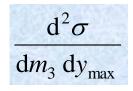
 Measurement of the Dijet production cross section in M<sub>jj</sub> and y<sub>max</sub> at 7 TeV.



- $M_{jj}$ : Mass of the two leading jets  $|y|_{max} = max(|y_1|, |y_2|)$
- Five rapidity bins up to |y|=2.5 and  $M_{jj}$  up to 5 TeV.
- Agreement is observed between data and theory.
- Analysis at 8 TeV in progress.

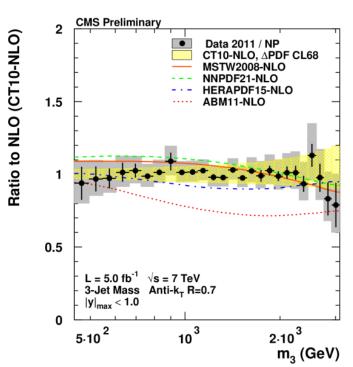


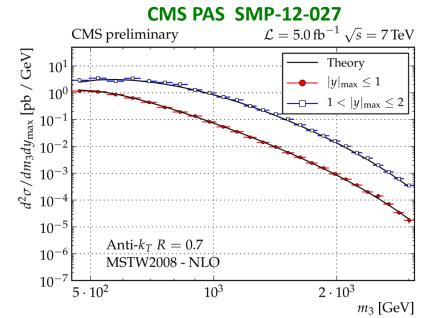





CMS PAS SMP-12-027

## **3-jet mass cross section at 7 TeV**





- Measurement of the double differential 3-jet cross section in  $m_3$  and  $y_{max}$ 



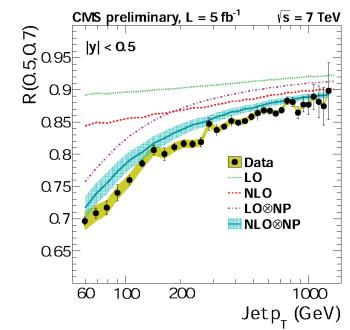
$$m_3^2 = (p_1 + p_2 + p_3)^2$$
$$|y|_{\text{max}} = \max(|y_1|, |y_2|, |y_3|)$$

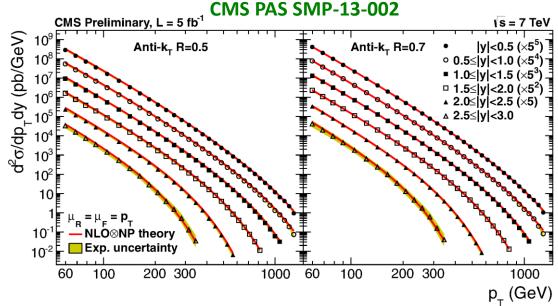
 Measurement in two rapidity bins: |y|<sub>max</sub><1 and 1< |y|<sub>max</sub><2</li>





- pQCD is able to describe the 3-jet mass cross section over five orders of magnitude and for 3-jet masses up to 3 TeV.
- Within uncertainties most PDF sets are able to describe the data.



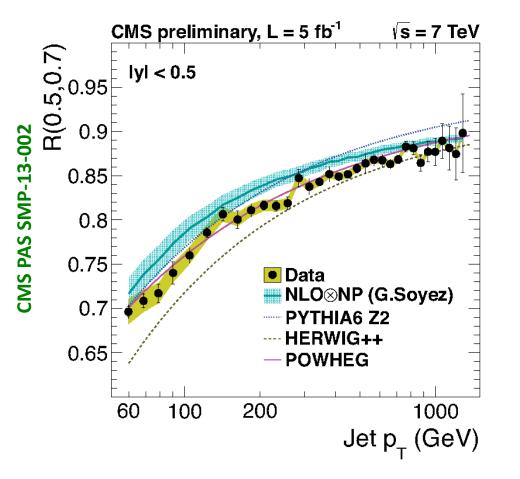


**CMS PAS SMP-13-002** 

#### Inclusive jet AK5/AK7 cross section ratio at 7 TeV



- The measurement:
  - Ratio R(0.5,0.7) of incl. jet cross section using the anti-k<sub>T</sub> with R=0.5 and R=0.7
  - Sensitive to collinear radiation.






- Ratio is compared to pQCD at LO and NLO with and without NP corrections.
- The perturbative QCD predictions are systematically above the data, improving at higher order.



## Inclusive jet AK5/AK7 cross section ratio at 7 TeV

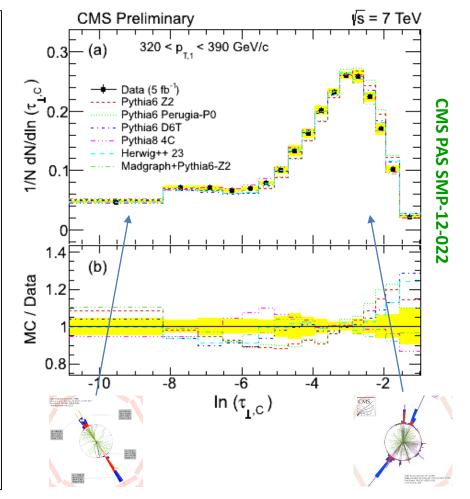




- Models using LO (PYTHIA6, HERWIG++) or NLO matrix element calculations matched to the parton showers (POWHEG+PYTHIA6), describe better the ratio than the fixed order calculations corrected for non-perturbative effects.
- The best description is obtained by combining the NLO prediction with a parton shower model (POWHEG+ PYTHIA6).

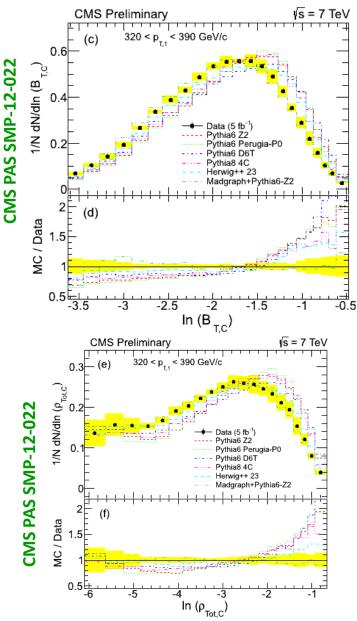





Event shape variables are geometric properties of the energy flow in hadronic final states.

- Sensitive to the details of the features of QCD. (JHEP 1006 (2010) 038)
- Used for the **tuning** and **validation** of various QCD MC event generators.

#### **Transverse Thrust**


$$T_{\perp,C} \equiv \max_{\hat{n}_{\mathrm{T}}} \frac{\sum_{i} \left| \vec{p}_{\perp i} \cdot \hat{n}_{\mathrm{T}} \right|}{\sum_{i} p_{\perp i}} , \quad \tau_{\perp,C} \equiv 1 - T_{\perp,C}$$

- Sensitive to the modelling of two-jet and multi-jet topologies.
- All generators show an overall agreement with data within 10%. Better agreement from PYTHIA8 and HERWIG++.
- $\hat{n}_T$  splits the transverse region in
  - an upper part  $\mathcal{C}_U$  with  $ec{p}_{\mathrm{T}} \cdot \widehat{n}_{\mathrm{T}} > 0$
  - a lower part  $\mathcal{C}_L$  with  $ec{p}_{\mathrm{T}}\cdot \widehat{n}_{\mathrm{T}} < 0$





#### Hadronic Event Shapes at 7 TeV



#### **Jet Broadening**

$$B_{tot,C} \equiv B_{U,C} + B_{L,C}$$

$$B_{X,C} \equiv \frac{1}{2P_{\perp}} \sum_{i \in C_X} p_{\perp i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2}$$
$$\eta_X = \frac{\sum_{i \in C_X} p_{\perp i} \eta_i}{\sum_{i \in C_X} p_{\perp i}} , \ \phi_X = \frac{\sum_{i \in C_X} p_{\perp i} \phi_i}{\sum_{i \in C_X} p_{\perp i}}$$

١2

1.

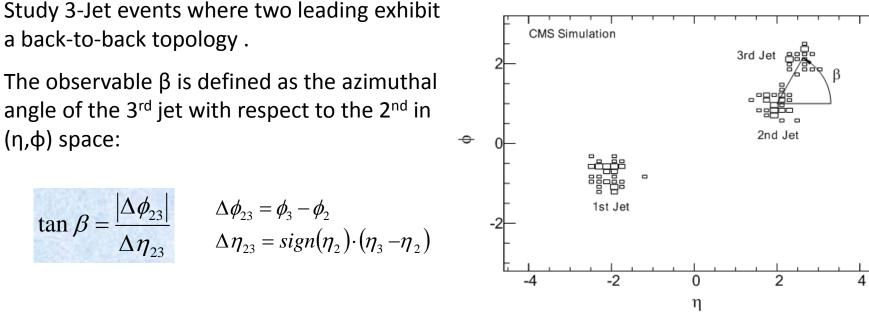
- Sensitive to ME, PS and color coherence effects.
- The agreement of this event shape variable with predictions is poor.
- Better agreement for MADGRAPH and HERWIG++ generators.

#### Jet Mass

Defined as the sum of the normalized squared invariant masses in the upper and lower regions:

$$\rho_{tot,C} \equiv \rho_U + \rho_L$$
,  $\rho_X \equiv \frac{1}{P^2} \left( \sum_{i \in C_X} p_i \right)^2$ 

Same observations with the Jet Broadening observable.

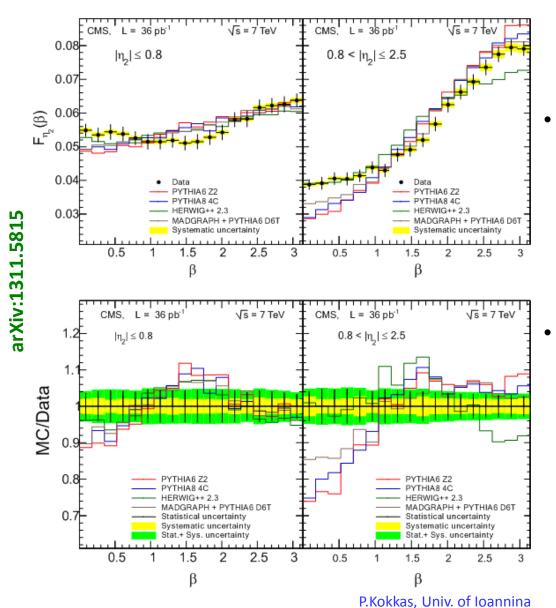





#### **Color coherence**



arXiv:1311.5815




- Absence of color coherence :
  - no preferred direction of emission of the 3<sup>rd</sup> parton around the 2<sup>nd</sup>.
- Presence of color coherence :
  - 3<sup>rd</sup> parton tends to lie in the event plane defined by the 2<sup>nd</sup> parton and the beam axis.
  - $3^{rd}$  jet population will be enhanced for  $\beta \approx 0$  and suppressed for  $\beta \approx \pi/2$ .



#### **Color coherence**





- Data exhibit a clear enhancement of events compared to generators, near the event plane ( $\beta$ =0) and a suppression in the transverse plane ( $\beta$ = $\pi/2$ ).
- None of the models used in the analysis describes data satisfactory.

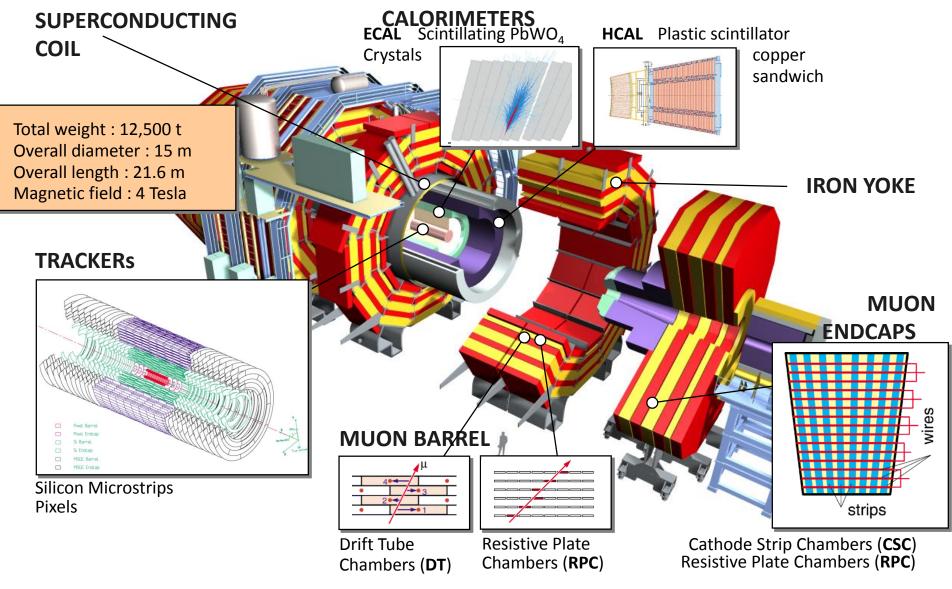




- CMS has an excellent understanding of the jet reconstruction and energy calibration and together with the high data quality make jet measurements PRECISION PHYSICS.
- **CMS** has already delivered several **jet measurements** improving the understanding of **QCD** 
  - **7 TeV**: inclusive and di-jet cross sections, multi-jets, event shapes, studies on color coherence effects etc.
  - **8 TeV**: preliminary results on inclusive jet cross sections.
- **CMS** jet measurements are used also to **constrain PDFs** and **extract**  $\alpha_s$  (see talk by G.Siebert)
- Several analysis at 8 TeV are currently in progress. And more to come at 13 TeV.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

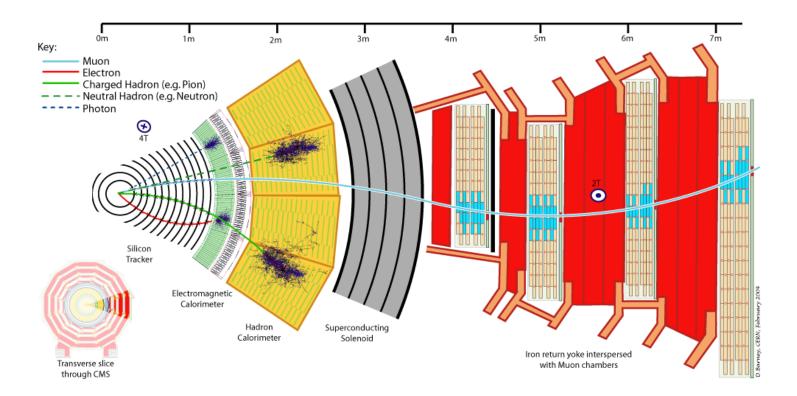









#### **The CMS Detector**

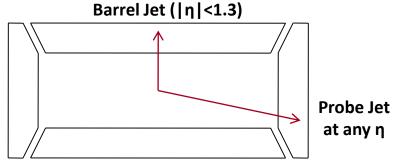




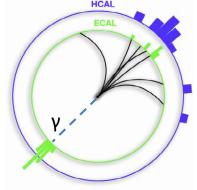


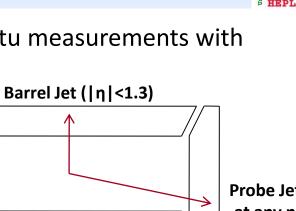

#### **Cross section of the CMS detector**






Tracking: |η|<2.5 Central Calorimetry: |η|<3 Forward Calorimetry: 3<|η|<5



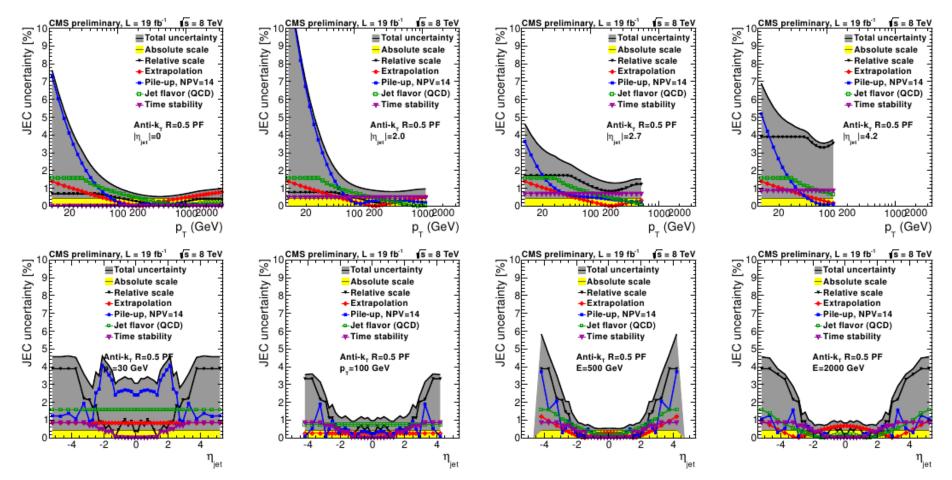


## **Jet Energy Scale Calibration**

- Corrections derived using simulated events and in-situ measurements with dijet and photon+jet events.
- For **relative** corrections:
  - The di-jet  $p_{T}$  balance technique is employed taking the barrel jet  $(|\eta| < 1.3)$  as reference and the other jet (probe jet) at any  $\eta$ .

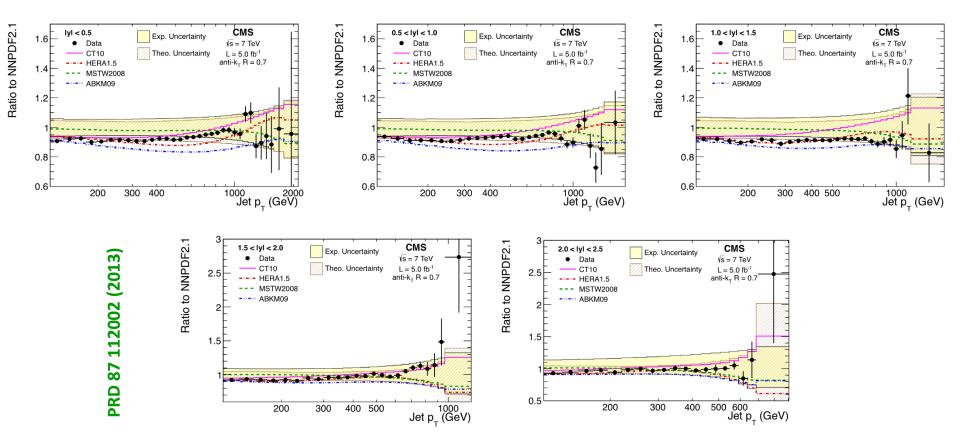


- The **absolute** jet energy response is measured using  $\gamma$ +jet or Z+jets events, with two different methods: HCAL
  - The MPF (missing  $E_{\tau}$  projection fraction)
  - And the  $p_{T}$  balance
- Both methods exploit the balance in the transverse plane between the photon and the recoiling jet.





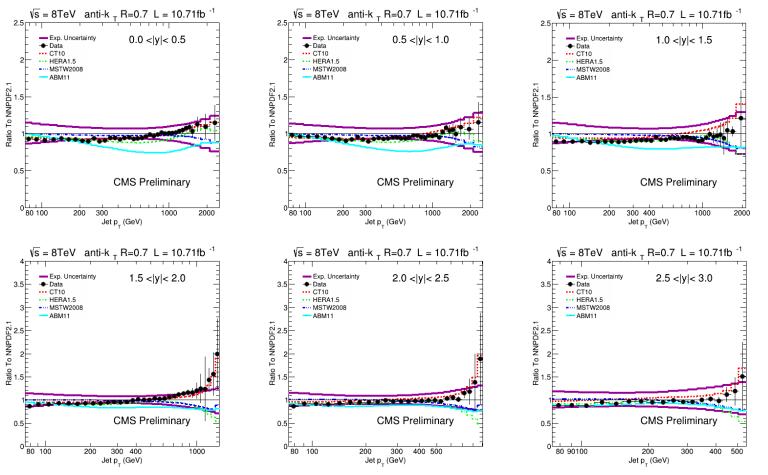




#### **Jet Energy Correction Uncertainties at 8 TeV**

University of Ioannie

#### CMS DP-2013-033







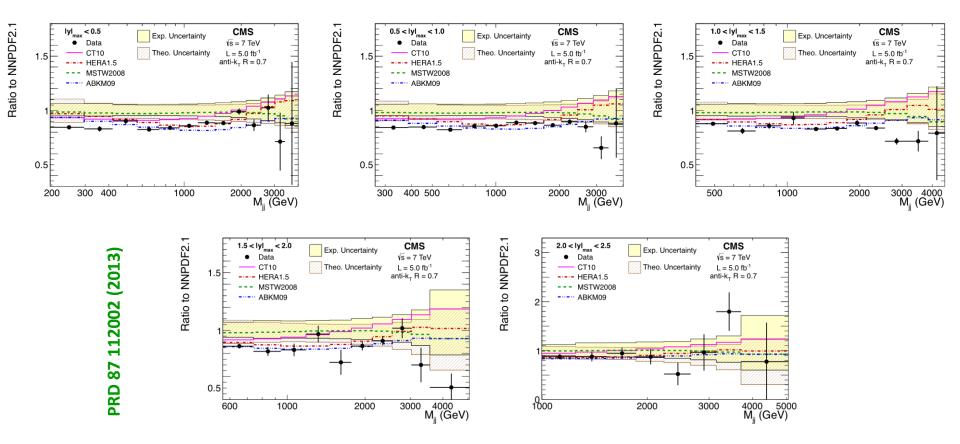

**7 TeV** : Agreement is observed between data and theory (using NNPDF2.1, CT10, HERA1.5, MSTW2008 and ABKM09 PDF sets) in all rapidity bins.



#### Inclusive Jet cross section Comparison to theory (8 TeV)



**8 TeV** : Agreement is observed between data and theory (using NNPDF2.1, CT10, HERA1.5 and MSTW2008 PDF sets) in all rapidity bins. Disagreement in central rapidity regions for ABM11.


CMS PAS

SMP-12-012

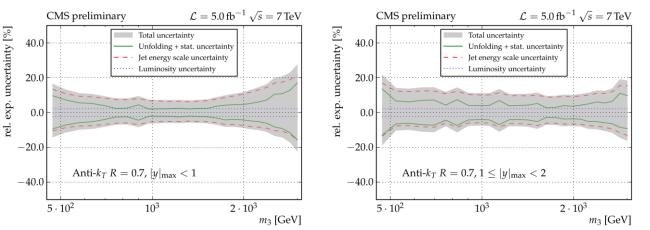


#### Di-Jet cross section 7 TeV Comparison to theory

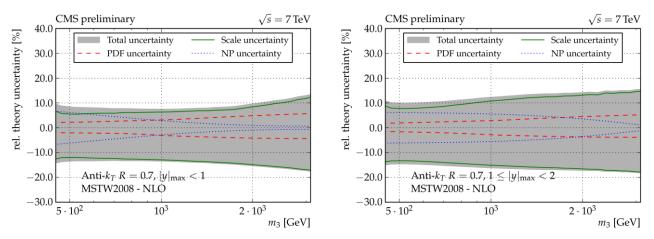




**7 TeV** : Agreement is observed between data and theory (using NNPDF2.1, CT10, HERA1.5, MSTW2008 and ABKM09 PDF sets) in all rapidity bins




#### **3-jet mass cross section at 7 TeV** Uncertainties



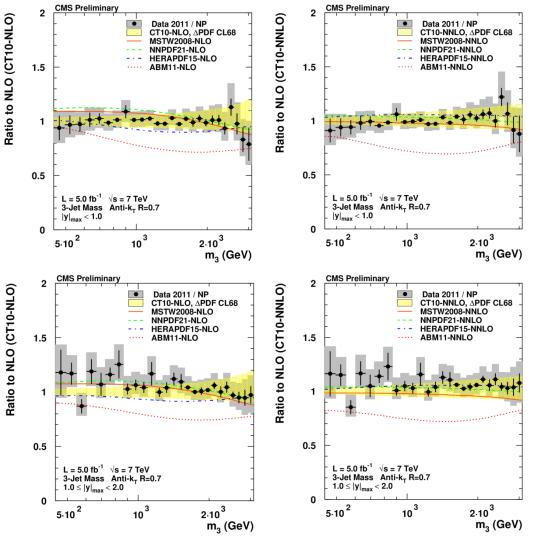

# CMS PAS SMP-12-027

#### Experimental Uncertainties



#### **Theoretical Uncertainties**




P.Kokkas, Univ. of Ioannina



#### **3-jet mass cross section at 7 TeV Comparison to theory**



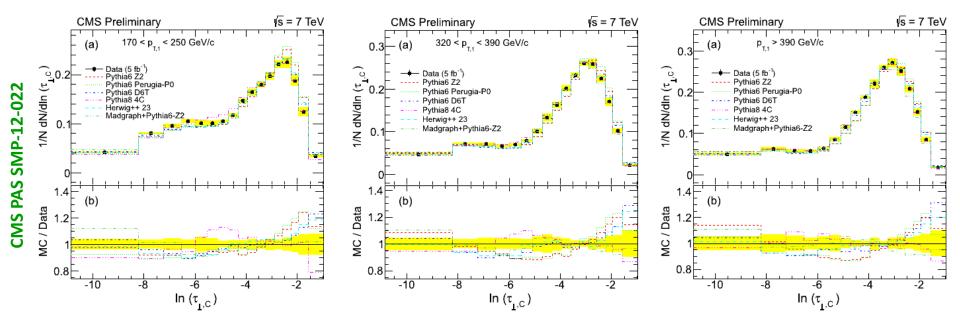
#### CMS PAS SMP-12-027



- Within uncertainties most PDF sets are able to describe the data.
- Small deviations are visible with the HERAPDF1.5 NLO set.
- Significant disagreements are exhibited by the ABM11 PDFs.



## Hadronic Event Shapes (Transverse Thrust)




The event thrust observable in the transverse plane is defined by:

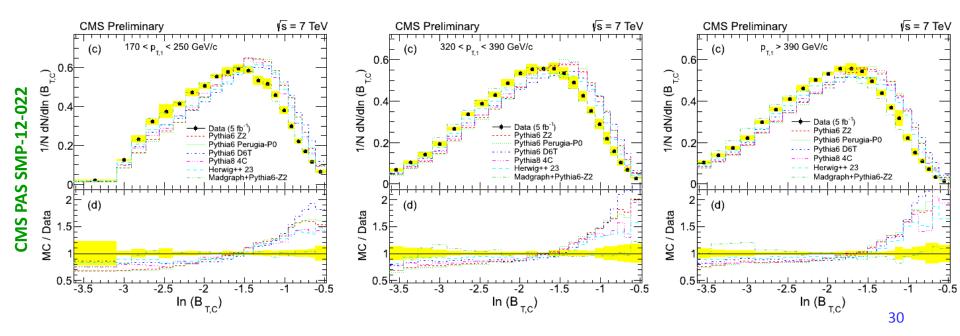
$$T_{\perp,C} \equiv \max_{\hat{n}_{\mathrm{T}}} \frac{\sum_{i} \left| \vec{p}_{\perp i} \cdot \hat{n}_{\mathrm{T}} \right|}{\sum_{i} p_{\perp i}} , \quad \tau_{\perp,C} \equiv 1 - T_{\perp,C}$$

with  $\hat{n}_T$  the unit vector that maximizes the projection (transverse thrust axis).

- In the limit of a perfectly balanced two-jet event,  $\tau_{\perp,C}$  is zero, while in isotopic multi-jet events it is  $(1-2/\pi)$ .
- All generators show an overall agreement with data to within 10%, with PYTHIA8 and HERWIG++ exhibiting a better agreement than the others.






## Hadronic Event Shapes (Jet Broadening)



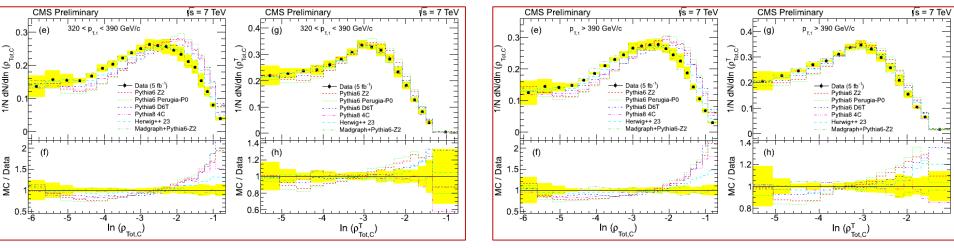
The transverse thrust axis,  $\vec{n}_{\perp}$ , splits the transverse region in an upper part  $C_U$  (with  $p_T \cdot n_{\perp} > 0$ ) and a lower part  $C_L$  (with  $p_T \cdot n_{\perp} < 0$ ). The total jet broadening is defined as:

$$B_{tot,C} \equiv B_{U,C} + B_{L,C} \qquad \qquad B_{X,C} \equiv \frac{1}{2P_{\perp}} \sum_{i \in C_X} p_{\perp i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2} \\ \eta_X = \frac{\sum_{i \in C_X} p_{\perp i} \eta_i}{\sum_{i \in C_X} p_{\perp i}}, \ \phi_X = \frac{\sum_{i \in C_X} p_{\perp i} \phi_i}{\sum_{i \in C_X} p_{\perp i}}$$

- Sensitive to ME, PS and color coherence effects. Insensitive to UE and hadronization.
- The agreement of this event shape variable with predictions is poor.
- Better agreement for the MADGRAPH and HERWIG++ generators.





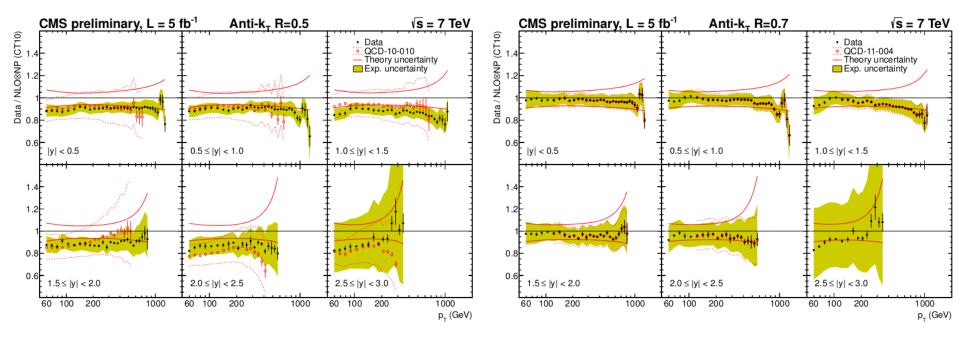



For the same definitions of upper and lower regions, the normalized squared invariant mass is defined by:  $2 = \frac{1}{2} \left( \sum_{n=1}^{2} \right)^{2}$ 

$$\rho_X \equiv \frac{1}{P^2} \left( \sum_{i \in C_X} p_i \right)$$

where P is the scalar sum of the momenta of all the constituents ( $p_i$ ) in jets. The jet mass is defined as the sum of the masses in the upper and lower regions  $\rho_{tot,C} \equiv \rho_U + \rho_L$ 

- More sensitive to (initial state) forward radiation than the jet broadening.
- Same behaviour as for the jet broadening.
- The transverse jet mass shows better agreement because is less sensitive to longitudinal event flow.



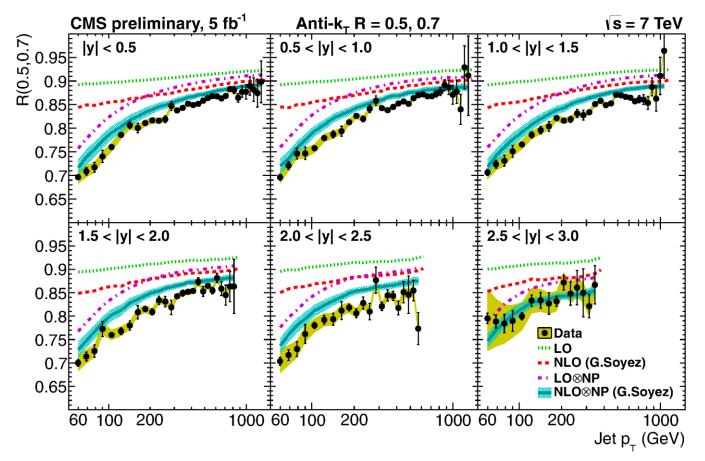

#### **CMS PAS SMP-12-022**



## University of Ioanni

#### **CMS PAS SMP-13-002**




- Comparison to NLOxNP theory prediction: Data agrees with theory within uncertainties for both jet radii.
- **BUT** agreement is slightly better for R = 0.7.



## Inclusive jet AK5/AK7 cross section ratio at 7 TeV



#### **CMS PAS SMP-13-002**



The jet radius ratio R(0.5,0.7) in the six rapidity bins, compared to pQCD predictions.



## Inclusive jet AK5/AK7 cross section ratio at 7 TeV



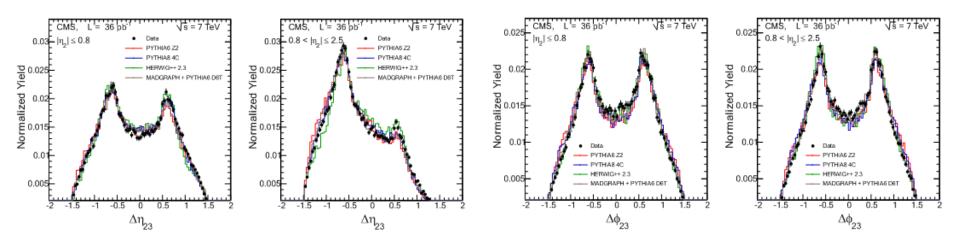
#### **CMS PAS SMP-13-002**



• The jet radius ratio R(0.5,0.7) in the six rapidity bins, compared to NLOxNP and MC predictions.



#### **Color coherence**




- Measurement done with CMS 2010 data (Integ. Lumi 36 pb<sup>-1</sup>)
- Jet reconstruction antiK<sub>T</sub> with R=0.5.
- Min jet p<sub>T</sub>=30 GeV.

Table 1: Summary of the event selection.

|            | Selection criteria                               |
|------------|--------------------------------------------------|
| $p_{T1} >$ | $100 \text{GeV},  p_{\text{T3}} > 30 \text{GeV}$ |
|            | $ \eta_1 ,  \eta_2  \le 2.5$                     |
|            | $M_{12} > 220  { m GeV}$                         |
|            | $0.5 < \Delta R_{23} < 1.5$                      |

| Uncertainty sources                  | $ \eta_2  \le 0.8$ | $0.8 <  \eta_2  \le 2.5$ |
|--------------------------------------|--------------------|--------------------------|
| Jet energy scale (JES)               | 1.0%               | 1.0%                     |
| Jet energy resolution (JER)          | 0.4%               | 0.5%                     |
| Jet angular resolution (JAR)         | 0.5%               | 0.6%                     |
| Physics model (PM) used in unfolding | 0.6%               | 0.7%                     |
| Statistical uncertainty              | 4.0%               | 3.7%                     |



P.Kokkas, Univ. of Ioannina