Higgs boson Couplings and Properties with CMS

Linda Finco
INFN and University of Torino

On behalf of the CMS Collaboration

XXII International Workshop on Deep-Inelastic Scattering and Related Subjects
Outline

- Higgs production and decay modes
- Properties
 - Mass measurement
 - Spin-parity measurements
 - Width measurement
- Couplings
 - Production and decay mechanisms
 - Tests of the Standard Model
- Conclusions
Production and Decay Modes

4 production mechanisms

5 decay modes exploited (WW, ZZ, γγ, bb and ττ)
Channel features

- Modest branching fraction
- Clear signature
 - 2 isolated and energetic γ
- Large background from QCD
- Excellent mass resolution

Analysis strategy

- Event categorization on photon resolution and kinematic properties
- Additional event classes according to production mechanism
- Signal extracted from background by fitting the observed diphoton mass distributions in each class
H→ZZ→4l Decay Channel

Channel features
• Very small branching fraction
• Very clean signature
 • 2 pairs of high p_T and isolated μ or e
 • full reconstructed event topology
• Small background contribution
• Excellent mass resolution

Analysis strategy
• Event categorization according to lepton flavor
• Mass measurement performed using 3D fit with $(m_{4l}, \delta m_{4l}, D_{bkg}^{\text{kin}})$

$$D_{bkg}^{\text{kin}} = \frac{P_{\text{kin}}^{\text{sig}}}{P_{\text{kin}}^{\text{sig}} + P_{\text{kin}}^{\text{bkg}}}$$
Combination

Combination of the results obtained from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l$ measurements, thanks to their excellent resolution

$$m_H = 125.7 \pm 0.3\,\text{(stat.)} \pm 0.3\,\text{(syst.)} \text{ GeV}$$
SPIN and PARITY
Channel features
• Distinct signature
 • 2 isolated and high p_T leptons
 • small opening angle
 • missing transverse energy
• Very poor mass resolution
• Large background

Analysis strategy
• Different-flavor 0-jet and 1-jet categories used to distinguish between 0^+ and $2^+_m (gg \rightarrow X, qq \rightarrow X)$ or $0^- (gg \rightarrow X)$ hypotheses
• Discriminating variables: m_T and m_{ll}

Data favor the SM hypothesis
H→ZZ→4l Decay Channel

- 2D fit using D_{bkg} and D_{JP} kinematic discriminants based on angular information

D_{bkg} separates SM Higgs from background

D_{JP} discriminates alternative J^p hypothesis from SM Higgs

- Twelve models tested

$CL_S = 0.09\%$

$0^+ \text{ vs } 0^-$

0^+ hypothesis highly favored
WIDTH
Width Measurement

- Standard Model prediction at $m_H = 125.7$ GeV is $\Gamma \sim 4$ MeV
- Direct measurement strongly limited by experimental resolution
- Current upper limit of 3.4 (6.9) GeV at 95% C.L. in the $H \rightarrow ZZ \rightarrow 4l$ ($H \rightarrow \gamma\gamma$) channel

Sensitivity at the resonance peak far beyond the expected width
Goal: to constrain the Higgs boson width using the Higgs boson production and decay away from the resonance

Channels: $H \rightarrow ZZ$ decay in $4l$ and $2l2\nu$ final states

\[
\sigma_{\text{on-peak}}^{gg \rightarrow H \rightarrow ZZ} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot B)_{\text{SM}} \equiv \mu (\sigma \cdot B)_{\text{SM}}
\]

\[
\frac{d\sigma_{\text{off-peak}}^{gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \cdot \frac{d\sigma_{\text{off-peak,SM}}^{gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}} = \mu r \frac{d\sigma_{\text{off-peak,SM}}^{gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}}
\]

- Signal strength μ provided by the measurement of the on-shell production
- r value (and Γ_H) can be obtained by measuring the ratio of the production in the off-shell and on-shell region

Warning: the destructive interference with continuum $gg \rightarrow ZZ$ is not negligible at high m_{ZZ}
To describe all the different contributions to the final state, a likelihood is defined, depending on:

- **4ℓ final state**: $m_{4\ell}$ and a kinematic discriminant D_{gg}, to separate $gg\rightarrow ZZ$ and $qq\rightarrow ZZ$ processes
- **2ℓ2ν final state**: m_T and E_T^{miss}

\[
\begin{align*}
\Gamma_H/\Gamma^\text{SM}_H &< 6.6 \ (11.5) \\
\Gamma_H/\Gamma^\text{SM}_H &< 6.4 \ (10.7) \\
\Gamma_H &< 4.2 \ (8.5) \\
\Gamma_H &< 17.4 \text{ MeV}
\end{align*}
\]
COUPLINGS
The Couplings

\[\sigma \times BR(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_H} \]

- \(\sigma_{ii}\) and \(\Gamma_{ff}\) are proportional to the square of effective Higgs boson couplings to the corresponding particle \((\sigma_{ii} \sim g_i^2, \Gamma_{ff} \sim g_f^2)\).
- To test SM deviations, modified couplings are defined, denoted by scale factors \(k_i\).

Example: \(gg \rightarrow H \rightarrow \gamma\gamma\)

\[\sigma \cdot BR(gg \rightarrow H \rightarrow \gamma\gamma) = \sigma_{SM}(gg \rightarrow H) \cdot BR_{SM}(H \rightarrow \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2} \]

Significant deviations of any \(k\) from 1 would imply physics beyond the SM.
Production Mechanisms

VH
Leptons, missing E_T or low-mass dijets from W or Z decays

VBF
Two high p_T jets with high-mass and large pseudorapidity separation

ttH
Two top quarks: leptons, missing E_T, multijets or b-tagged jets

ggF
The rest

L. Finco

DIS 2014

CMS Preliminary $m_H = 125.7$ GeV

$$\mu = 0.80 \pm 0.14$$

$$\mu = 0.78 \pm 0.16$$

$$\mu = 1.02 \pm 0.34$$

$$\mu = 1.02 \pm 0.49$$

$$\mu = -0.15 \pm 2.86$$

$$\mu = 0.52$$
Vector Boson and Fermion Couplings

- At L.O. all partial widths scale either as k_V^2 or k_f^2, except for $\Gamma_{\gamma\gamma}$ that scales as $|\alpha k_V + \beta k_f|^2$

 $\gamma\gamma$ channel is sensitive to the relative sign of k_V and k_f

Anomalous $k_f < 0$ disfavored at $\sim 2.7\sigma$

Data are consistent with the expectation
Search for New Physics

- Processes induced by loop diagrams ($H \rightarrow \gamma\gamma$ and $gg \rightarrow H$) are particularly sensitive to new physics

Data fitted for k_γ and k_g

$k_\gamma \in [0.59, 1.30]$

$k_g \in [0.63, 1.05]$

at 95% C.L.

- Higgs could decay into invisible particles or not detectable at LHC

Modified total Higgs width, left free to float in the fit

Results are compatible with the expectation

$\Gamma_{BSM} < 0.52$ at 95% C.L.
Conclusions

• The mass of the analyzed resonance is measured with high precision
• The particle is compatible within uncertainties with a SM Higgs boson and alternative spin-parity hypotheses are disfavored by the data
• The experimental constraint on Higgs total width is determined using off-shell production and decay, improving by more than two orders of magnitude the previous experimental result
• A comprehensive set of Higgs coupling fits is reported and no significant deviation from SM predictions is observed within the uncertainties
Backup
Bosonic Decay Modes
Kinematic Discriminant

Signal/background kinematic discriminant defined using matrix element techniques

\[\mathcal{D}_{\text{bkg}}^{\text{kin}} = \frac{\mathcal{P}_{\text{sig}}^{\text{kin}}}{\mathcal{P}_{\text{sig}}^{\text{kin}} + \mathcal{P}_{\text{bkg}}^{\text{kin}}} \]

121.5 < \(m_{4l} \) < 130.5 GeV

H(126) 2D PDF
Mass Systematic Uncertainties

$H \rightarrow ZZ \rightarrow 4l$

<table>
<thead>
<tr>
<th>source</th>
<th>systematic uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon momentum scale uncertainty</td>
<td>± 0.1% (4μ)</td>
</tr>
<tr>
<td>Electron energy uncertainty</td>
<td>± 0.3% (4e)</td>
</tr>
</tbody>
</table>

$H \rightarrow \gamma\gamma$

<table>
<thead>
<tr>
<th>source</th>
<th>systematic uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>non linearity when extrapolating from Z</td>
<td>± 0.4%</td>
</tr>
<tr>
<td>upstream material simulation</td>
<td>± 0.25%</td>
</tr>
</tbody>
</table>
$H \rightarrow \gamma \gamma$ Decay Channel

- 2^+_{m} hypothesis tested (direct decay of a spin-1 particle into $\gamma \gamma$ forbidden by the Landau-Yang theorem)
- Discriminating variable: $\cos(\theta^*)$
 - photons from a spin-0 particle are isotropic
- Event categorization according to photon resolution and $\cos(\theta^*)$

In this case, 2^+_{m} spin hypothesis can not be excluded

$0^+ \text{ vs } 2^+_{m}$

$CL_S = 60.1\%$

$CL_S = 17.4\%$
Discriminating Variable Distributions

4l final state

\[\mathcal{L}_i = N_{gg \to ZZ} \left[\mu r \times \mathcal{P}^{gg}_{\text{sig}} + \sqrt{\mu r} \times \mathcal{P}^{gg}_{\text{int}} + \mathcal{P}^{gg}_{\text{bkg}} \right] + \ldots \]
Discriminating Variable Distributions

2l2ν final state

CMS preliminary, √s=8.0 TeV, |L|=19.7 fb⁻¹
Signal Strength

\[\sqrt{s} = 7 \text{ TeV}, L \leq 5.1 \text{ fb}^{-1} \quad \sqrt{s} = 8 \text{ TeV}, L \leq 19.6 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>Process</th>
<th>CMS Preliminary</th>
<th>(m_H = 125.7 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>(\mu = 0.80 \pm 0.14)</td>
<td>(p_{SM} = 0.94)</td>
</tr>
<tr>
<td>(H \to bb) (VH tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to bb) (ttH tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \gamma\gamma) (untagged)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \gamma\gamma) (VBF tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \gamma\gamma) (VH tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to WW) (0/1 jet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to WW) (VBF tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to WW) (VH tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \tau\tau) (0/1 jet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \tau\tau) (VBF tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to \tau\tau) (VH tag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to ZZ) (0/1 jet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \to ZZ) (2 jets)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sqrt{s} = 7 \text{ TeV}, L \leq 5.1 \text{ fb}^{-1} \quad \sqrt{s} = 8 \text{ TeV}, L \leq 19.6 \text{ fb}^{-1} \]

<table>
<thead>
<tr>
<th>Process</th>
<th>CMS Preliminary</th>
<th>(m_H = 125.7 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>(\mu = 0.60 \pm 0.14)</td>
<td>(p_{SM} = 0.85)</td>
</tr>
<tr>
<td>(H \to bb)</td>
<td>(\mu = 1.15 \pm 0.62)</td>
<td></td>
</tr>
<tr>
<td>(H \to \tau\tau)</td>
<td>(\mu = 1.10 \pm 0.41)</td>
<td></td>
</tr>
<tr>
<td>(H \to \gamma\gamma)</td>
<td>(\mu = 0.77 \pm 0.27)</td>
<td></td>
</tr>
<tr>
<td>(H \to WW)</td>
<td>(\mu = 0.88 \pm 0.20)</td>
<td></td>
</tr>
<tr>
<td>(H \to ZZ)</td>
<td>(\mu = 0.92 \pm 0.28)</td>
<td></td>
</tr>
</tbody>
</table>
Signal Strength

CMS Preliminary \(\sqrt{s} = 7 \text{ TeV}, L \leq 5.1 \text{ fb}^{-1} \), \(\sqrt{s} = 8 \text{ TeV}, L \leq 19.6 \text{ fb}^{-1} \)

- \(H \rightarrow \tau \tau \)
- \(H \rightarrow WW \)
- \(H \rightarrow ZZ \)
- \(H \rightarrow bb \)
- \(H \rightarrow \gamma \gamma \)
H→ZZ→4l Decay Channel

Channel features

- Very small branching fraction
- Very clean signature
 - 2 pairs of high p_T and isolated μ or e
 - full reconstructed event topology
- Small background contribution
- Excellent mass resolution

Analysis strategy

- Event categorization according to lepton flavor
- Mass measurement performed using 3D fit with $(m_{4l}, \delta m_{4l}, D_{\text{kin}})$
- 8% improvement using per-event mass errors
- Main systematic uncertainties due to lepton scale and resolution
Asymmetries in Fermion Couplings

• Modifications to the fermion couplings may arise from theories beyond the SM

→ Study of $\lambda_{lq} = k_l/k_q$ and $\lambda_{du} = k_d/k_u$ ratios (constrained to be positive)

$\lambda_{lq} \in [0.57, 2.05]$
$\lambda_{du} \in [0.74, 1.95]$ at 95% C.L.

Data are consistent with the expectation
Fit six Couplings at once

Assumptions

- Custodial symmetry \(k_W = k_Z = k_V \)
- Scale factors for couplings to 1\(^{st}\) and 2\(^{nd}\) generation fermions are equal to the 3\(^{rd}\) ones
- No beyond SM decays \(\Gamma_{\text{BSM}} = 0 \)

Data are consistent with the SM