

Higgs boson Couplings and Properties with CMS

Linda Finco

INFN and University of Torino

On behalf of the CMS Collaboration

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects

Outline

Higgs production and decay modes

Properties

- Mass measurement
- Spin-parity measurements
- Width measurement

Couplings

- Production and decay mechanisms
- Tests of the Standard Model
- Conclusions

Production and Decay Modes

MASS

L. Finco

DIS 2014

4

$H \rightarrow \gamma \gamma$ Decay Channel

Channel features

- Modest branching fraction
- Clear signature
 - 2 isolated and energetic γ
- Large background from QCD
- Excellent mass resolution

Analysis strategy

- Event categorization on photon resolution and kinematic properties
- Additional event classes according to production mechanism
- Signal extracted from background by fitting the observed diphoton mass distributions in each class

H→ZZ→41 Decay Channel

Channel features

- Very small branching fraction
- Very clean signature
 - 2 pairs of high p_T and isolated μ or e
 - full reconstructed event topology
- Small background contribution
- Excellent mass resolution

Analysis strategy

Event categorization according to lepton flavor

Mass measurement performed using 3D fit

with
$$(m_{4|}, \delta m_{4|}, \mathcal{D}_{\text{bkg}}^{\text{kin}})$$

$$\mathcal{D}_{bkg}^{kin} = \frac{\mathcal{P}_{sig}^{kin}}{\mathcal{P}_{sig}^{kin} + \mathcal{P}_{bkg}^{kin}}$$

Combination

Combination of the results obtained from $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 4I$ measurements, thanks to their excellent resolution

 $m_{\rm H}$ = 125.7 ± 0.3(stat.) ± 0.3(syst.) GeV

SPIN and PARITY

L. Finco

8

H→WW Decay Channel

Channel features

- Distinct signature
 - 2 isolated and high p_T leptons
 - small opening angle
 - missing transverse energy
- Very poor mass resolution
- Large background

Analysis strategy

- Different-flavor 0-jet and 1-jet categories used to distinguish between 0^+ and 2^+_m ($gg \rightarrow X$), $qq \rightarrow X$) or 0^- ($gg \rightarrow X$) hypotheses
- Discriminating variables: m_T and m_{\parallel}

Data favor the SM hypothesis

H→ZZ→41 Decay Channel

• 2D fit using \mathcal{D}_{bkg} and \mathcal{D}_{JP} kinematic discriminants based on angular information

 \mathcal{D}_{bkg} separates SM Higgs from background

 \mathcal{D}_{JP} discriminates alternative J^P hypothesis from SM Higgs

WIDTH

Width Measurement

- Standard Model prediction at m_H = 125.7 GeV is Γ ~ 4 MeV
- Direct measurement strongly limited by experimental resolution
- Current upper limit of 3.4 (6.9) GeV at 95% C.L. in the $H\rightarrow ZZ\rightarrow 4I$ $(H\rightarrow \gamma\gamma)$ channel

Sensitivity at the resonance peak far beyond the expected width

Width Measurement

Goal: to constrain the Higgs boson width using the Higgs boson production and decay away from the resonance

Channels: $H \rightarrow ZZ$ decay in 41 and 212v final states

$$\sigma_{gg \to H \to ZZ}^{\text{on-peak}} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot \mathcal{B})_{\text{SM}} \equiv \mu \sigma \cdot \mathcal{B}_{\text{SM}}$$

$$\kappa_g = g_{ggH} / g_{ggH}^{\text{SM}}$$

$$\kappa_Z = g_{HZZ} / g_{HZZ}^{\text{SM}}$$

$$\kappa_Z = g_{HZZ} / g_{HZZ}^{\text{SM}}$$

$$\kappa_Z = g_{HZZ} / g_{HZZ}^{\text{SM}}$$

$$r = \Gamma_H / \Gamma_H^{\text{SM}}$$

$$r = \Gamma_H / \Gamma_H^{\text{SM}}$$

- ullet Signal strength μ provided by the measurement of the on-shell production
- r value (and Γ_H) can be obtained by measuring the ratio of the production in the off-shell and on-shell region

Warning: the destructive interference with continuum $gg \rightarrow ZZ$ is not negligible at high m_{ZZ}

Width Measurement

To describe all the different contributions to the final state, a likelihood is defined, depending on:

- 41 final state: m_{41} and a kinematic discriminant \mathcal{D}_{gg} , to separate $gg \rightarrow ZZ$ and $qq \rightarrow ZZ$ processes
- **212v** final state: m_T and E_T^{miss}

$$\Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM} < 6.4 (10.7)$$

 $\Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM} < 4.2 (8.5)$ $\Gamma_{\rm H} < 17.4 \, {\rm MeV}$

COUPLINGS

15

DIS 2014

The Couplings

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

- σ_{ii} and Γ_{ff} are proportional to the square of effective Higgs boson couplings to the corresponding particle ($\sigma_{ii} \sim g_i^2$, $\Gamma_{ff} \sim g_f^2$)
- To test SM deviations, modified couplings are defined, denoted by scale factors k_i

Example:
$$gg \to H \to \gamma \gamma$$

 $\sigma \cdot BR (gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \cdot \frac{\kappa_g^2 \kappa_\gamma^2}{\kappa_H^2}$

Significant deviations of any k from 1 would imply physics beyond the SM

Production Mechanisms

VH

Leptons, missing E_T or low-mass dijets from W or Z decays

VBF

Two high p_T jets with high-mass and large pseudorapidity separation

ttH

Two top quarks: leptons, missing E_T , multijets or b-tagged jets

ggF

The rest

Bosons
Fermions

g 0000

Vector Boson and Fermion Couplings

- At L.O. all partial widths scale either as k_V^2 or k_f^2 , except for $\Gamma_{\gamma\gamma}$ that scales as $|\alpha k_V + \beta k_f|^2$
 - $\gamma \gamma$ channel is sensitive to the relative sign of k_V and k_f

Anomalous $k_f < 0$ disfavored at ~ 2.7 σ

Data are consistent with the expectation

Search for New Physics

- Processes induced by loop diagrams $(H \rightarrow \gamma \gamma)$ and $gg \rightarrow H$) are particularly sensitive to new physics
 - \longrightarrow Data fitted for k_{y} and k_{g}

 $k_{\gamma} \in [0.59, 1.30]$ $k_{g} \in [0.63, 1.05]$ at 95% C.L.

- Higgs could decay into invisible particles or not detectable at LHC
 - Modified total Higgs width, left free to float in the fit

Results are compatible with the expectation

Conclusions

- The mass of the analyzed resonance is measured with high precision
- The particle is compatible within uncertainties with a SM Higgs boson and alternative spin-parity hypotheses are disfavored by the data
- The experimental constraint on Higgs total width is determined using off-shell production and decay, improving by more than two orders of magnitude the previous experimental result
- A comprehensive set of Higgs coupling fits is reported and no significant deviation from SM predictions is observed within the uncertainties

Backup

Bosonic Decay Modes

Kinematic Discriminant

Signal/background kinematic discriminant defined using matrix element techniques

$$\mathcal{D}_{\text{bkg}}^{\text{kin}} = \frac{\mathcal{P}_{\text{sig}}^{\text{kin}}}{\mathcal{P}_{\text{sig}}^{\text{kin}} + \mathcal{P}_{\text{bkg}}^{\text{kin}}}$$

121.5 < m₄₁ < 130.5 GeV

H(126) 2D PDF

Mass Systematic Uncertainties

source	systematic uncertainties
Muon momentum scale uncertainty	± 0.1% (4µ)
Electron energy uncertainty	± 0.3% (4e)

source	systematic uncertainties
non linearity when extrapolating from Z	± 0.4%
upstream material simulation	± 0.25%

$H \rightarrow \gamma \gamma$ Decay Channel

- 2^+_m hypothesis tested (direct decay of a spin-1 particle into $\gamma\gamma$ forbidden by the Landau-Yang theorem)
- Discriminating variable: $cos(\theta^*)$
 - photons from a spin-0 particle are isotropic
- Event categorization according to photon

resolution and $cos(\theta^*)$

In this case, 2⁺_m spin hypothesis can not be excluded

Discriminating Variable Distributions

41 final state

$$\mathcal{L}_{i} = N_{gg \to ZZ} \left[\mu r \times \mathcal{P}_{sig}^{gg} + \sqrt{\mu r} \times \mathcal{P}_{int}^{gg} + \mathcal{P}_{bkg}^{gg} \right] + \dots$$

Discriminating Variable Distributions

212v final state

CMS preliminary, \sqrt{s} =8.0 TeV, $(L=19.7 \text{ fb}^{-1})$

Signal Strength

Signal Strength

H→ZZ→41 Decay Channel

Channel features

- Very small branching fraction
- Very clean signature
 - 2 pairs of high p_T and isolated μ or e
 - full reconstructed event topology
- Small background contribution
- Excellent mass resolution

Analysis strategy

- Event categorization according to lepton flavor
- Mass measurement performed using 3D fit with $(m_{4|}, \delta m_{4|}, \mathcal{D}_{kin})$
- 8% improvement using per-event mass errors
- Main systematic uncertainties due to lepton scale and resolution

Asymmetries in Fermion Couplings

- Modifications to the fermion couplings may arise from theories beyond the SM
 - Study of $\lambda_{lq} = k_l/k_q$ and $\lambda_{du} = k_d/k_u$ ratios (constrained to be positive)

 $\lambda_{lq} \in [0.57, 2.05]$ $\lambda_{du} \in [0.74, 1.95]$ at 95% C.L.

Data are consistent with the expectation

Fit six Couplings at once

Assumptions

- Custodial symmetry $(k_W = k_Z = k_V)$
- Scale factors for couplings to 1st and 2nd generation fermions are equal to the 3rd ones
- No beyond SM decays ($\Gamma_{BSM} = 0$)

Data are consistent with the SM

