Measurement of the muon charge asymmetry in inclusive W production at \sqrt{s} = 7 TeV with CMS

Aleko Khukhunaishvili

University of Rochester

On behalf of the CMS collaboration

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects Warsaw, April 30, 2014

Outline & Reference

- Motivation and goal
- Measurement of **A** with CMS
- Results and implications

- > Reference:
 - □ <u>https://cds.cern.ch/record/1639605</u>
 - □ <u>http://arxiv.org/abs/arXiv:1312.6283</u>
 - □ Submitted to PRD

Motivation and goal

- LHC world's most energetic p-p collider
- Actual interactions proceed between partons
- Factorization of cross sections in pQCD

$$\sigma(pp \to X) = \sum_{a,b} \int \mathrm{d}x_a \mathrm{d}x_b f_{a/p}(x_a, Q^2) f_{b/p}(x_b, Q^2) \hat{\sigma}(ab \to X)$$

- Uncertainties in PDFs often dominate theoretical uncertainties of cross sections
- LHC explores new kinematic region

$$x_{1,2} = \frac{M_W}{\sqrt{s}} e^{\pm y_W}$$

- > Goal: use W \rightarrow lv production to constrain PDFs
 - Large cross-section
 - Clean experimental signature

W charge asymmetry

W charge asymmetry can probe PDFs directly →

$$\mathcal{A}(y_W) = \frac{\mathrm{d}\sigma(W^+)/\mathrm{d}y_W - \mathrm{d}\sigma(W^-)/\mathrm{d}y_W}{\mathrm{d}\sigma(W^+)/\mathrm{d}y_W + \mathrm{d}\sigma(W^-)/\mathrm{d}y_W} \approx \frac{u-d}{u+d} \approx \frac{u_v - d_v}{u_v + d_v + 2\bar{q}}$$

• But y_W cannot be measured \rightarrow Measure $\mathcal{A}=\mathcal{A}(\eta_\mu)$, sensitive to PDFs

$$\mathcal{A}(\eta_{\mu}) = \frac{\mathrm{d}\sigma(W^{+})/\mathrm{d}\eta_{\mu} - \mathrm{d}\sigma(W^{-})/\mathrm{d}\eta_{\mu}}{\mathrm{d}\sigma(W^{+})/\mathrm{d}\eta_{\mu} + \mathrm{d}\sigma(W^{-})/\mathrm{d}\eta_{\mu}}$$

→ $A(y_W)$ convoluted by anisotropic W decay

 Measure muon charge asymmetry in 11 |η| bins: [0.00, 0.20], [0.20, 0.40], [0.40, 0.60], [0.60,0.80], [0.80, 1.00], [1.00, 1.20], [1.20, 1.40], [1.40,1.60], [1.60, 1.85], [1.85, 2.10], [2.10, 2.40].

□ Within p_T >25 GeV acceptance region for muon

Cross-check measurement p_T >35 **GeV**

General approach:

- ▶ Require =1 high p_{T_r} good-quality, isolated muon to select $W \rightarrow \mu \nu$ candidates
- Split selected sample in 11 $|\eta| \times 2Q$ sets
- ➢ In each |η| bin,
 - Fit MET⁺ and MET⁻ simultaneously with signal and background templates to extract $W^{\pm} \rightarrow \mu^{\pm} \nu$ yields and **A**
 - Template shapes from MC, + data-driven corrections
 - Normalizations from MC with theory xsec + corrections
 - Correct extracted **A** for difference between $\varepsilon^+(\eta)$ and $\varepsilon^-(\eta)$

Muon momentum correction

Accurate Q-dependent calibration of μ momentum important

- largely from misalignment, partly from mis-modeling of magnetic field
- Defines acceptance region
- Affects MET shapes

➢ Derived from Z→µµ events A. Bodek *et al.* Euro. Phys. J. C72, 2194 (2012)

MET shape and DY normalization

- > DY background is first normalized to luminosity
- Correct with data/MC efficiency scale factors
- Additional k-factors applied that fix normalization in DY control region (full correction is taken as systematics)

- > MET is corrected for the muon Δp_T and MET- Φ modulation
- Additionally, MET in MC is corrected to match average hadronic recoil and its resolution to data values.

QCD Shape

- □ QCD MET templates from MC, with all corrections applied
- □ Check how corrections work in QCD control region
 - \rightarrow selected by inverting offline and trigger isolation

□ Full correction is taken as systematics (yellow band)

Signal extraction

□ Template shapes from MC + corrections

- □ Floating W⁺ and W⁻ yields
- Floating QCD normalization with +/- fixed to control region value
 EW fixed to luminosity + corrections

- After all selections about
 ~12.9M W⁺ & 9.1M W⁻ candidates
 (~84% signal, ~8% EW, ~8% QCD)
- Signal is extracted with binned ML fit of MET in each |η| bin
 for Mt+ and Mt- excepts simultaneously

for W⁺ and W⁻ events simultaneously

Systematics

- **Dominant sources of systematics:**
 - *ε*⁺/*ε*⁻ ratio (limited by Z statistics)
 QCD
 - □ Muon momentum for p_T >35 GeV

□ Maximum bin-to-bin correlations □ ~30% for p_T >25 GeV

 \Box ~10% for p_T >35 GeV

$\mathcal{A}(+\eta)$ vs $\mathcal{A}(-\eta)$ and comparison with \mathcal{A}_{e}

□ Re-do analysis in 22 bins and check that $\mathcal{A}(+\eta) = \mathcal{A}(-\eta)$

 Compare final result to previous measurement in electron channel
 Complementary input to PDF fits

Comparison with theory

NLO vs NNLO

FEWZ vs RESBOS

Impact of A data on PDFs

Summary and Outlook

□ Can make significant contribution to global QCD analysis

❑ Analysis of 8 TeV data ongoing:
 ❑ Expect similar or better precision → can provide additional input
 ❑ Preparatory step towards analysis of 13/14 TeV data

□ More to come → https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

Thank you!

Backup

Latest CMS A measurements

- Preliminary muon charge asymmetry results:
 - ➢ First 234 pb⁻¹ of 7 TeV data
 - \rightarrow p_T>25 GeV

Published electron charge asymmetry results:

- ► First 840 pb⁻¹ of 7 TeV data
- > p_T>35 GeV

Our measurement updates muon A results with full 4.7 fb⁻¹ dataset
 p_T>25 GeV (main result) and p_T>35 GeV (cross-check)

Tevatron Asymmetry Measurements

- $\mathcal{A}(y_w)$ is sensitive to u/d ratio
- $\mathcal{A}(y_W) \approx \frac{d(x_2)/u(x_2) d(x_1)/u(x_1)}{d(x_2)/u(x_2) + d(x_1)/u(x_1)}$ CDF used W mass constraint to unfold asymmetry as a function of W rapidity
- Latest DØ muon charge asymmetry measured with 7.3 fb⁻¹

20

 $x_{1,2} = \frac{M_W}{\sqrt{s}} \mathrm{e}^{\pm y_W}$