Diffractive vector meson production in ultraperipheral heavy ion collisions from the Color Glass Condensate

Heikki Mäntysaari

University of Jyväskylä
Department of Physics

1.5.2014
The Color Glass Condensate framework describes many small-\(x\) processes accurately.

Necessary input: gluon density at \(x = x_0\) (from DIS).

There is very little small-\(x\) nuclear DIS data.

eA collisions would be ideal, but before eRHIC/LHeC have to use something else.

\(\Rightarrow\) ultraperipheral AA
Diffractive deep inelastic scattering (DDIS) = DIS with no exchange of quantum numbers (color).

- $e + p \rightarrow e + p + X$, proton interacts via "pomeron exchange"
- x_P: fraction of proton momentum carried by the pomeron.
- $Q^2 = -q^2$: virtuality of the photon.
Ultraperipheral AA collision

\[b \gtrsim 2R_A: \text{strong interactions suppressed, nucleus creates photon flux } n(\omega) \]
\[\sigma \sim n(\omega)\gamma^A(\omega) \]

Probes gluons with \(x = M_V e^y / \sqrt{s} \)

- Forward LHC: \(x \sim 0.02 \) and \(x \sim 10^{-5} \).
- Midrapidity LHC: \(x \sim 10^{-3} \)

Dipole model is valid only at \(x \lesssim 10^{-2} \Rightarrow \text{at LHC limit } y \lesssim 2 \ldots 3. \)
Coherent and incoherent diffraction

Diffraction off the nucleus:

- Coherent diffraction: nucleus remains intact

\[
\frac{d\sigma}{dt} \gamma^* A \rightarrow VA \sim \langle |A(x, Q^2, t)|^2 \rangle
\]

- Quasielastic = coherent + incoherent

\[
\frac{d\sigma}{dt} \gamma^* A \rightarrow V(A^* + A) \sim \left| \langle A(x, Q^2, t) \rangle \right|^2
\]

- Incoherent, nucleus is allowed to break up

\[
\frac{d\sigma}{dt} \gamma^* A \rightarrow VA^* \sim \left| \langle A(x, Q^2, t) \rangle \right|^2 - \langle |A(x, Q^2, t)|^2 \rangle
\]

\langle \rangle = \text{Average over nucleon positions.}
Dipole cross section

CGC: Dipole-proton cross section
\[\sigma_{\text{dip}}(x, r, \Delta) = 2 \int d^2 b e^{i b \cdot \Delta} N(r, x, b) \]

Universal dipole amplitude \(N \)

- Total \(\gamma^* p \):
 \[\int d^2 r d z |\psi(Q^2, r, z)|^2 \sigma_{\text{dip}}(x, r, \Delta = 0) \]

- Total diffraction:
 \[\frac{1}{16\pi} \int d^2 r d z |\psi(Q^2, r, z)\sigma_{\text{dip}}(x, r, \Delta)|^2 \]

- Exclusive diffraction:
 \[\frac{1}{16\pi} \left| \int d^2 r d z \psi^* \psi^V(Q^2, r, z)\sigma_{\text{dip}}(x, r, \Delta) \right|^2 \]

- Inclusive particle production (pp, pA):
 \[\sim x g(x, Q^2) \int d^2 r e^{i r \cdot p_T} [1 - N(r, x)] \]

 + Correlations, ...
Impact parameter dependent BK evolution is problematic (work in progress), use IPsat model (Kowalski, Teaney 2003; Rezaeian et al, 2013):

\[
N(r, x, b) = 1 - \exp \left[-\frac{\pi^2}{2N_c} \alpha_s x g(x, \mu^2) T_p(b) r^2 \right]
\]

- Fit to HERA data: initial condition for DGLAP evolution of \(xg(x, \mu^2)\)
- Proton profile \(T_p\) gaussian

Generalize for nuclei:
- \(T_p(b) \rightarrow \sum_{i=1}^{A} T_p(b - b_i)\)
- Average over different nucleon configurations from Woods-Saxon
 \(\Rightarrow\) coherent/incoherent diffraction
Factorized IPsat

Quasielastic cross section can be computed using a factorized approximation (T. Lappi, H.M, 1011.1988)

\[N(r, x, b) \approx T(b)N(r, x) \]

\[N(r, x) = 1 - \exp \left[-\frac{1}{2\pi B_p} \frac{\pi^2}{2N_c} \alpha_s x g(x, \mu^2) r^2 \right] \]

- Also large corrections from real part and skewness
- Compare “fIPsat” to IIM (lancu, Itacura, Munier) model: study dependence on dipole model
Comparison with the HERA data

Compare with HERA $\gamma^* p \rightarrow J/\Psi p$ data:

$$\gamma^* p \rightarrow J/\Psi p, \ W=90 \ \text{GeV}$$

$\sigma_p^{J/\Psi}$ [nb]

$M_{J/\Psi}^2 + Q^2$ [GeV2]

T. Lappi, H. Mäntysaari, 1011.1988

Also a good description of the F_2 data.
Comparison with the ALICE data: coherent diffraction

\[\text{Pb + Pb} \rightarrow \text{J/Ψ + Pb + Pb}, \quad \sqrt{s_{NN}} = 2.76 \text{ TeV} \]

Different dipole and vector meson wavef models: change overall normalization, but shape is very similar.

RHIC midrapidity: \(d\sigma/dy = 109 \mu b \), experimental \(76 \pm 34 \mu b \).
Pb+Pb → Pb+Pb+J/ψ $\sqrt{s_{NN}} = 2.76$ TeV a)

- ● ALICE Coherent J/ψ
- ○ Reflected

Unshadowed model (AB-MSTW08) clearly fails ⇒ saturation effects seen
Comparison of predictions (incoherent diffraction)

\[\text{Pb}+\text{Pb} \rightarrow \text{Pb}+\text{Pb}+J/\psi \quad \sqrt{s_{NN}} = 2.76 \text{ TeV} \quad b) \]

- ALICE Incoherent \(J/\psi \)

Normalization dependence on the \(J/\Psi \) wave function model: \(\sim 25\% \)

ALICE, 1305.1467
\(\Psi(2S) \) production

\(\Psi(2S) \) wave function has a node \(\Rightarrow \) large suppression compared to \(J/\Psi \)

- Meson-photon wave function overlap, \(z = 0.5 \):

![Graph showing wave functions](image-url)
\(\Psi(2S)\) wave function has a node \(\Rightarrow\) large suppression compared to \(J/\Psi\)

- 2S/1S Ratio depends on event type:
 \(\gamma p <\) coherent \(\gamma A <\) incoherent \(\gamma A\)

\[
Pb+Pb \rightarrow J/\Psi+Pb+Pb, \sqrt{s_{NN}} = 2.76 \text{ TeV}
\]

- Data: ALICE, 1310.7732, 1305.1467
Conclusions

- Ultraperipheral heavy ion collisions make it possible to study γA diffraction at high energy
- Coherent and incoherent photoproduction measurements provide independent model constraints
- Dipole model description of incoherent and coherent diffraction in $\gamma^* A$
 - Here used IPsat parametrization fit to HERA
 - Absolute normalization has largish model dependence
 - Rapidity evolution of $d\sigma/dy$ is more precise prediction
- Prediction for $\Psi(2S)$ production and $\Psi(2S)/J/\Psi$ ratio
- Work in progress: use BK-evolved dipole amplitude consistently with the HERA F_2 and F_{2c} data
Wave function overlap in \(J/\Psi \) production:

Transversely polarized \(J/\Psi \) meson

\[
\left\langle \frac{\langle \mathbf{r} \rangle}{2} \right\rangle \int dz (\Psi^* V \Psi) \quad \text{[GeV]} \quad Q^2 = 0.05 \text{ GeV}^2, Q^2 = 3.2 \text{ GeV}^2, Q^2 = 22.4 \text{ GeV}^2
\]

Longitudinally polarized \(J/\Psi \) meson

\[
\left\langle \frac{\langle \mathbf{r} \rangle}{2} \right\rangle \int dz (\Psi^* V \Psi) \quad \text{[GeV]} \quad Q^2 = 0.05 \text{ GeV}^2, Q^2 = 3.2 \text{ GeV}^2, Q^2 = 22.4 \text{ GeV}^2
\]
Assuming proton profile function $T_p(b) \sim e^{b^2/(2B_p)} \Rightarrow$ incoherent cross section $\sim e^{-B_p t}$: probes spatial distribution of gluons in proton!
As the photon flux $\sim Z^2$, dominant process is the one where the nucleus emits the photon \Rightarrow probes mostly proton structure.
Prediction for incoherent diffraction

Again overall normalization uncertainty, but \(\sigma(y = 0)/\sigma(y = 2) = 1.4 \) more precise prediction.
Fit HERA σ_r: get automatically good description of σ_r^{charm}. Assume factorized impact parameter profile and $\sigma = \frac{1}{B_p} \frac{d\sigma}{dt}|_{t=0}$

Problem: large $\sigma_0 \sim 50 \text{ mb}$