

Rare decays at LHCb

Jarosław Wiechczyński

on behalf on the LHCb Collaboration

DIS 2014, Warszawa 30.04.2014

outline

- $B_{(s)} \rightarrow \mu^+ \mu^-$
- Semileptonic B⁰ → K^{(*)0}µ⁺µ⁻ decay
- Observation of a resonance in the B⁺ → K⁺µ⁺µ⁻ decay
- Radiative B⁺ → K⁺π⁻ π⁺γ decay

(selected results of many LHCb measurement concerning rare decays)

Utility of rare decays

- Rare B decays to the K^(*) μμ or Kππ γ are Flavour Changing Neutral Curents (FCNC) processes
 - → proceed via penguin and box diagram

- Indirect searches of New Physics (NP) new virtual particles may occur in the diagrams loops
 - → probing high energy scale (much higher than for direct searches)
 - → possible modification of several observables like differential branching fractions, angular variables, CP asymmetries etc...

4

LHCb

LHCb detector – single-arm forward spectrometer optimized for B physics

- Unique acceptance range $(2 < \eta < 5)$
- Excellent particle identification and vertexing
- Very efficient trigger:~ 90% for dimuon channels
- 3 fb⁻¹ accumulated during 2011 and 2012

Phys.Rev. Lett.111(2013) 101805

$$B_{(s)} \rightarrow \mu^+ \mu^-$$

Very rare decays (FCNC and helicity supressed)

Good probe for *extended Higgs* sectors models (incl. MSSM)

Significant NP constraint

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst)) \times 10^{-9}$$
 4.0 σ $BR(B^0 \to \mu^+ \mu^-) < 7.4 \times 10^{-10}$

Consistent with SM

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

FCNC b→s I⁺I⁻ transition

B → K*⁰ amplitudes depends on:

Wilson Coefficients – short distance effects – sensitive for New Physics!

Form-factors – long distance effects - **significant source of theoretical uncertainty**

- Construction of special observables that minimize long distance effects
 - angular observables, asymmetries...

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

6 intervals of q² (invariant mass sqared of the dimuon system)

1 fb⁻¹ data

Differential BF

normalized to the reference $B^0 \rightarrow J/\Psi \ K^{*0}$ yield:

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = \frac{1}{q_{\mathrm{max}}^2 - q_{\mathrm{min}}^2} \frac{N_{\mathrm{sig}}}{N_{K^{*0}J/\psi}} \frac{\varepsilon_{K^{*0}J/\psi}}{\varepsilon_{K^{*0}\mu^+\mu^-}} \times \\ \times \mathcal{B}(B^0 \to K^{*0}J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

In good agreement with SM

Angular observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Differential decay rate: \rightarrow depends on θ_l , θ_K , ϕ (angles) and \mathbf{q}^2

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\hat{\phi}} = \frac{9}{16\pi} \left[F_{\mathbf{L}} \cos^2\theta_K + \frac{3}{4} (1 - F_{\mathbf{L}})(1 - \cos^2\theta_K) \right] -$$

$$\frac{1}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) +$$

$$S_3(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos 2\hat{\phi} +$$

$$\frac{4}{3}A_{\rm FB}(1-\cos^2\theta_K)\cos\theta_\ell +$$

$$\frac{A_9}{(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin 2\hat{\phi}} \] \ .$$

for B⁰ and B
0 decays combined

• transformations ("folding techniques")

fraction of the longitudinal polarization of K*0

forward-backward asymmetry of the dimuon system

Wilson Coeff. dependence

probe New Physics

 $F_{\rm L}$ $A_{\rm T}^{\rm Re}$ $A_{\rm T}^2$ $A_{\rm 9}$ (q²) Alternative "transverse observables" (reduced form-factor uncertainties)

Angular observables - results

Simultaneous fit to $(\cos \theta_l, \cos \theta_K, \phi)$ and invariant B mass – in six \mathbf{q}^2 bins

 \rightarrow extracted $A_{\rm FB}$ $(A_{\rm T}^{\rm Re})$, F_L , S_3 $(A_{\rm T}^2)$ and A_9

The zero-crossing point of $A_{
m FB}$ Phys.Rev. D87 (2013) 034016

$$q_0^2 = 4.9 \pm 0.9 \,\text{GeV}^2/c^4$$

Results consistent with SM

new angular obsevables with reduced form-factor uncertainties arXiv:1303.5794.

Phys. Rev. Lett. 111 (2013) 191801

1 fb⁻¹ data

local deviation from the SM:

 $4.30 < q^2 < 8.68 \,\mathrm{GeV^2/}c^4$ - **3.7** $\boldsymbol{\sigma}$

NP may affect Wilson Coefficient C₉

Possible explanations include presence of flavour changing Z' arXiv:1311.6729

arXiv:1403.8044v2

Differential BF for B \rightarrow K^(*) $\mu^+\mu^-$

Theory: Phys.Rev. D88 (2013) 054509, Phys. Rev. D71 (2005) 014029, arXiv:1006.4945.

3	fb	-1
	data	

Decay mode	Measurement	Prediction
$B^+\!\to K^+\mu^+\mu^-$	$8.5 \pm 0.3 \pm 0.4$	10.7 ± 1.2
$B^0\!\to K^0\mu^+\mu^-$	$6.7 \pm 1.1 \pm 0.4$	9.8 ± 1.0
$B^+\!\to K^{*+}\mu^+\mu^-$	$15.8^{+3.2}_{-2.9}\pm1.1$	26.8 ± 3.6

Integrated over high q² region

Each value consistent with SM, but all below the SM prediction!

Isospin asymmetry A_I

Puzzling results for A_I measurement on 1 fb⁻¹ for $B^+ \to K^+ \mu^+ \mu^- \to 4.4 \sigma$ discrepancy from zero

$$A_{\mathbf{I}} = \frac{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) - (\tau_0/\tau_+) \cdot \mathcal{B}(B^+ \to K^{(*)+}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{(*)0}\mu^+\mu^-) + (\tau_0/\tau_+) \cdot \mathcal{B}(B^+ \to K^{(*)+}\mu^+\mu^-)}$$

New, updated analysis performed on the full LHCb dataset updated reconstruction and event selection

Consistent with SM expectations

$$B^+ \rightarrow K^+ \mu^+ \mu^-$$

- Dedicated analysis of $B^+ \to K^+ \mu^+ \mu^-$ at low recoil (high q² region) , above the open-charm threshold
- Observation of higher charmonium resonances (tree level diagrams in addition to the nonresonant FCNC loops)
 - → essential to understand these broad and overlaping states to probe NP contribution to the FCNC decays

$$B^+ \rightarrow K^+ \mu^+ \mu^-$$

Kinematic fit with K⁺μμ mass constrained to the nominal B mass

 \rightarrow Improvement in $\mu^+\mu^-$ invariant mass resolution!

We consider:

1 Non-resonant B → K⁺μμ signal Resonant component

resonances observed due to constructive interference

• First observation of B \rightarrow $\Psi(4160)K^+$, $\Psi(4160)\rightarrow\mu\mu$

Bf (B $\to \Psi(4160)K^+$) = $(5.1^{+1.3}_{-1.2} \pm 3.0) \times 10^{-4}$ (assuming lepton universality)

- Ψ(4040) not significant
- 20% of the Ψ(4160) contribution in the total signal

Radiative B⁺ \rightarrow K⁺ π ⁻ π ⁺ γ

- b→sγ transition: elektroweak penguin loop → photon predominantly left-handed in the SM (small right-handed γ contribution of the order of m_s/m_b)
- Maximal parity violation

 In several extensions of SM – significant right-handed contribution (heavy fermion in penguin loop)

$$B^+ \to K^+ \pi^- \pi^+ \gamma$$

We measure:

- Angle (θ) of the γ with respect to the plane of three hadrons (K π π)
 → in different intervals of Kππ mass
- Asymmetry between number of events

Differential decay rate:

On each side of the plane

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \sum_{i=0,2,4} a_i(s,s_{13},s_{23})\cos^i\theta + \lambda_{\gamma} \sum_{j=1,3} a_j(s,s_{13},s_{23})\cos^j\theta$$
Asymmetry (up-down)

y polarisation

$$\mathcal{A}_{\mathrm{ud}} \equiv \frac{\int_0^1 \mathrm{d} \cos \theta \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta} - \int_{-1}^0 \mathrm{d} \cos \theta \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta}}{\int_{-1}^1 \mathrm{d} \cos \theta \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta}}$$

depends only on odd powers of $cos\theta$

Up-down asymmetry proportional to the γ polarisation

$$\mathcal{A}_{\mathrm{ud}}$$
 ~ λ_{γ}

Phys. Rev. Lett. 112, 161801 (2014)

$$B^+ \to K^+ \, \pi^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +} \, \gamma$$

Maximum likelihood fit to the B mass candidate:

background subtracted $K\pi\pi$ invariant mass

 $K_1(1270)$ $K_1(1400)$ $K^*(1410)$ $K_2^*(1430)$ $K_2(1580)$ $K_2(1770)$

interference of several resonances

- inclusive measurement in 4 bins

- theoretical limitations for extracting λ_{γ}

Phys. Rev. Lett. 112, 161801 (2014)

$B^+ \to K^+ \pi^- \pi^+ \gamma$

Background subtracted angular distribution from the fit to the B mass candidate in each bin of θ angle

Fitted with: $f(\cos \hat{\theta}; c_i) = \sum_{i=0}^4 c_i L_i(\cos \hat{\theta})$ $\mathcal{A}_{\mathrm{ud}} = c_1 - \frac{c_3}{4}$ Legendre pol.

First observation of the parity-violating γ polarization \neq 0 at 5.2 σ

Determination of the λ_{γ} value from $\mathcal{A}_{\mathrm{ud}}$ and $\cos\theta$ shape may constrain the effects of NP in the b \rightarrow s γ sector!

It's crucial to understand the $K^+\pi^-\pi^+$ mass structure!

Summary

- Measurement of differential branching fractions and form-factor independent angular observables in $B^0 \to K^{*0} \ \mu^+ \mu^$
 - results consistent with SM except for local tension for P₅ variable
- Updated measurement of the isospin asymmetry for B → K^(*) µ⁺µ⁻
 consistent with SM!
- First observation of the decay B⁺ → Ψ(4160) K⁺, Ψ(4160) → μ⁺μ⁻
 observed through constructive interference!
- First observation of the γ polarisation in B⁺ → K⁺ π⁻ π⁺ γ decay theory input required for SM test
- Many other interesting analyses

$$B_{(s)}^{} \rightarrow \mu^{+}\mu^{-}$$

majorana neutrinos in $B^{-} \rightarrow \pi^{+}\mu^{-}\mu^{-}$
 $D^{0} \rightarrow \pi^{+}\pi^{-}\mu^{+}\mu^{-}$

.....

BACKUP

Angular observables in B → K* μμ

Differential decay rate:

q² - invariant mass sqared of the dimuon system

- I_j coefficients are combinations of K* decay amplitudes, that are functions of:
- 1. Wilson Coefficients short distance effects sensitive for New Physics!
- 2. form factors long distance effects significant source of theoretical uncertainty

Zero-crossing point of AFB

In the Standard Model: A_{FR} (q²) changes sign at certain predicted value q_0^2

Two separate subsamples:

forward-going candidates $(\cos \theta_l > 0)$

backward-going candidates $(\cos \theta_l < 0)$

- q² distributions fitted with polynomials P_F, P_B
- Asymmetry:

$$A_{\rm FB}(q^2) = \frac{P_{\rm F}(q^2) - P_{\rm B}(q^2)}{P_{\rm F}(q^2) + P_{\rm B}(q^2)}$$

data

The zero-crossing point of $A_{\rm FB}$ $q_0^2 = 4.9 \pm 0.9 \,\mathrm{GeV}^2/c^4$

$$q_0^2 = 4.9 \pm 0.9 \,\text{GeV}^2/c^2$$

consistent with SM

PRL 111 (2013) 191801

New angular obsevables (improved "folding")

JHEP 05 (2013) 137, arXiv:1303.5794.

with reduced form-factor uncertainty:

local deviation from the SM:

$$4.30 < q^2 < 8.68 \, {\rm GeV^2/c^4}$$
 - 3.7 σ deviation $1.0 < q^2 < 6.0 \, {\rm GeV^2/c^4}$ - 2.5 σ deviation

NP may affect Wilson Coefficient C₉ ...

- updating to the full LHCb statistics
- more modes need to be studied! —

Phys. Rev. Lett. 111 (2013) 112003

$$B^+ \rightarrow K^+ \mu^+ \mu^-$$

 $\Psi(4160)$ state observed with the significance greater then $6\sigma!$

FIRST OBSERVATION OF
$$B \rightarrow \Psi(4160)K^{+}, \ \Psi(4160)\rightarrow \mu\mu$$

Mass and width consistent with previous LHCb measurement

Bf (B
$$\to \Psi(4160)K^+$$
) = $(5.1^{+1.3}_{-1.2} \pm 3.0) \times 10^{-4}$ (assuming lepton universality)

Ψ(4040) not significant

$$\rightarrow$$
 upper limit set BF < 1.3 (1.5) \times 10⁻⁹ at 90 (95)% CL

20% of the Ψ(4160) contribution in the total signal

Angular observables K* mu mu

$$S_j = \left(I_j + \bar{I}_j\right) / \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$$

$$A_j = \left(I_j - \bar{I}_j\right) / \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$$

$$A_{\rm FB} = \frac{3}{4} (1 - F_{\rm L}) A_{\rm T}^{\rm Re}$$

 $F_{\rm L} = S_1^c = -S_2^c$

$$A_{\rm FB} = \frac{3}{4}S_6$$

$$A_{\rm FB} = \frac{3}{4}S_6$$
 $S_3 = \frac{1}{2}(1 - F_{\rm L})A_{\rm T}^2$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\hat{\phi}} = \frac{9}{16\pi} \left[F_\mathrm{L}\cos^2\theta_K + \frac{3}{4}(1 - F_\mathrm{L})(1 - \cos^2\theta_K) \right] -$$

$$\int_{\Gamma} F_{L} \cos^{2} \theta_{K} + \frac{3}{4} (1 - F_{L})(1 - \cos^{2} \theta_{K}) -$$

$$F_{\rm L}\cos^2\theta_K(2\cos^2\theta_\ell-1) +$$

$$\hat{\phi} = \begin{cases} \phi + \pi & \text{if } \phi < 0 \\ \phi & \text{otherwise} \end{cases}$$

$$\frac{1}{4}(1 - F_{\rm L})(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) + S_3(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\cos 2\hat{\phi} +$$

$$\frac{4}{3}A_{\rm FB}(1-\cos^2\theta_K)\cos\theta_\ell +$$

$$A_9(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin 2\hat{\phi} \ .$$

$$A_T^{Re} = \frac{S_6}{1 - F_L}$$
$$A_T^2 = \frac{2S_3}{1 - F}$$

$B \rightarrow K \pi \pi \gamma$

 $\cos \hat{\theta} \equiv \text{charge}(B) \cos \theta$

to account for the opposite γ polarization for B⁺ and B⁻

