

Motivation

Interpretation of experimental data relies on

- Availability of reasonably fast theory calculations
- Often needed: Repeated computation of (almost) same cross sections
 - Observables, binning, phase space given by experimental data

Examples for a specific analysis:

- Use of various PDFs (CT, MSTW, NNPDF, ...) for data/theory comparison
- Determine PDF uncertainties
- Derivation of scale uncertainties
- Use data set in fit of PDFs and/or $\alpha_s(M_7)$

Sometimes NLO predictions can be computed fast But some are very slow

e.g. jet cross sections, VB+jets, Drell-Yan, ...

Need procedure for fast repeated computations of NLO cross sections

Use fastNLO (in use by most PDF fitting groups)

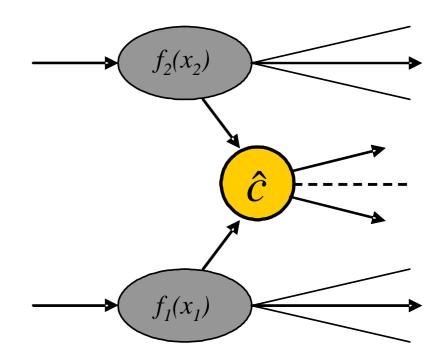
Basic working principle

Cross section in hadron-hadron collisions in pQCD

Many cross section calculations are time consuming (e.g. jets)

$$\sigma = \sum_{a,b,n} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \alpha_{s}^{n}(\mu_{r}) \cdot c_{a,b,n}(x_{1}, x_{2}, \mu_{r}, \mu_{f}) \cdot f_{1,a}(x_{1}, \mu_{f}) f_{2,b}(x_{2}, \mu_{f})$$

- strong coupling α_s in order n
- PDFs of two hadrons f_1, f_2
- Parton flavors a, b
- perturbative coefficent $c_{a,b,n}$
- renormalization and factorization scales μ_{r,μ_f}
- momentum fractions x_1 , x_2



PDF and α_s are external input Perturbative coefficients are independent from PDF and α_s

Idea: factorize PDF, α_s and scale dependence

The fastNLO concept

Introduce interpolation kernel

- Set of n discrete x-nodes x_i 's being equidistant in a function f(x)
- Take set of Eigenfunctions $E_i(x)$ around nodes x_i -> interpolation kernels

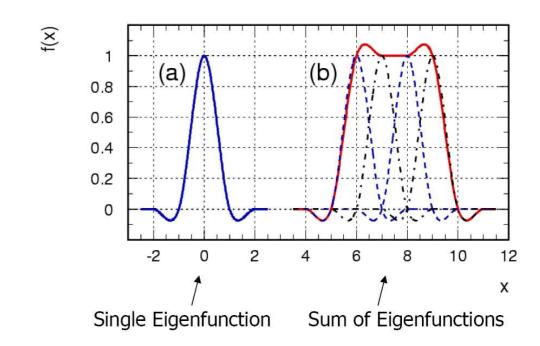
Single PDF is replaced by a linear combination of interpolation kernels

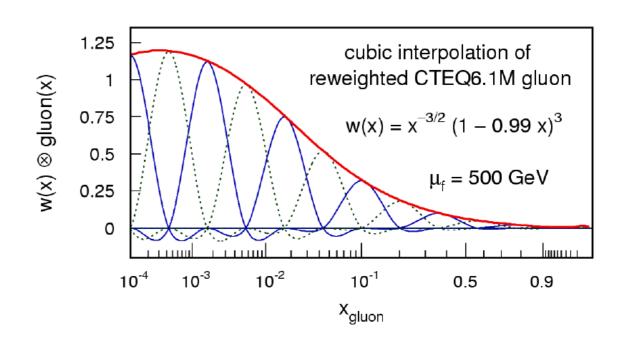
Improve interpolation by reweighting PDF

$$f_a(x) \cong \sum_i f_a(x_i) \cdot E^{(i)}(x)$$

Scale dependence

- Similar interpolation procedure also for scales
- Interpolation nodes in x and scales are stored together in look-up table
- Two different observables can be chosen as scale in one table





Convolution integrals become discrete sums

=> Values of perturbative coefficents can be stored in a table

Calculations with fastNLO in NNLO

Problem

Scale variations become more difficult in NNLO than in NLO

Current available implementations for NLO calculations

Renormalization scale variations

- Scale variations applying RGE
 - Use LO matrix elements times $n\beta_0 \ln(c_r)$ [fastNLO, APPLgrid (EPJ C (2010) 66: 503)]
- Flexible-scale implementation
 - Store scale-independent weights: $\omega(\mu_R, \mu_F) = \omega_0 + \log(\mu_R)\omega_R + \log(\mu_F)\omega_F$ [fastNLO]

Factorization scale variations

- Calculate LO DGLAP splitting functions using HOPPET [APPLgrid]
- Store coefficients for desired scale factors [fastNLO]
- Flexible-scale implementation [fastNLO]

Scale variations for NNLO calculations

- a-posteriori renormalization scale variations become more complicated
- NLO splitting functions are needed for factorization scale variations
 - Calculations become slow again => Not desired for fast repeated calculations

Flexible-scale implementation in NNLO

Storage of scale-independent weights enable full scale flexibility also in NNLO

Additional logs in NNLO

$$\omega(\mu_R, \mu_F) = \omega_0 + \log(\mu_R^2)\omega_R + \log(\mu_F^2)\omega_F + \log^2(\mu_R^2)\omega_{RR} + \log^2(\mu_F^2)\omega_{FF} + \log(\mu_R^2)\log(\mu_F^2)\omega_{RF}$$
log's for NLO additional log's in NNLO

• Store weights: w_0 , w_R , w_F , w_{RR} , w_{FF} , w_{RF} for order α_s^{n+2} contributions

Advantages

- Renormalization and factorization scale can be varied independently and by any factor
 - No time-consuming 're-calculation' of splitting functions in NLO necessary
- Only small increase in amount of stored coefficients

fastNLO implementation

- Two different observables can be used for the scales
 - e.g.: H_T and $p_{T,max}$
 - or e.g.: p_T and /y/
 - ...
- Any function of those two observables can be used for calculating scales

'Flexible-scale concept': Best choice for performant NNLO calculations

Application to differential ttbar cross sections in approx. NNLO

Application of flexible-scale concept to NNLO calculations

Interface to DiffTop code

- DiffTop
 - Code for calculation of heavy quark production within threshold resummation formalism in Mellin space
 - See talk by M.Guzzi
- Differential ttbar cross sections in approx. NNLO
 - $d\sigma/dp_T$
 - *d*σ/*d*y

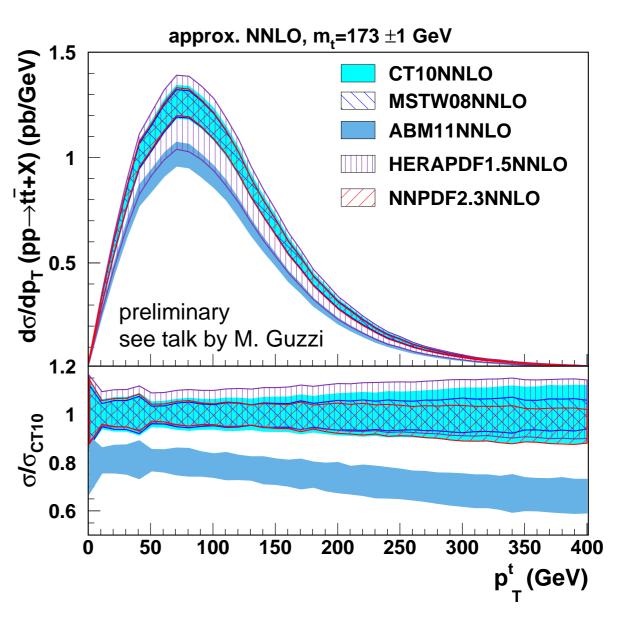
Benefit in speed

- NNLO calculation O(days-weeks)
- fastNLO calculation O(<1s)

fastNLO facilitates study of PDF dependence

Particularly including PDF uncertainties

• 262 re-calculations are required



786 repeated calculations needed including variation of m_t

Application to differential ttbar cross sections in approx. NNLO

Without recalculating the coefficients

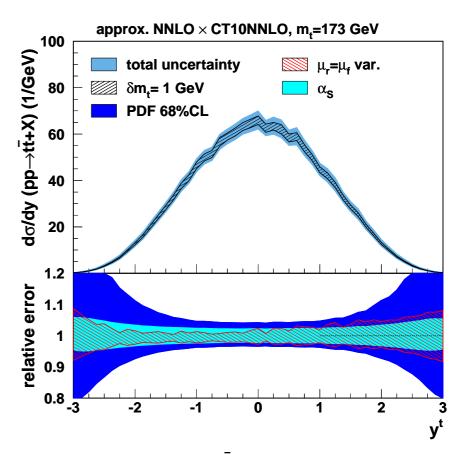
- Variation of the scales within milliseconds
- Variation of α_s
- Determination of PDF uncertainties
- Also choice of the scales possible here: $\mu_{r/f} = f(p_T, y, m_t)$

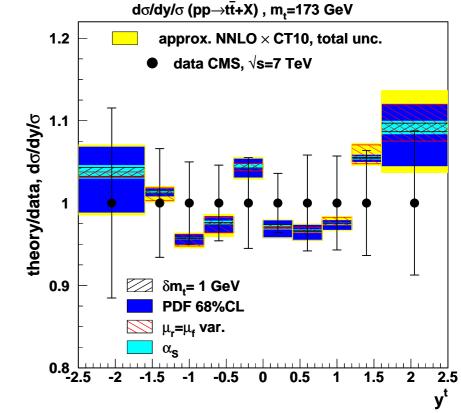
Variation of m_t

- m_t is a third hard scale in this process
- m_t is not factorized in the current approach
 - Separate fastNLO tables have been computed for different values of $m_{\scriptscriptstyle t}$

Fast recomputation of cross sections for a given measurement enables application of time-consuming (N)NLO calculations to PDF and/or α_s -fits

 Large gluon uncertainties at high-x can be reduced using ttbar cross sections





Accuracy of fastNLO interpolation in NNLO

Compare cross sections calcuated with DiffTop standalone compared to fastNLO

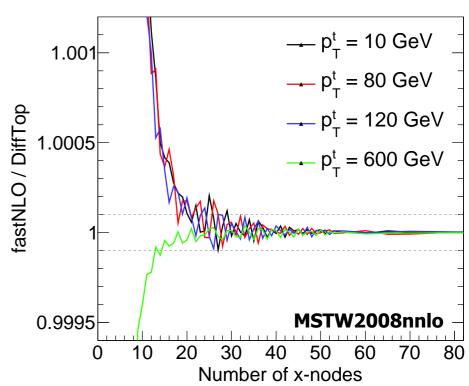
- Interpolation accuracy depends on number of nodes and on chosen interpolation kernel
- Bicubic interpolation kernels used
- Compare contribution order by order separately
- Data probe x-range of $2 \cdot 10^{-3} < x < 1$
 - High x-range has more distinct PDF shapes

fastNLO/DiffTop

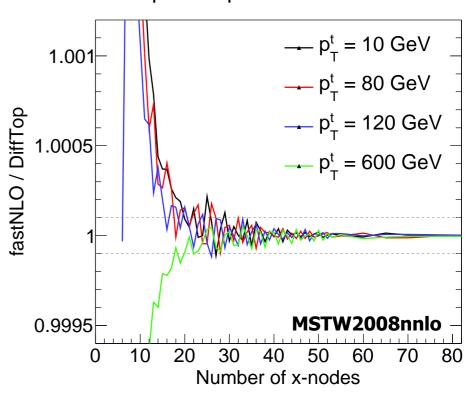
- Perfect agreement within numerical precision reachable (O(10⁻⁶))
- NNLO has same accuracy as LO
- With 18 nodes agreement better than 2·10⁻⁴
- Accidental 'interference effects' with PDF grid may cause small fluctuations O(2·10⁻⁴)
 - -> Numerical uncertainty of PDF grids

fastNLO interpolation does not introduce numerical biases

Interpolation precision LO



Interpolation precision NNLO



New tool: fastNLO toolkit

What about application of fastNLO to other processes/programs?

Hardly any theoretical limitation of fastNLO concept to pQCD or EW calculations

- Theory codes are not optimized (at all) for fastNLO
- Technical difficulties are mostly limiting factor in usage

Goal:

Provide simple and flexible code to interface fastNLO to any kind of (N)NLO program

Newly developed tool: *fast*NLO Toolkit

fastNLO needs access to

- Matrix elements before convolution with PDFs
- x-values where PDFs are evaluated
- Observables
- Scale definitions

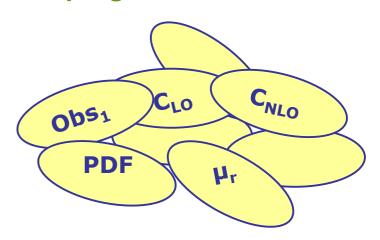
Various NLO and NNLO programs have very different software architecture

fastNLO needs access to

- Matrix elements before convolution with PDFs
- x-values where PDFs are evaluated
- Observables
- Scale definitions

Various NLO and NNLO programs have very different software architecture

NLO program A

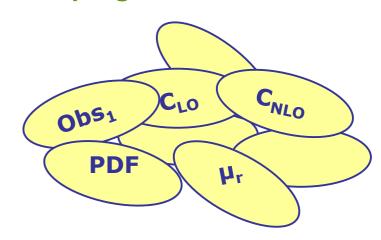


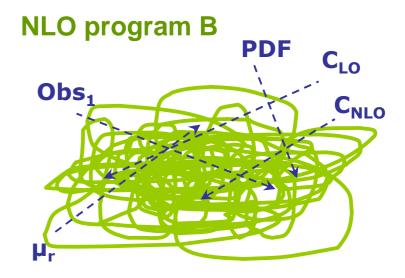
fastNLO needs access to

- Matrix elements before convolution with PDFs
- x-values where PDFs are evaluated
- Observables
- Scale definitions

Various NLO and NNLO programs have very different software architecture

NLO program A





fastNLO needs access to

- Matrix elements before convolution with PDFs
- x-values where PDFs are evaluated
- Observables
- Scale definitions

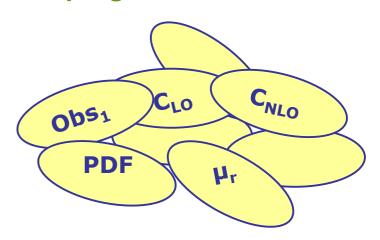
Various NLO and NNLO programs have very different software architecture

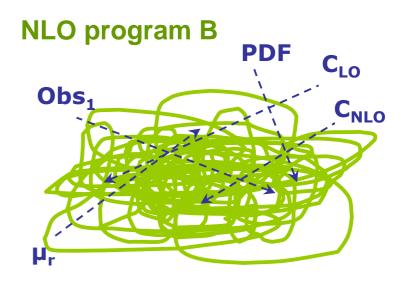
Reasons

- Optimized for efficient calculation
- Straight implementation of math. formulae
- Historically grown codes
- Usage of well established algorithms (e.g. vegas)

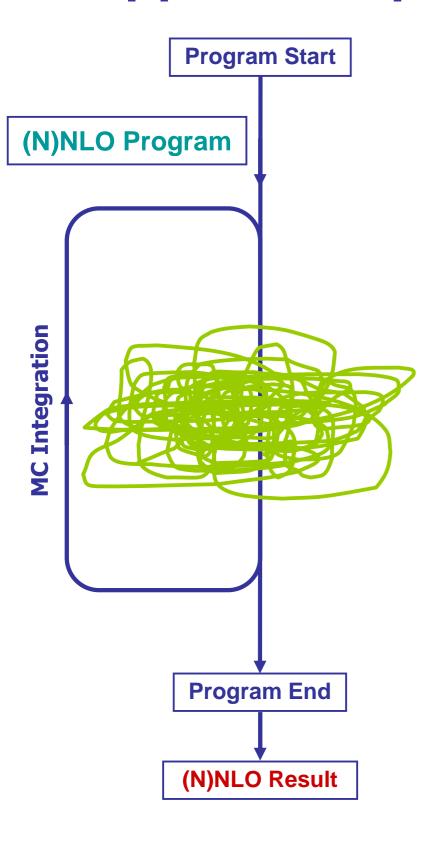
(N)NLO programs often look to non-authors like different kind of pasta

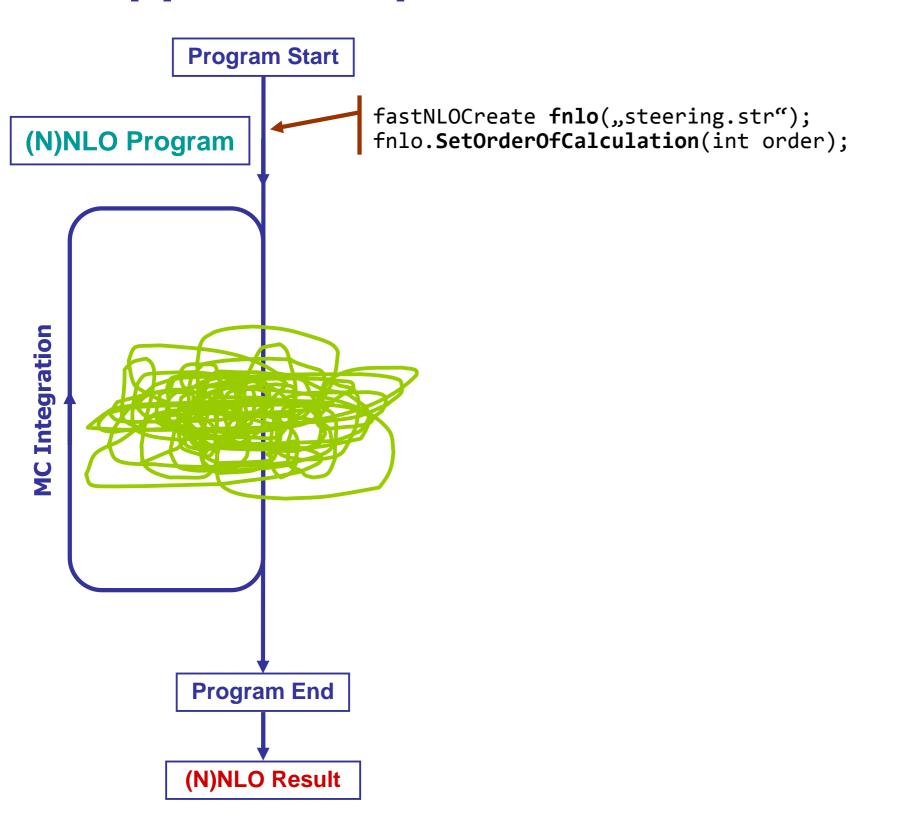
NLO program A



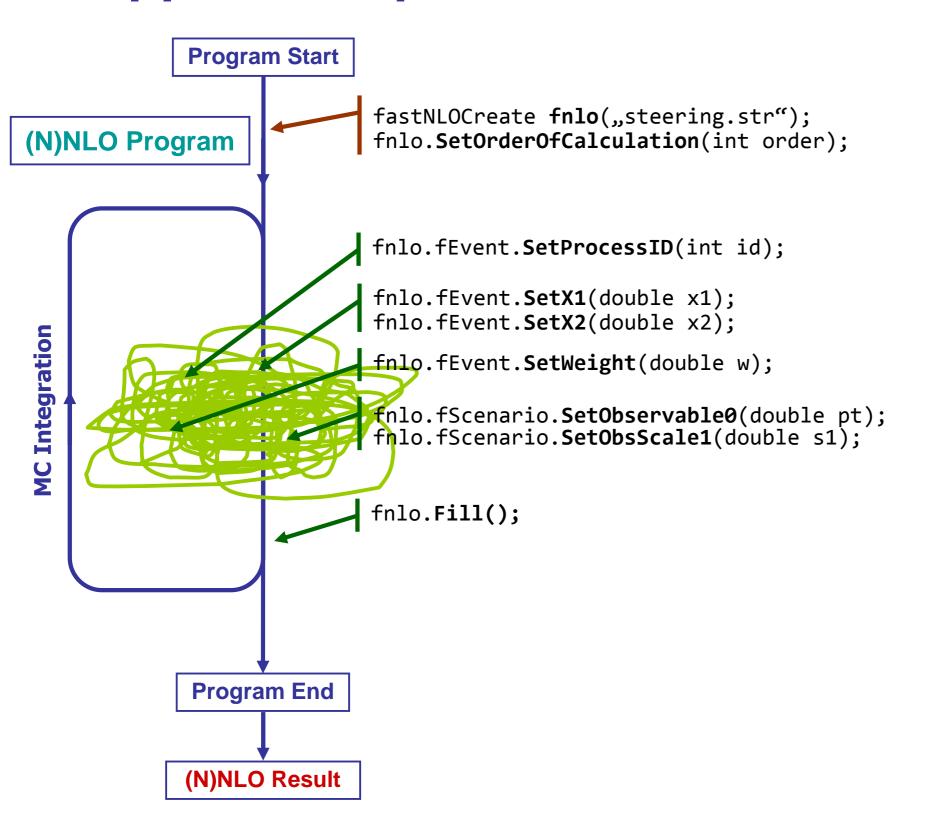


Think about a general interface to any kind of theoretical program





Initialize fastNLO class(es)

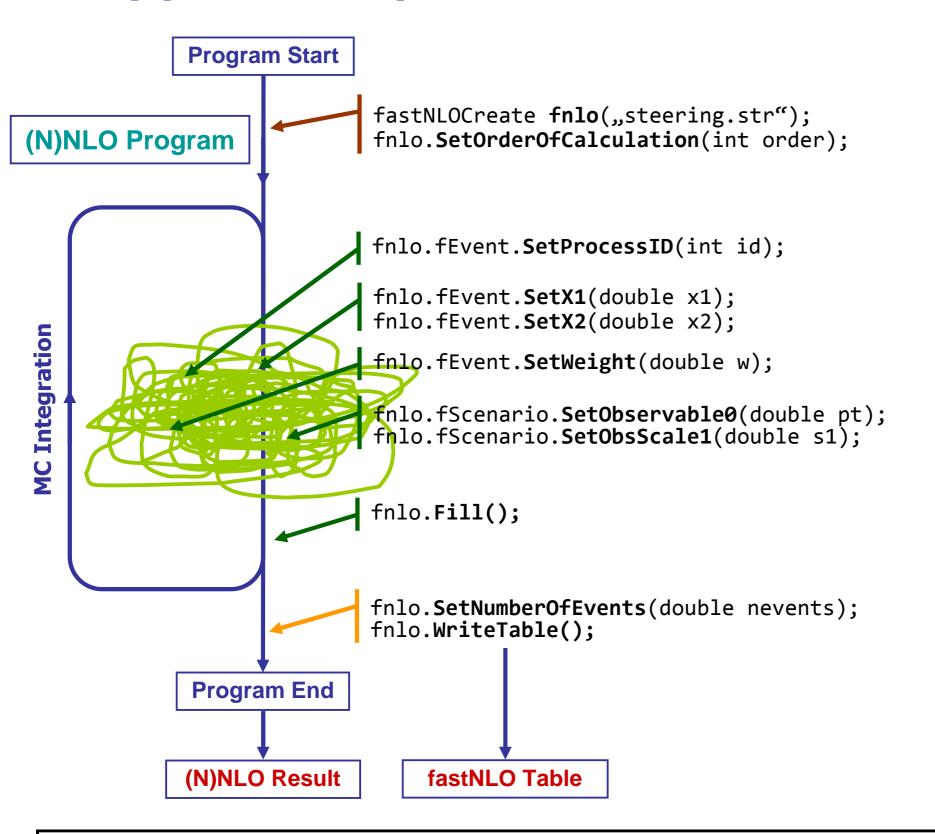


Initialize fastNLO class(es)

Pass the process specific variables during the 'event loop' to fastNLO

- Order does not matter
- Many other convenient implementations possible

Pass all information to fastNLO



Initialize fastNLO class(es)

Pass the process specific variables during the 'event loop' to fastNLO

- Order does not matter
- Many other convenient implementations possible

Pass all information to fastNLO

Set normalization of the MC integration and write table

Minimum implementation: 11 lines of code

Convenient implementation of fastNLO into any (N)NLO program possible

New developments for fastNLO toolkit

1) Creation of fastNLO tables

- One stand-alone c++ library
 - No third party packages needed
 - Optimally: Only 11 lines of code necessary
 - Depending on (N)NLO program: many implementations possible
- Parameters are specified in steering card
 - Binning (also double- or triple- differentially)
- Performance optimized
 - Caching of interpolation values
 - Automatic optimization of grids to phase space
- PDF parton combinations for different subprocesses
 - Specified in steering
 - Stored in table

2) fastNLO table format

- Further contributions are forseen
 - EW corrections, etc...
- PDF combinations are stored in table
- Storage of uncertainties soon available
- QEDPDFs or p-Pb collisions also forseen

3) Evaluating fastNLO tables

- New interface in PYTHON
- Many interfaces to PDF and α_s routines
 - LHAPDF5, LHAPDF6, Hoppet, QCDNUM, ALPHAS, CRunDec, ...
- Improved speed for flexible-scale tables
- Caching of PDFs and α_s values for (even) faster re-evaluation

```
// FastNLO example code in c++ for reading CMS incl.
// jets (PRL 107 (2011) 132001) with CT10 PDF set

fastNLOLHAPDF fnlo("fnl1014.tab","CT10.LHgrid",0);
fnlo.PrintCrossSections();
```

Summary and Outlook

fastNLO enables fast re-evalution of perturbative calculations

- Convenient for scale or PDF studies (e.g. uncertainties)
- Mandatory tool for phenomenological analysis (e.g. α_s or PDF fits)

Scale-independent concept successfully applied in NNLO

fastNLO is applicable to a wide range of processes and corrections

New tool: 'fastNLO toolkit'

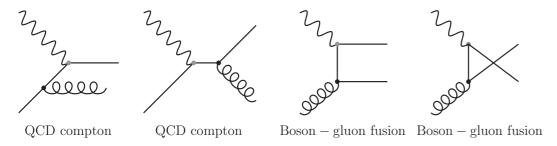
- Facilitates creation of tables and interface to other (N)NLO programs
- Very flexible code:
 Only few modifications in (N)NLO programs are needed (O(11) lines of code)

Code and manual is released soon after conference

- Python interface available for reading tables
- pre-release version of 'fastNLO toolkit' is available on request
- more information: http://fastnlo.hepforge.org

Application of flexible scale concept

Inclusive jet production in DIS



Two scales are stored in table

- Q²
- p_T of the jet

Any function of the two can be used as scale

Renormalization and factorization scale can be varied seperately

Choose for scale study

•
$$\mu_f^2 = Q^2$$

 Color code shows 5% change in cross section w.r.t. to scale factor of 1

Other scale choices also shown without scale factors

