The JAM fits of polarized PDFs

<u>Alberto Accardi</u>

P. Jimenez-Delgado, W. Melnitchouk

(for the JAM collaboration)

Jimenez-Delgado, Accardi, Melnitchouk, PRD89 (2014) 034025

The JAM collaboration

www.jlab.org/jam

LINKS

- About JAM
- Parton distributions
- Database
- Talks
- Collaboration
- Links

About JAM

The JAM (Jefferson Lab Angular Momentum) Collaboration is an enterprise involving theorists and experimentalists from the Jefferson Lab community to study the quark and gluon spin structure of the nucleon by performing global fits of spin-dependent parton distribution functions (PDFs).

Because of the unique capabilities of Jefferson Lab's CEBAF accelerator in measuring small cross sections at extreme kinematics, the JAM spin PDFs are particularly tailored for studies of the **large Bjorken-x** region, as well as the resonance-deep inelastic transition region at low and intermediate values of W and Q^2 .

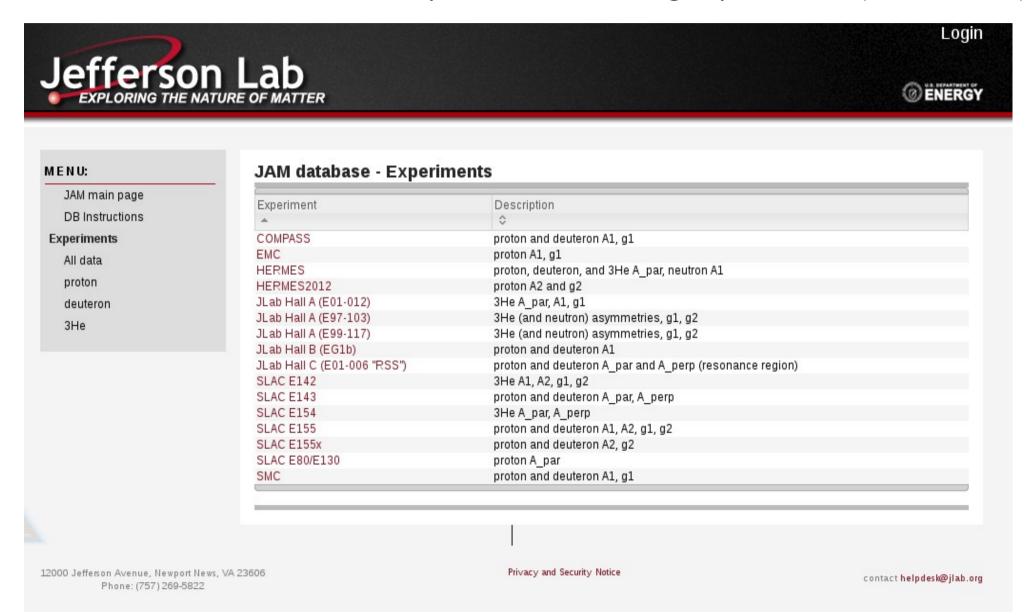
12000 Jefferson Avenue, Newport News, VA 23606 Phone: (757) 269 5854 Fax: (757) 269 7002 contact <u>Wally Melnitchouk</u> updated March 21, 2013

Parallel effort to our unpolarized PDFs: CJ and JR

www.jlab.org/jam

Theory:

- Pedro Jimenez-Delgado (JLab)
- Alberto Accardi (Hampton U. / JLab)
- Jacob Ethier (William and Mary)
- Wally Melnitchouk (Jlab)
- Nobuo Sato (soon at JLab)


Experiment:

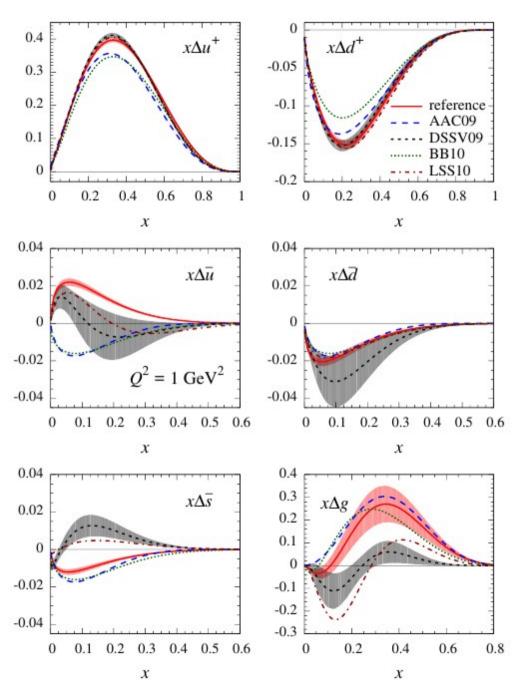
- Harut Avakian (JLab)
- Peter Bosted (JLab / William&Mary)
- Jian-ping Chen (JLab)
- Keith Griffioen (William&Mary)
- Sebastian Kuhn (Old Dominion U.)
- Yelena Prok (Old Dominion U.)
- Oscar Rondon (U. of Virginia)
- Brad Sawatzky (JLab)

The JAM database

www.jlab.org/jam

Public database with all data on polarized scattering experiments (DIS for now)

Data and theory comparison with other groups


	DIS	SIDIS	hadron collider	nuclear smearing	TMCs	HT g ₁	HT g ₂
DSSV 09	✓	✓	✓				
AAC 09	✓		✓				
BB 10	✓				√	✓	~
LSS 10	✓	✓			\checkmark	✓	
NNPDF 13	✓				✓		
JAM 13	✓		$(\pi^0 \text{ in } 2014)$	✓	✓	✓	✓

Presently concentrating on DIS theoretical description

Long-term objective: tick all the boxes (include SIDIS and collider data)

5

Current status of polarized PDFs

Worse known than the unpolarized

$$\Delta u^+ = \Delta u + \Delta \bar{u} \quad \text{and} \quad \\ \Delta d^+ = \Delta d + \Delta \bar{d} \quad \text{best known}$$

Sea distributions $\Delta \bar{u}, \ \Delta d, \ \Delta \bar{s}$ do not enter in DIS asymmetries

 Δg less known, determined mainly from RHIC data (also COMPASS)

NOTES:

Red: JAM reference (LT, no corrections)
Updated DSSV gluon in arXiv:1404.4293

accardi@jlab.org DIS 2014

Data considered at this (first) stage

World data on polarized DIS (for $Q^2 \geq 1 \text{ GeV}^2$, $W^2 \geq 3.5 \text{ GeV}^2$)

Mainly using *measured* asymmetries:

$$A_{\parallel} = D(A_1 + \eta A_2)$$

$$A_{\perp} = d(A_2 - \xi A_1)$$

Note: D, d depend on

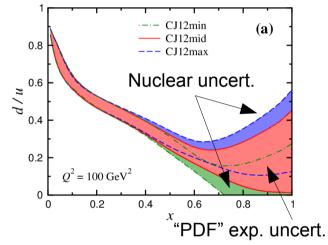
$$R = \frac{F_L}{(1+\gamma^2)F_2 - F_L} \qquad \gamma^2 = 4\frac{M^2}{Q^2}x^2$$

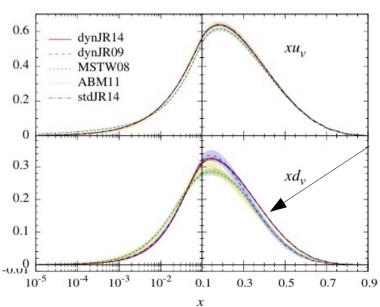
→ We consistently develop our own Unpolarized analysis in parallel (JR)

Impact of high-statistics data from JLab is being analyzed

experiment	reference	observable	target	N_{data}	$\chi^2(\text{LT})/N_{\text{dat}}$	$\chi^2(JAM)/N_{dat}$
EMC	[1]	A_1	p	10	0.42	0.39
SMC	[30]	A_1	p	12	0.36	0.36
	[30]	A_1	d	12	1.59	1.66
	[31]	A_1	p	8	1.37	1.35
	[31]	A_1	d	8	0.54	0.56
COMPASS	[32]	A_1	p	15	0.95	0.97
	[33]	A_1	d	15	0.57	0.51
SLAC E80/E130	[34]	$A_{ }$	p	23	0.52	0.54
SLAC E142	[35]	A_1	$^3\mathrm{He}$	8	0.58	0.70
	[35]	A_2	$^3\mathrm{He}$	8	0.70	0.70
SLAC E143	[36]	$A_{ }$	p	85	0.85	0.81
	[36]	A_{\perp}	p	48	0.95	0.91
	[36]	$A_{ }$	d	85	1.05	0.85
	[36]	A_{\perp}	d	48	0.92	0.91
SLAC E154	[37]	$A_{ }$	$^3{\rm He}$	18	0.43	0.42
	[37]	A_{\perp}	$^3{\rm He}$	18	1.00	1.00
SLAC E155	[38]	$A_{ }$	p	73	1.00	0.92
	[38, 39]	A_{\perp}	p	66	1.00	0.96
	[40]	$A_{ }$	d	73	0.98	0.97
	[39, 40]	A_{\perp}	d	66	1.51	1.49
SLAC E155x	[41]	$ ilde{A}_{\perp}$	p	117	2.17	1.64
	[41]	$ ilde{A}_{\perp}$	d	117	0.90	0.84
HERMES	[42]	$A_{ }$	p	37	0.38	0.39
	[42]	$A_{ }$	d	37	0.86	0.85
	[43]	A_1	" n "	9	0.29	0.30
	[44]	A_2	p	20	1.07	1.16
JLab E99-117	[45]	A_{\parallel}	$^3{\rm He}$	3	0.62	0.06
	[45]	A_{\perp}	$^3{\rm He}$	3	1.08	0.87
COMPASS	[49]	$\Delta g/g$	p	1	5.27	2.71
total				1043	1.07	0.98
JLab E97-103*	[46]	A_{\parallel}	³ He	2	_	_
	[46]	A_{\perp}	$^3{\rm He}$	2	_	_
JLab EG1b*	[48]	A_1	p	766	_	_
(prelim.)	[48]	A_1	d	767	_	_

Jlab EG1-dvcs: g_1/F_1 fresh from the web arXiv:1404.6231


Unpolarized PDF fits with large-x corrections


- Unpolarized PDF needed to calculate denominators of helicity asymmetries
- Fits developed in parallel to JAM; similar philosophy, focus
 - → **CJ12** [CTEQ-JLab] Owens, Accardi, Melnitchouk
 PRD87 (2013) 094012
 - HT, TMCs
 - Nuclear, off-shell corrections
 - Nuclear uncertainties quantified

- HT, TMCs
- Nuclear (Paris w.fn. only), off-shell
- Used in JAM fits
- \rightarrow see also **ABM 12** -

Alekhin, Bluemleim, Moch, PRD86 (2012) 054009

Underlying QCD description

Asymmetries from (un)polarized structure functions:

$$A_1 = (g_1 - \gamma^2 g_2) \frac{2x}{(1 + \gamma^2)F_2 - F_L} \qquad A_2 = \gamma(g_1 + g_2) \frac{2x}{(1 + \gamma^2)F_2 - F_L}$$

Calculations and RGE evolution using Mellin moments (truncated solutions)

$$f(n) = \int_0^1 dx \ x^{n-1} f(x)$$

Leading-twist structure functions in OPE from NLO QCD computations:

$$g_1^{\tau=2}(n,Q^2) = \frac{1}{2} \sum_{q,\bar{q}} e_q^2 \left(\Delta C_{qq}^1 \Delta q + \Delta C_g^1 \Delta g \right)$$

$$g_2^{ au=2}(n,Q^2)=g_2^{WW}=-rac{n-1}{n}g_1(n,Q^2)$$
 [Wandzura, Wilczek 77]

9

Parametrization

Only two independent combinations of quark distributions contribute:

$$x\Delta u^{+}(x,\mu_{0}^{2}) = N_{u} x^{a_{u}} (1-x)^{b_{u}} (1+A_{u}\sqrt{x}+B_{u} x)$$

$$x\Delta d^{+}(x,\mu_{0}^{2}) = N_{d} x^{a_{d}} (1-x)^{b_{d}} (1+A_{d}\sqrt{x}+B_{d} x)$$

$$^{\Delta q^{+} \equiv \Delta q + \Delta \bar{q}}$$

Constrains from hyperon decays relate N_u and N_d and fix N_s

$$\int_0^1 (\Delta u^+ - \Delta d^+) dx = 1.269 \pm 0.003 \qquad \int_0^1 (\Delta u^+ + \Delta d^+ - 2\Delta s^+) dx = 0.586 \pm 0.031$$

Sea quarks shape fixed by counting rules and imposing

$$\lim_{x \to 0} \Delta \bar{q} = 2 \lim_{x \to 0} \Delta q^{+} \qquad \frac{1}{2} \left(\left| \frac{\Delta \bar{q}^{(2)}}{\Delta \bar{s}^{(2)}} \right| + \left| \frac{\Delta \bar{s}^{(2)}}{\Delta \bar{q}^{(2)}} \right| \right) = 1 \pm 0.25$$

For the **gluons** we leave only Ng and Bg as free parameters

→ in practice current DIS data give only mild constraints

Nominally 13 (LT) + 14 (HT) = 27 parameters to be determined

Statistical estimation

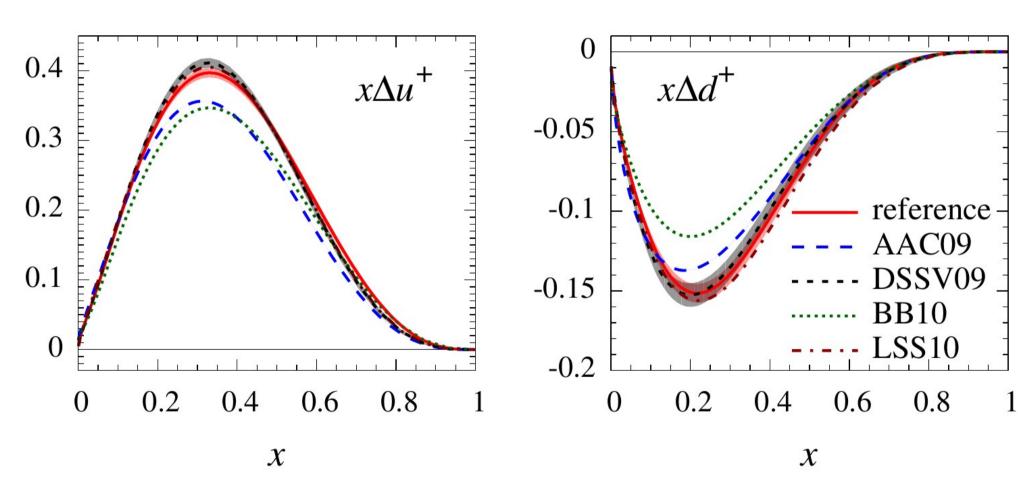
Least-squares estimator with *complete treatment* of systematic uncertainties (equivalent to the correlation matrix approach) [CTEQ]:

$$\chi^{2} = \sum_{i=1}^{N} \frac{1}{\Delta_{i}^{2}} \left(D_{i} + \sum_{j=1}^{M} r_{j} \Delta_{ji} - T_{i} \right)^{2} + \sum_{j=1}^{M} r_{j}^{2}$$

Unfortunately most experiments do not provide enough information

Errors estimated with the Hessian approach (linear propagation, works well):

"Vicinity" of the minimum (tolerance) characterized by:

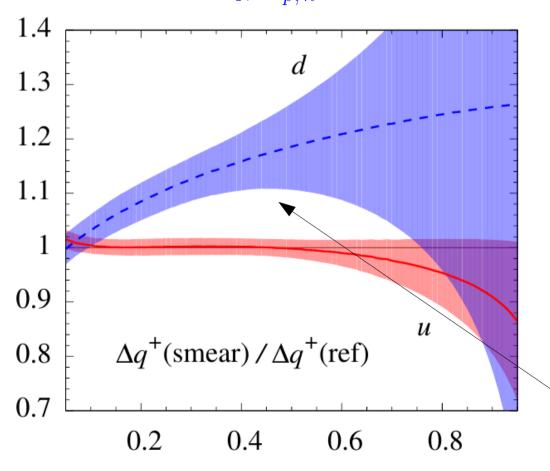

$$\Delta \chi^2 = \chi^2 - \chi^2_{min} \le T^2 = 1$$

Simple fit without further corrections: REFERENCE

Nuclear targets treated within the "effective polarizations" approximation

$$g_1^d = (1 - \frac{3}{2}0.06)(g_1^p + g_1^n)$$

$$g_1^{He3} = 0.86 \ g_1^n - 0.059 \ g_1^p$$

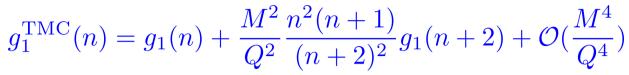

Baseline for assessing impact of theoretical corrections

 \rightarrow More similar to DSSV, LSS than to others

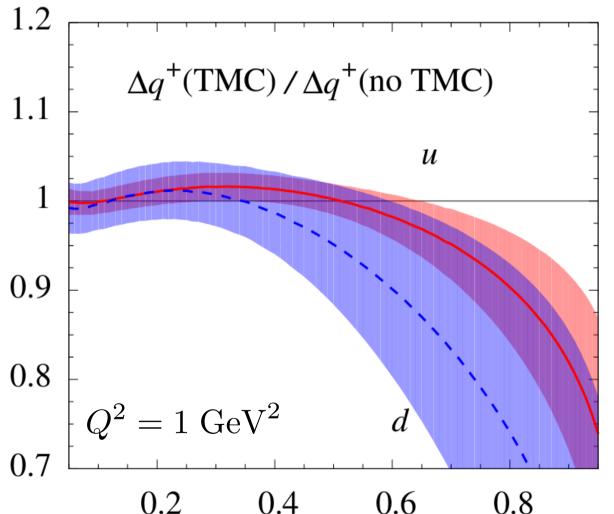
accardi@jlab.org DIS 2014

Improved description of nuclear targets

Binding, Fermi motion included in "smearing" formalism [Kulagin, Petti 06] \rightarrow smearing functions f_{jN} derived from nuclear spectral functions



Relevant for Δd in the medium- to large-x region


accardi@jlab.org DIS 2014 13

Plus target-mass corrections

We use power corrections from finite target mass calculated in the OPE approach:

[Bluemlein, Tkabladze 99]

Note that the Wandzura-Wilzceck relation holds also after TMCs

Relevant for both Δu and Δd at large- ${m x}$

Both nuclear and TMC corrections should be included in global fits

 χ

14

Plus higher twist contributions

We consider also corrections from higher twist contributions:

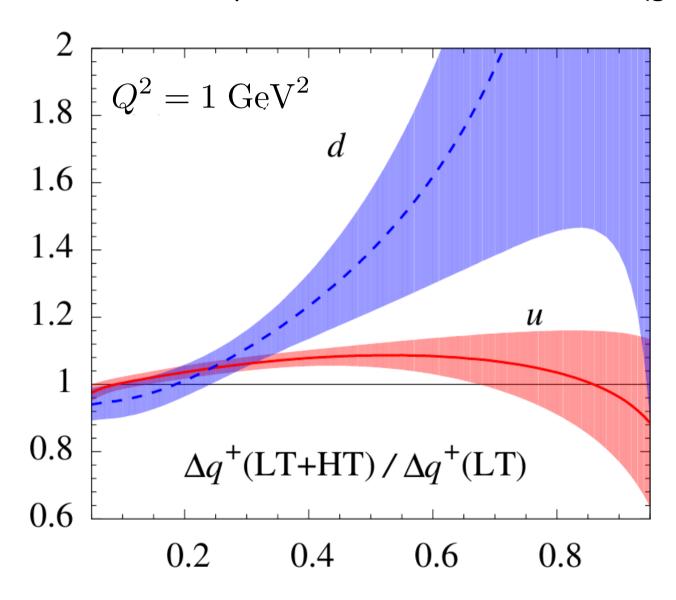
$$g_1 = g_1^{\tau=2} + g_1^{\tau=3} + g_1^{\tau=4}$$

$$g_2 = g_2^{\tau=2} + g_2^{\tau=3}$$

where $g_1^{\tau=3}$ depends on $g_2^{\tau=3}$ [Bluemlein, Tkabladze 99]

$$g_1^{\tau=3}(x,Q^2) = 4x^2 \frac{M^2}{Q^2} \left(g_2^{\tau=3}(x,Q^2) - 2 \int_x^1 \frac{dy}{y} g_2^{\tau=3}(y,Q^2) \right)$$

Flexible phenomenological parametrization for g_2 inspired by [Braun et al. 09]

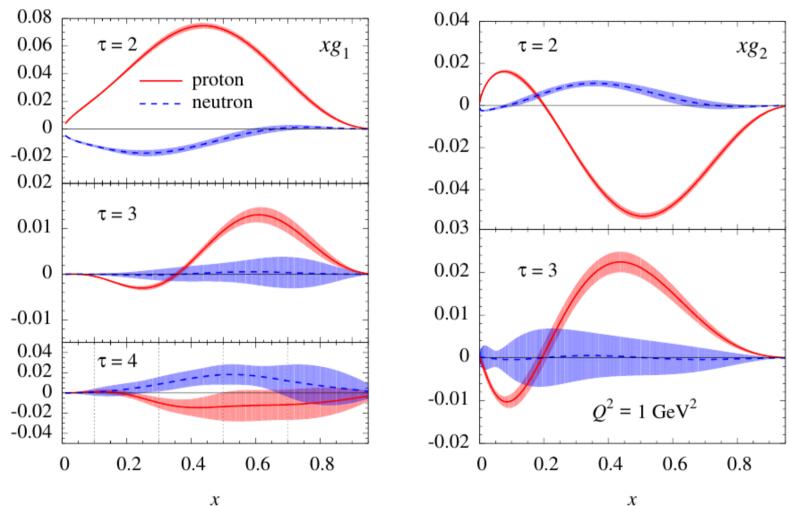

$$g_2^{\tau=3} = A\left[\ln x + (1-x) + \frac{1}{2}(1-x)^2\right] + (1-x)^3\left[B + C(1-x) + D(1-x)^2 + E(1-x)^3\right]$$

And a splines approximation for: $g_1^{\tau=4} = \frac{h(x)}{Q^2}$

Possible scale dependence in h and $g_2^{\tau=3}$ neglected compared to exp. errors

Plus higher twist contributions

Considerable improvement of χ^2 for some sets (globally 1.07 o 0.98 , 3σ)

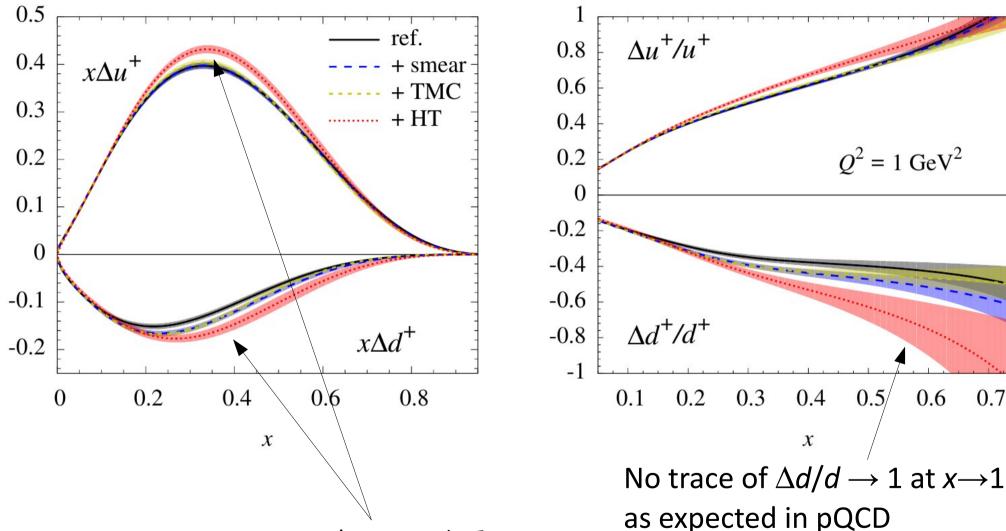


Very large changes in Δd

accardi@jlab.org DIS 2014

Plus higher twist contributions

Possible to determine *simultaneously* higher-twist contributions for g_1 and g_2


Qualitative agreement with previous (separated) determinations

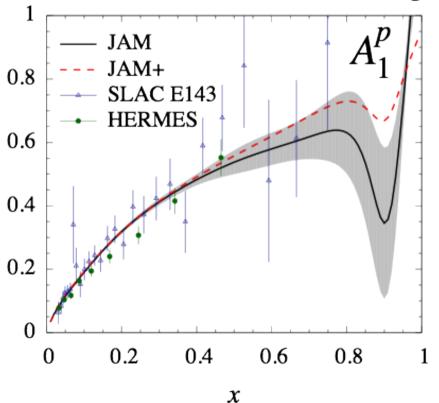
- ightarrow [Leader, Sidorov, Stamenov 2010] on $g_{_1}$
- ightarrow [Accardi, Bacchetta, Melnitchouk, Schlegel 2009] [Bluemlein, Bottcher 2012] on $g_{_2}$

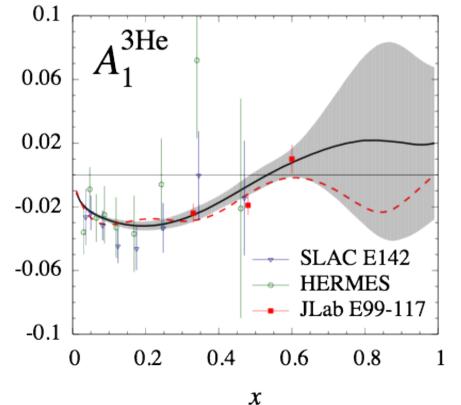
accardi@jlab.org DIS 2014

Including all corrections: JAM13

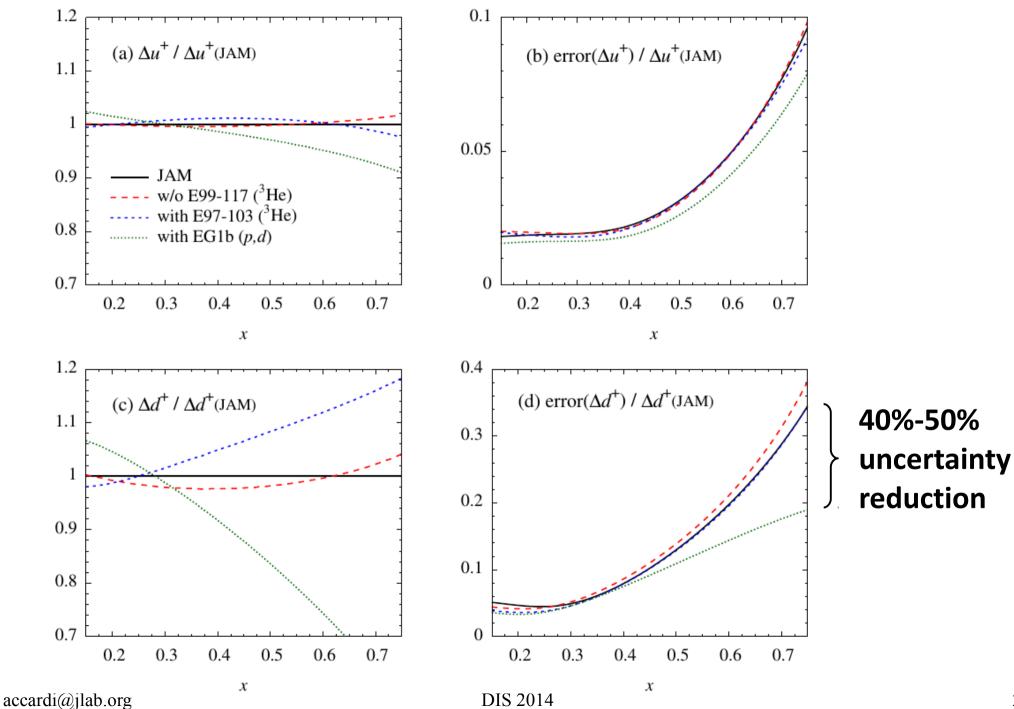
Jimenez-Delgado, Accardi, Melnitchouk, PRD89 (2014) 034025

Relevant for both Δu and Δd

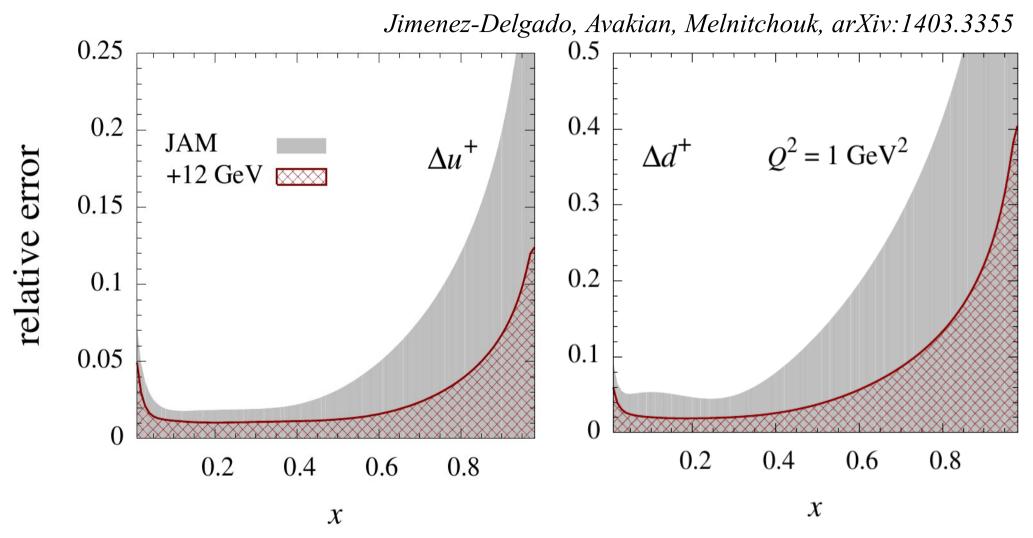

HT contributions are manifestly important for current DIS data


0.7

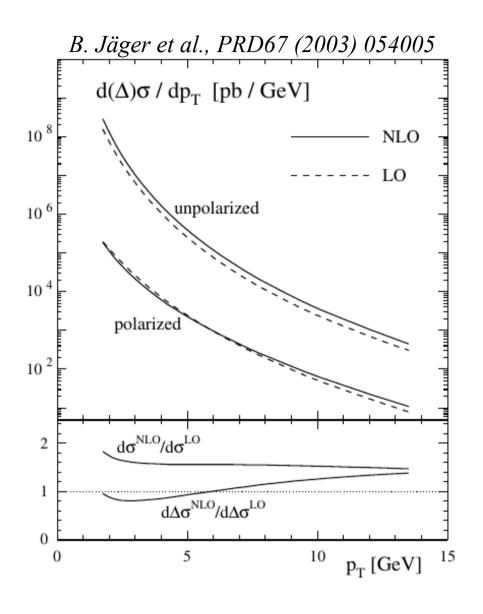
Constraints at large x


- Current data cannot discriminate different $\Delta u/u$ and $\Delta d/d$ behaviors
- Try and impose $x \rightarrow 1$ pQCD constraints by hand: "JAM+" fit
 - Large systematic (parametrization) uncertainty
 - More data needed at large x!
 (e.g., JLab EG1-dvcs, EG1b and JLab12 in near future)

Jimenez-Delgado, Avakian, Melnitchouk, arXiv:1403.3355



Impact of Jefferson Lab data


20

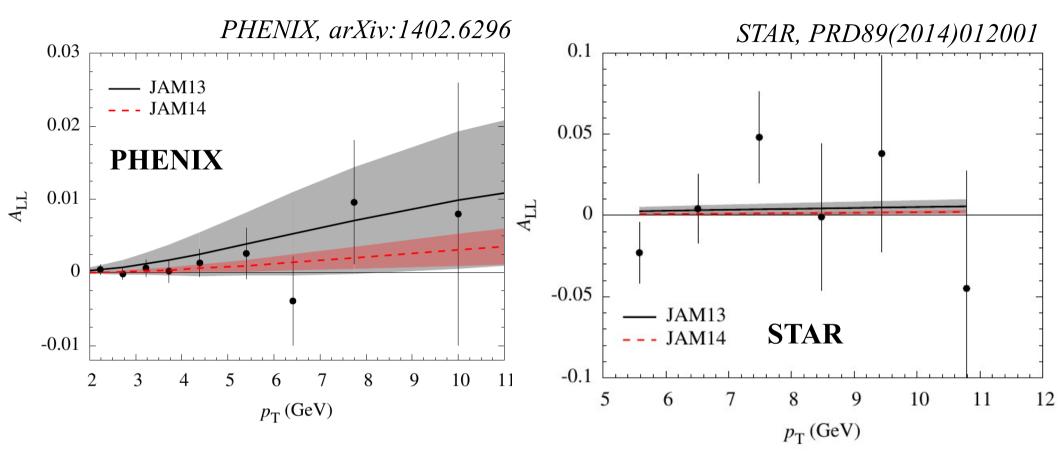
Impact of JLab 12 data

60%-70% reduction of experimental uncertainty for $0.6 \le x \le 0.8$

Moving forward – including RHIC data

High- ${\it p_{\scriptscriptstyle T}}$ pions at RHIC: $pp \to \pi^0 X$

$$A_{LL}^{\pi} = \frac{d\Delta\sigma}{d\sigma} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$$

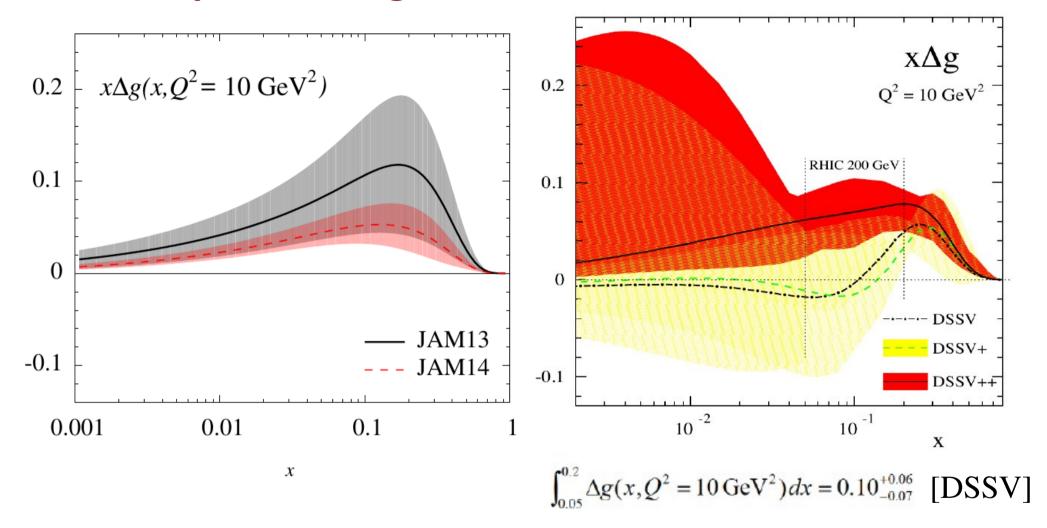

We use scaled LO (K-factors):

$$d\Delta\sigma^{NLO} = 1 \times d\Delta\sigma^{LO}$$

$$d\sigma^{NLO} = 1.5 \times d\sigma^{LO}$$

One should use the full calculation, however experimental errors are large

Moving forward – including RHIC data


Already "well described" by central JAM13

PHENIX data constrain Δg significantly

→ (without affecting quarks or DIS asymmtries)

Effect on polarized gluons

Quite comparable with DSSV++, except for small-x error band

$$\int_{0.05}^{0.2} dx \; \Delta g(x,Q^2\!=\!10^2) = 0.15 \pm 0.09 \to 0.07 \pm 0.03$$
 JAM13 JAM14

Preliminary!!

accardi@jlab.org DIS 2014

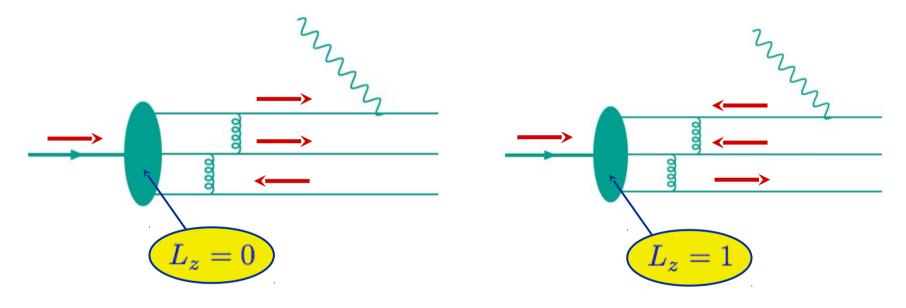
Summary and outlook

New polarized PDFs: JAM13

Jimenez-Delgado, Accardi, Melnitchouk, PRD89 (2014) 034025

- Nuclear corrections relevant
- Target mass corrections should be used
- Complete inclusion of higher-twists possible, manifestly important

Moving forward – JAM14:

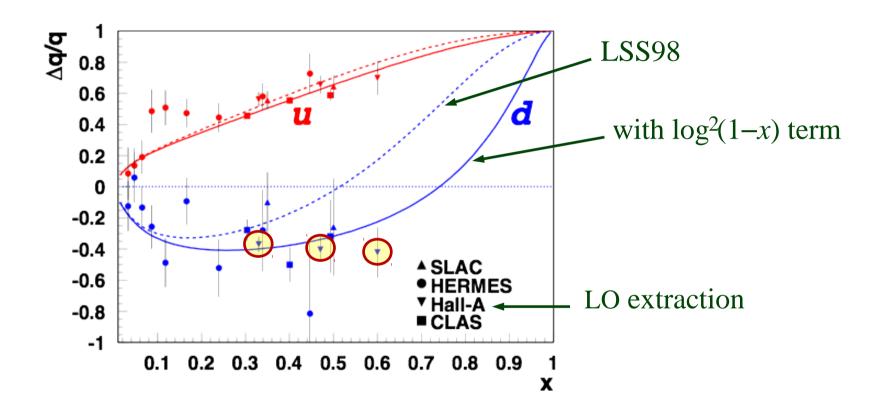

- JLab (+ future JLab12) data will impact large-x u- and d-quarks
- RHIC pion A_{LL} constrains medium-x gluons
- SIDIS data for flavor separation to be included "soon"

Longer term: RHIC jets & W, EIC, ...

Backup slides

Orbital angular momentum

Theory analysis suggested need for additional nonzero orbital ang. momentum $(L_z = 1)$ component in nucleon wave fn.

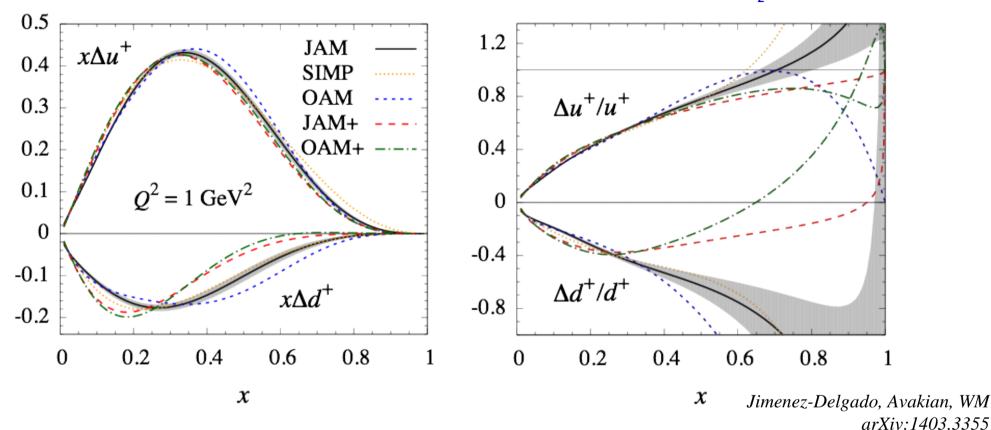

- \longrightarrow Leading $(1-x)^3$ behavior from $L_z = 0$ component
- $L_z = 1$ gives additional $\log^2(1-x)$ enhancement of q^{\downarrow}

$$q^{\downarrow} \sim (1-x)^5 \log^2(1-x)$$

Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

Orbital angular momentum

Theory analysis suggested need for additional nonzero orbital ang. momentum $(L_1 = 1)$ component in nucleon wave fn.



 \longrightarrow $L_z=1$ term needed to delay Δd turnover until larger x

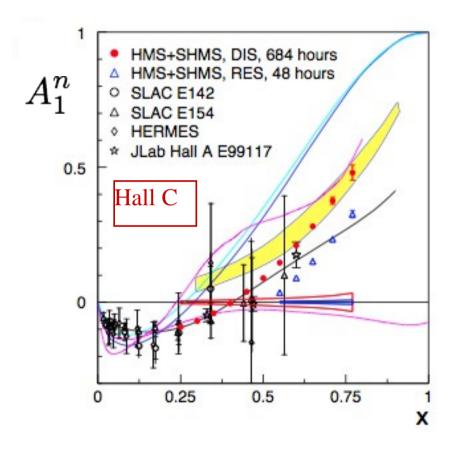
Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

Orbital angular momentum

■ Global JAM & JAM+ fits can accommodate data without $L_{z} = 1$ terms

"OAM" and "OAM+" fits use

$$x\Delta f = Nx^{\alpha}(1-x)^{\beta} + N'x^{\alpha}(1-x)^{5}\log^{2}(1-x)$$


can also accommodate data, with similar overall χ^2

→ MORE DATA NEEDED!

Polarized valence quark PDFs

Several upcoming experiments at JLab will measure

$$A_1(p, d, {}^{3}\text{He}) \text{ up to } \mathcal{X} \sim 0.8$$

