Electroweak and radiative penguin processes in B decays at Belle

Luis Pesántez Universität Bonn

for the Belle Collaboration

DIS Workshop – Warsaw 2014

30/04/2014

Introduction

- **b** \rightarrow **s**,**d** γ and **b** \rightarrow **s I**⁺**I**⁻ are FCNC
- Sensitive to new physics:

- Observables: BF, ACP, AFB, Isospin asymmetry...
- Constrain non-SM contributions to Wilson coefficients Ci from OPE

$$H_{\rm eff} = \frac{G_F}{\sqrt{2}} \sum_i V_{\rm CKM}^i C_i(\mu) Q_i$$

- $-\mathbf{b} \rightarrow \mathbf{s} \boldsymbol{\gamma}$ determined by C_7
- -**b** → **s I**⁺**I**⁻ determined by C7, C9, C10

- CP asymmetry in $B \rightarrow X_{(s+d)}\gamma$ –Inclusive
- Branching fraction $B \rightarrow X_s \gamma$
 - -Sum of exclusives

NEW

- Forward- backward asymmetry in $B \rightarrow X_s I^+ I^-$ - Sum of exclusives
- Search for $B^0 \rightarrow p^+ \overline{\Lambda} \pi^- \gamma$ -Exclusive

CP asymmetry in $B \rightarrow X_{(s+d)}\gamma$

- Inclusive method: reduce model uncertainty but has high background.
- High energy photon (1.7 2.8 GeV) and lepton (e, μ) for tagging
- Mass veto for $\pi^0(\eta) \to \gamma \gamma$

Continuum suppression

- Continuum $e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c), decay is "jet-like", BB is "spherical"
- Characterize "event shape":
 - Topological variables (thrust, Fox-Wolfram moments, ...)
 - Kinematic variables (missing mass, transverse energy, ...)
- Make use of multivariate analysis techniques (NN, BDT, etc.)

-0.5

0

Arbitrary normalization

10

10⁻²

10⁻³

10

-1

- Remove veto, fit to reconstructed π/η mass, compare data and MC.
- Correct MC in momentum bins: $c_i = \frac{N_{on} N_{off}}{N_{MC}}$

Wrong tag and sources of asymmetry

30/04/2014

Subtracted $B \rightarrow X_{(s+d)}\gamma$ photon spectrum

• Spectrum after subtraction of background:

- Main systematic from BB bkg asymmetry.
- Statistical uncertainty dominates
- Stable for different thresholds

Electroweak and penguin decays at Belle — Luis Pesántez

Asymmetry:
$$A_{CP}^{meas} = \frac{N^+ - N^-}{N^+ + N^-}$$

is corrected for wrong tags and bias

Result for A_{CP} in B \rightarrow X_{(s+d)}\gamma

- Most precise measurement of ACP
- Consistent with SM and other experiments

Branching fraction $B \rightarrow X_s \gamma$

• Sum of exclusives: 38 X_s states (~70% of total).

1 or 3 K (up to 1 K_s), up to 4 π (up to 2 π^{0}), up to 1 η

$$K_s \pi^+, K^+ \pi^0, K_s \pi^+ \pi^+ \pi^-, K_s \eta, K^+ \eta \pi^-, \cdots$$

- Photon energy Eγ>1.8 GeV
- Determine selection efficiency of each channel for BF!
- Selection:
 - Neural network for continuum suppression
 - Mass veto for *D* mesons (peaking bkg $B \rightarrow D^{(*)}(K\pi\pi)\rho$)

Electroweak and penguin decays at Belle — Luis Pesántez

 $P \rightarrow X_s \gamma$ (sum of exclusives), procedure

• Fit to M_{bc} in 19 M_{Xs} bins

$$M_{\rm bc} \equiv \sqrt{E_{beam}^2 - |\vec{p}_B|^2}$$

-- Signal
-- Cross feed
-- Peaking BG
-- Non-peaking
-- Continuum

- Calibration Xs hadronization:
 - Signal efficiency depends on model.
 - Pythia parameters + data driven calibration.
- Missing modes uncertainty: use different parameters for hadronization.

Source	Systematic uncertainty (%)
$B\overline{B}$ counting	1.37
Detector response	2.98
Background rejection	3.38
M_{bc} PDF	5.06
Hadronization model	6.66
Missing mode	1.59
Total	9.3

$\sum_{B \in U} B \rightarrow X_s \gamma$ (sum of exclusives), results

• Measured BF, 710 fb⁻¹ (E_{γ}^* >1.8 GeV and Mxs<2.8 GeV/c²) $\mathcal{BR}(B \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$

• Extrapolation to $E_{\gamma}^* > 1.6 \text{ GeV}$ $\mathcal{BR}(B \to X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$

30/04/2014

Electroweak and penguin decays at Belle — Luis Pesántez

Forward-backward asymmetry (A_{FB}) in B \rightarrow X_s I^+ I^-

- AFB in $B \rightarrow K^{(*)} I^+ I^-$ measured (LHCb, Belle, BaBar). Agree with SM.
- First "sum of exclusives" measurement, has lower theory error!
- 10 exclusive modes used, 50% of total rate $-K/K_s$ + up to $4\pi + e^+e^-$ or $\mu^+\mu^-$
- NN for suppression of continuum and $B\overline{B}$.
- Veto charmonium: J/Ψ and $\Psi(2S)$
- Measure AFB as function of $q^2 \longrightarrow (q^2 = M_{\ell\ell}^2)$

$A_{FB} \text{ in } B \rightarrow X_s I^+ I, \text{ signal extraction}$

- Extract signal: unbinned maximum likelihood fit to Mbc
- For *e* and μ , an each q^2 bin

- Low efficiency at low q^2 and $|\cos\theta| \sim 1$, shifts value of A_{FB}. Correction α estimated with MC $A_{FB} = \alpha \cdot A_{FB}^{raw}$
- Dominant systematics: α correction, estimation of peaking BG

- Consistent with SM, statistical uncertainty dominates
- \bullet First bin consistent with SM within 1.8 σ
- In OPE, AFB can be written as: $\mathcal{A}_{FB} \propto -C_{10} \cdot \mathfrak{Re} \left(2C_7 + \frac{q^2}{m_1^2} C_9 \right)$
- In high q^2 region, exclude $C_{10}*C_9>0$ with 2.3 σ

30/04/2014

Search for $B^0 \rightarrow p^+ \overline{\Lambda} \pi^- \gamma$

- Exclusive measurement of $\ b \to s \gamma$
- Observed hierarchy in baryonic B decays: 4 Body > 3 Body > 2 Body
 - $\mathsf{b} \to \mathsf{S} \quad \mathcal{B}(B^+ \to p\bar{\Lambda}\pi^+\pi^-) > \mathcal{B}(B^0 \to p\bar{\Lambda}\pi^-) > \mathcal{B}(B^+ \to p\bar{\Lambda})$

 $-\operatorname{\mathsf{b}}\to\operatorname{\mathsf{C}}\quad \mathcal{B}(B^0\to p\bar\Lambda_c\pi^+\pi^-)>\mathcal{B}(B^+\to p\bar\Lambda_c\pi^-)>\mathcal{B}(B^0\to p\bar\Lambda_c)$

• Measured b \rightarrow sy: $\mathcal{B}(B^+ \rightarrow p\bar{\Lambda}\gamma) = (2.45^{+0.44}_{-0.38} \pm 0.22) \times 10^{-6}$ PRD.76.052004

30/04/2014

Summary

• CP asymmetry in $B \to X_{(s+d)}\gamma$

- Most precise result
- Measured as a function of $E\gamma$
- Consistent with SM, for E γ >2.1 GeV AcP = (2.2 ± 4.0 ± 0.8) x 10⁻² Branching fraction $B \rightarrow X_s \gamma$, sum of exclusives
- -Consistent with SM $\mathcal{BR}(B \to X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$
- Forward- backward asymmetry in $B \rightarrow X_s I^+ I^-$
 - First measurement!
 - High q² region excludes C₁₀*C₉ > 0 with 2.3 σ
- Search for $B^0 \to p^+ \overline{\Lambda} \pi^- \gamma$

-Upper limit at 90% CL $\mathcal{B}(B \to p^+ \bar{\Lambda} \pi^- \gamma) < 6.5 \times 10^{-7}$

Electroweak and penguin decays at Belle — Luis Pesántez

BACKUP

30/04/2014

Electroweak and penguin decays at Belle — Luis Pesántez

Belle @ KEKB-B factory

• Asymmetric e+e- collider

Wrong tag factor

Reconstructed $B \rightarrow X_s \gamma$ modes

Mode ID	Final state	Mode ID	Final state	Mode ID	Final state
1	$K^+\pi^-$	16	$K_s \pi^+ \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
2	$K_s \pi^+$	17	$K^+\pi^0\pi^0$	32	$K_s \eta \pi^+ \pi^0$
3	$K^+\pi^0$	18	$K_s \pi^0 \pi^0$	33	KKK
4	$K_s \pi^0$	19	$K^+\pi^-\pi^0\pi^0$	34	KKK_s
5	$K^+\pi^+\pi^-$	20	$K_s \pi^+ \pi^0 \pi^0$	35	KK_sK_s
6	$K_s \pi^+ \pi^-$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	36	$K^+K^+K^-\pi^-$
7	$K^+\pi^+\pi^0$	22	$K_s \pi^+ \pi^- \pi^0 \pi^0$	37	$K^+K^-K_s\pi^+$
8	$K_s \pi^+ \pi^0$	23	$K^+\eta$	38	$K^+K^+K^-\pi^0$
9	$K^+\pi^+\pi^-\pi^-$	24	$K_s \eta$		
10	$K_s \pi^+ \pi^+ \pi^-$	25	$K^+\eta\pi^-$		
11	$K_s \pi^+ \pi^0$	26	$K_s\eta\pi^+$		
12	$K_s \pi^+ \pi^0$	27	$K^+\eta\pi^0$		
13	$K^+\pi^+\pi^+\pi^-\pi^-$	28	$K_s \eta \pi^0$		
14	$K_s \pi^+ \pi^+ \pi^- \pi^-$	29	$K^+\eta\pi^+\pi^-$		
15	$K_s\pi^+\pi^+\pi^-\pi^0$	30	$K_s\eta\pi^+\pi^-$		

Partial $B \rightarrow X_s \gamma BF$

Table 9.12: The partial branching ratio on M_{X_s}

$M_{X_s} \operatorname{bin}(\mathrm{GeV/c^2})$	$BR(10^{-6})$
0.6-0.7	$-0.1\pm0.1\pm0.0$
0.7-0.8	$0.3 \pm 0.1 \pm 0.1$
0.8-0.9	$19.8 {\pm} 0.5 {\pm} 0.9$
0.9-1.0	$15.7 {\pm} 0.5 {\pm} 0.7$
1.0-1.1	$2.9 \pm 0.3 \pm 0.2$
1.1-1.2	$4.8 \pm 0.5 \pm 1.5$
1.2-1.3	$18.7 \pm 0.8 \pm 1.1$
1.3-1.4	$21.8 \pm 1.0 \pm 1.3$
1.4-1.5	$21.2 \pm 1.0 \pm 1.4$
1.5-1.6	$22.0{\pm}1.4{\pm}1.3$
1.6-1.7	$22.4 \pm 1.1 \pm 1.5$
1.7-1.8	$24.8 \pm 1.4 \pm 1.7$
1.8-1.9	$26.7 \pm 2.2 \pm 1.9$
1.9-2.0	$26.3 \pm 2.9 \pm 2.3$
2.0-2.1	$23.3 \pm 3.1 \pm 4.5$
2.1-2.2	$21.0 \pm 2.6 \pm 4.9$
2.2-2.4	$40.3 \pm 7.2 \pm 11$
2.4-2.6	$27.9 \pm 8.6 \pm 11$
2.6-2.8	$11.5 \pm 11 \pm 13$

(a) Partial branching ratio. The first solid error is the statistical one and the second dashed error is a quadratic sum of the statistical and systematic errors.

$\frac{2}{Reconstruction efficiency } B \rightarrow X_s I^+ I^-$

Peaking background in $B \rightarrow X_s I^+ I^-$

Systematic uncertainties AFB

Sources of uncertainties	1st	2nd	3rd	4th
Translation from \mathcal{A}_{FB}^{raw} to \mathcal{A}_{FB}	0.019	0.013	0.007	0.003
Peaking background	0.004	0.050	0.007	0.002
Signal modeling	0.004	0.002	0.006	0.006
Signal shape and self cross-feed	0.002	0.002	0.002	0.002
Total	0.020	0.052	0.012	0.007

Systematic uncertainties $B^0 \rightarrow p^+ \overline{\Lambda} \pi^- \gamma$

TABLE I. Summary of the systematic uncertainties (in %) on the branching fraction.

N _{RR}	1.4
Tracking	1.4 (4 tracks)
Hadron identification	0.6 (2 protons)
	1.1 (pion)
Λ selection	3.3
Photon selection	2.2
Reconstruction efficiency (MC statistics)	2.2
$\mathcal{B}(\Lambda \to p\pi^-)$	0.8
\mathcal{R} selection	1.9
PDF shape	4.1
Signal decay model	5.1
Rare B decays	8.2
Total	11.8