Miinchen

T. Hahn, Concurrent Cuba -p.1

Divonne Korobov sample lattice MC stratified sampling,
or Sobol sample quasi MC aided by methods from
or MT sample pseudo MC numerical optimization
or cubature rules deterministic

Cuhre cubature rules deterministic globally adaptive subdivision

¢ Very similar invocation (easily interchangeable)
e Fortran, C/C++, Mathematica interface provided
e Can integrate vector integrands

T. Hahn, Concurrent Cuba -p.2

[] 10! _ E

3 1 1 1 1 1 0 1 1 1 1 1
10400 500 600 700 800 900 1000 10400 500 600 700 800 900 1000
V/s/GeV V/s/GeV =
‘Gauge’ integration problem first:]
e Compute with all four routines. .
|
e Check whether results are consistent. .

e Select fastest algorithm. " EEEH

T. Hahn, Concurrent Cuba-p.3

e Extended in Cuba 4 for Accelerators (GPUs) and
Vectorization.

T. Hahn, Concurrent Cuba -p.4

Can sample any Mathematica function (e.g. Zeta).

MathLink programs run independently, have ‘external’
(e.g. TCP) link to Mathematica Kernel (license issues).

Cannot parallelize Kernel through OS functions thus.
Parallelization only by Mathematica means.

Sampling uses MapSample. By default MapSample = Map.
To parallelize redefine MapSample = ParallelMap.
Must use DistributeDefinitions, ParallelNeeds for

required definitions, packages. R

T. Hahn, Concurrent Cuba —p.5

e More cores not necessarily useful.

Shall work for any integrand function.

e Requires user’s understanding of issues (e.g. global variables,
common blocks, 1/0 buffers).

e Re-coding effort for old code.
e Reentrancy cannot be fully controlled e.g. in Fortran.

T. Hahn, Concurrent Cuba —p.6

Jser control through environment variable CUBACORES or API calls.
e Auto-parallelization only acceptable if speed-ups ‘reasonable.’

Shall be available on all platforms.
e Native Windows has no fork function.
e Cygwin API emulates fork but quite slow.
e fork is moderately ‘expensive’ even on Linux/MacOS.
e Keep fork calls minimal: fork only at entry into Cuba routine.

T. Hahn, Concurrent Cuba —p.7

T. Hahn, Concurrent Cuba -p.8

e No fork on native Windows (must use Cygwin).

Must use fork for non-reentrant integrands.

T. Hahn, Concurrent Cuba-p.9

e shared memory (IPC).
1/0 creates obvious scheduling point for kernel.
Need semaphore or similar if using shared memory only.
Used in Cuba:

e (if available:) shared memory for samples,

e socketpair read/write for control information.

T. Hahn, Concurrent Cuba —p.10

Serial sample 7 points
Parallel send 1/ N points to core 1

send 1/ N points to core N
e Fill fewer cores if not enough samples.

T. Hahn, Concurrent Cuba —p.11

Partitioning Phase significant.

Partitioning originally recursive, had to ‘un-recurse’
algorithm first, mainly by better bookkeeping of regions.

Each core receives entire region to subdivide, not just list
of points.

Efficiently distributes min/max search where only one
point at a time is sampled.

T. Hahn, Concurrent Cuba —p.12

have approximately equal spread, defined as .-I

Spread(r) = %Vol(r) (S}JP f(x) - ;,I;ff(f)) I-I

'

e PHASE 2 - Sampling
Sample the subregions independently with the same number of points
each. The latter is extrapolated from the results of Phase 1.

e PHASE 3 - Refinement
Further subdivide or sample again if results from Phase 1 and 2 do not
agree within their error.

T. Hahn, Concurrent Cuba —p.13

Can have both kinds in same Cuba call.

Integrand can tell which it is running on by ‘core’ argument:

typedef int (*integrand_t) (
const int *ndim, const double x[],
const int *ncomp, double f[], void *userdata,

const int *nvec, const int *core, ...);
xcore < 0 — Accelerator, =
B
>0 — Core, =
= 32768 — Master. N

T. Hahn, Concurrent Cuba —p.14

more, less only for the last batch.

e Example: Sampling 2400 points on 3 accelerators with
Paccel = 1000 gives 3 batches 1000/1000/400.

e Cuba does not actually send anything to a GPU or
Accelerator. Can only be done by integrand function.

T. Hahn, Concurrent Cuba —p.15

cores =

e Each core receives > 10 points, or fewer cores are used.
If < 10 points are requested in all, only master samples.

e Typically no hardware limit for p.ores but useful for
load-levelling.

e Moderate value for p .5 (e.g. 10000) may improve
performance unless integrand is known to evaluate
equally fast everywhere.

T. Hahn, Concurrent Cuba —p.16

ca cubaacce accel » Paccel

e Cores are set via environment

CUBACORES=%cores (default: no. of idle cores)
CUBACORESMAX=pcores (default: 10 000) .
or API call

call cubacores(Mcores, Pcores)

T. Hahn, Concurrent Cuba —p.17

master’s data (common) or code (d1sym).
(Can of course arrange with shared memory etc.)

e Keep cores running: Manually start cores:
void *spin = NULL; void *spin;
cubafork (&spin) ;
Vegas(..., &spin, ...); Vegas(..., &spin, ...);
cubawait (&spin) ; cubawait (&spin) ;

e Controlled through ‘Spinning Cores’ pointer.

5 B RN
T. Hahn, Concurrent Cuba —p.18

initfun(initarg, &core);
exitfun(exitarg, &core);

where core has same meaning as in integrand:
core < 0: Accelerator, > 0: Core, = 32768: Master.

e Executed on worker after fork/before wait (always),
on master only when sampling is done.
e For Accelerators typically used to set up the GPU for the
integrand evaluations.

H B EN
T. Hahn, Concurrent Cuba —p.19

e Cuba can pass more than one point (nvec) per integrand
invocation.

e nvec need not correspond to hardware vector length -
can make sense e.g. if computations have significant
intermediate results in common.

T. Hahn, Concurrent Cuba —p.20

e fork does not guard other common resources, e.g. files.

e If integrand writes to file, output may be ‘chaotic’.
No buffered output.
Better: each worker writes to own file.

5 HEN
T. Hahn, Concurrent Cuba —p.21

e Parallelization overhead = Extra time for communication,
scheduling efficiency etc.
Overhead can be estimated through t...;41/f1-core < 1.

e Load-levelling = Keeping cores busy. If only N — n busy,
absolute timing may be ok but N-core speed-up lousy.

e Caveat: Hyperthreading, e.g. i7 has 8 virtual, 4 real cores.

Speed-ups will obviously depend on the ‘cost’ of the
integrand: The more time a single integrand evaluation takes,
the better speed-ups can be expected to achieve. EEEE

T. Hahn, Concurrent Cuba —p.22

accumuiates too iarge errors.

e First calibrate delay loop over sufficiently long time
interval.

e Use same calibrated value per machine for all runs.

e Repeat integrations such that each measurement takes a
reasonable minimum amount of time (to minimize
measurement errors).

e Disable processes like condor_start, autonice, etc.

T. Hahn, Concurrent Cuba —p.23

N W &~ U O

freasy = sinx cosy expz, t= 1000 usec Frarar = O(1 —x% —y? —2z%), t= 1000 usec
Veg'as S Veg'as _
| Suave — =4 | Suave ——
Divonne —— A —] Divonne ——
. Cuhre —— . Cuhre ——
--::::::::::::::_. /——— — ;-
— o N B v ?‘l"“"
<«— | real cores >l virtual cores >
1 2 3 4 6 7 8 1 2 3 5 6 7 8

T. Hahn, Concurrent Cuba —p.24

Cuhre

T
Divonne

N W s~ U O

Y

Y
A

<—— | real cores virtual cores

1 2 3 4) 6 7 8§ 1 2 3 4 5 6 7 8

T. Hahn, Concurrent Cuba —p.25

e Parallelization is switched on automatically, can be
controlled through environment, API calls.

e More details in arXiv:1408.0663.

T. Hahn, Concurrent Cuba —p.26

T. Hahn, Concurrent Cuba —p.27

T 1—xyz+10-10’ BSSTRESAEl:

X2
fo = exp(=xy2), fg_cos(x—l—y—l—z—l—l)—l—S’ -
1 1 .

fi0 = i vV xyz + 1075 = 0O(1 — x> — y* — z?)

10 = Xyz , fi1 = y : .
else \/xyz -
O
O

T. Hahn, Concurrent Cuba —p.28

i=1
with specially chosen
Nodes x; and Weights w;.

Error estimation e.g. by Null
Rules N, which give zero
for functions Q,, integrates
exactly and thus measure
errors due to “higher terms.”

If ~ Mnf — = Z f(xi) :

i=1

The Standard Deviation is a
probabilistic estimate of the
integration error:

e Find the region r with the largest error.
e Bisect (or otherwise cut up) r.
e Integrate each subregion of r separately.

= Lot = > I, Eiot = \/ > Ei2°

e end while

T. Hahn, Concurrent Cuba —p.30

e One must be able to sample from the distribution w (X),

e f/w should be “smooth,” such that o, (f/w) < o(f),
e.g. w and f should have the same peak structure.

The ideal choice is known to be w (X) = |f(X)|/1f which has
0w (f /w) = 0.

Example: Vegas uses piecewise constant weight funct (grid).

T. Hahn, Concurrent Cuba —p.31

n ~ 2 n/2 n/2

Variance # (n /j; + - /2)
= $i(02f + 03f) + | = Bi(02f + 2
2
2 (Iaf — Lf)

The optimal reduction of variance is for 1, /n, = o,f /oy f.
Thus: Split up the integration region into parts with equal
variance, then sample all parts with same number of points.

But: naive splitting causes a 2 increase in regions!

5 B RN
T. Hahn, Concurrent Cuba —p.32

where V is the “Variation in the sense of Hardg and Krause”
and D* is the Discrepancy of the sequence x1, ..., X,

@—Volr

D*(¥1,...,X%,) = sup »

re[0,1]4

where v(r) counts the X; that fall into r.

For an Equidistributed Sequence, v(r) o Volr. EEEnm

T. Hahn, Concurrent Cuba —p.33

T. Hahn, Concurrent Cuba —p.34

	Overview of the Cuba Routines
	Cuba Comparison
	Parallel Cuba
	Parallelization in Mathematica
	Parallelization Design Considerations
	Parallelization Design Considerations
	Parallelization Design Considerations
	fork vs. pthread_create
	Master--Worker Communication
	`Simple' Implementation
	Implementation for Divonne
	Divonne Algorithm
	Accelerators and Cores
	Accelerators Distribution Strategy
	Cores Distribution Strategy
	Controlling Parallelization
	Spinning Cores
	(De)Initialization
of Workers
	Vectorization
	Concurrency Issues
	Speed-ups
	Timing Measurements
	Timings: `easy' vs `hard'
	Timings: all integrands
	R'esum'e
	
	Integrand Functions in the Result Plots
	Deterministic vs. Monte Carlo Methods
	Globally Adaptive Subdivision
	Importance Sampling
	Stratified Sampling
	Number-Theoretic Methods
	Comparison of Sequences

