
Concurrent Cuba

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, Concurrent Cuba – p.1

Overview of the Cuba Routines

Routine Basic method Type Variance reduction

Vegas Sobol sample quasi MC importance sampling
or MT sample pseudo MC

Suave Sobol sample quasi MC globally adaptive subdivision
or MT sample pseudo MC + importance sampling

Divonne Korobov sample lattice MC stratified sampling,
or Sobol sample quasi MC aided by methods from
or MT sample pseudo MC numerical optimization
or cubature rules deterministic

Cuhre cubature rules deterministic globally adaptive subdivision

• Very similar invocation (easily interchangeable)
• Fortran, C/C++, Mathematica interface provided
• Can integrate vector integrands

T. Hahn, Concurrent Cuba – p.2

Cuba Comparison

Cuhre

Divonne

Suave

Vegas

εrel = 3 × 10−3

e+ e− → t̄ t γ

Number of regions

√
s/GeV

1000900800700600500400

104

103

102

101

100

Integrand evaluations

√
s/GeV

1000900800700600500400

106

105

104

103

‘Gauge’ integration problem first:

• Compute with all four routines.

• Check whether results are consistent.

• Select fastest algorithm.
T. Hahn, Concurrent Cuba – p.3

Parallel Cuba

• In Mathematica:
Parallelizes through Mathematica functions only,
available since Cuba 2.

• In C/C++/Fortran:
Parallel features available since Cuba 3.

• Extended in Cuba 4 for Accelerators (GPUs) and
Vectorization.

T. Hahn, Concurrent Cuba – p.4

Parallelization in Mathematica

• Mathematica interface works as follows:
• Cuba sends coordinates to Mathematica.

• Sampling is done in Mathematica.

• Mathematica returns integrand values.

Can sample any Mathematica function (e.g. Zeta).

• MathLink programs run independently, have ‘external’
(e.g. TCP) link to Mathematica Kernel (license issues).

• Cannot parallelize Kernel through OS functions thus.
Parallelization only by Mathematica means.

• Sampling uses MapSample. By default MapSample = Map.

• To parallelize redefine MapSample = ParallelMap.

• Must use DistributeDefinitions, ParallelNeeds for
required definitions, packages.

T. Hahn, Concurrent Cuba – p.5

Parallelization Design Considerations

No additional software shall be needed.

• OS functions only.

• No parallelization across the network (e.g. via MPI).

• Uses internal cores ‘only’, thus e.g. 4 or 8.

• Speed-ups not expected to be linear anyway.

• More cores not necessarily useful.

Shall work for any integrand function.

• Requires user’s understanding of issues (e.g. global variables,
common blocks, I/O buffers).

• Re-coding effort for old code.

• Reentrancy cannot be fully controlled e.g. in Fortran.

T. Hahn, Concurrent Cuba – p.6

Parallelization Design Considerations

Parallelization should work ‘automatically.’

• No system knowledge required.

• No re-compile necessary.

• Auto-detect # of cores + load at run-time.

• User control through environment variable CUBACORES or API calls.

• Auto-parallelization only acceptable if speed-ups ‘reasonable.’

Shall be available on all platforms.

• Native Windows has no fork function.

• Cygwin API emulates fork but quite slow.

• fork is moderately ‘expensive’ even on Linux/MacOS.

• Keep fork calls minimal: fork only at entry into Cuba routine.

T. Hahn, Concurrent Cuba – p.7

Parallelization Design Considerations

Usual issues with parallel sample generation.

• How to independently seed parallel random-number generators?

• Best to generate samples on master only, distribute to workers.

• 1 Master, N workers on N-core system.

T. Hahn, Concurrent Cuba – p.8

fork vs. pthread_create

• pthread_create creates additional thread in
same memory space.

• fork creates completely independent process.

• On Linux: pages not actually duplicated until written on
(‘copy-on-write’), thus no large penalty.

• No fork on native Windows (must use Cygwin).

Must use fork for non-reentrant integrands.

T. Hahn, Concurrent Cuba – p.9

Master–Worker Communication

Possible communication channels:

• file read/write,

• pipe read/write,

• socket read/write,

• shared memory (IPC).

I/O creates obvious scheduling point for kernel.
Need semaphore or similar if using shared memory only.

Used in Cuba:

• (if available:) shared memory for samples,

• socketpair read/write for control information.

T. Hahn, Concurrent Cuba – p.10

‘Simple’ Implementation

All Cuba routines:

• Main sampling routine DoSample already abstracted in
Cuba 1 since C/C++ and Mathematica implementations
very different.

• DoSample straightforward to parallelize on N cores:

Serial sample n points

Parallel send n/N points to core 1
. . .
send n/N points to core N

• Fill fewer cores if not enough samples.

T. Hahn, Concurrent Cuba – p.11

Implementation for Divonne

Divonne:

• Parallelizing DoSample alone not satisfactory.
Speed-ups generally . 1.5.

• Needs special treatment.

• Partitioning Phase significant.

• Partitioning originally recursive, had to ‘un-recurse’
algorithm first, mainly by better bookkeeping of regions.

• Each core receives entire region to subdivide, not just list
of points.

• Efficiently distributes min/max search where only one
point at a time is sampled.

T. Hahn, Concurrent Cuba – p.12

Divonne Algorithm

• PHASE 1 – Partitioning

• For each subregion, ‘actively’ determine sup f and inf f using

methods from numerical optimization.

• Move ‘dividers’ around until all subregions

have approximately equal spread, defined as

Spread(r) =
1

2
Vol(r)

(

sup
~x∈r

f (~x)− inf
~x∈r

f (~x)
)

.

• PHASE 2 – Sampling
Sample the subregions independently with the same number of points

each. The latter is extrapolated from the results of Phase 1.

• PHASE 3 – Refinement
Further subdivide or sample again if results from Phase 1 and 2 do not

agree within their error.

T. Hahn, Concurrent Cuba – p.13

Accelerators and Cores

Based on the strategy used to distribute samples, Cuba
distinguishes two kinds of workers:

• Accelerators (GPU).

• Cores (CPU).

Can have both kinds in same Cuba call.

Integrand can tell which it is running on by ‘core’ argument:
typedef int (*integrand_t)(

const int *ndim, const double x[],

const int *ncomp, double f[], void *userdata,

const int *nvec, const int *core, ...);

∗core < 0 → Accelerator,
> 0 → Core,
= 32768 → Master.

T. Hahn, Concurrent Cuba – p.14

Accelerators Distribution Strategy

• Assumes device so highly parallel that sampling time is
independent of number of points, up to hardware number
of threads paccel.

• Cuba sends exactly paccel points to each core – never
more, less only for the last batch.

• Example: Sampling 2400 points on 3 accelerators with
paccel = 1000 gives 3 batches 1000/1000/400.

• Cuba does not actually send anything to a GPU or
Accelerator. Can only be done by integrand function.

T. Hahn, Concurrent Cuba – p.15

Cores Distribution Strategy

• All available cores are used.

• Points are distributed evenly.

• Example: Sampling 2400 points on 3 cores with
pcores = 1000 gives 3 batches 800/800/800.

• Each core receives > 10 points, or fewer cores are used.
If 6 10 points are requested in all, only master samples.

• Typically no hardware limit for pcores but useful for
load-levelling.

• Moderate value for pcores (e.g. 10 000) may improve
performance unless integrand is known to evaluate
equally fast everywhere.

T. Hahn, Concurrent Cuba – p.16

Controlling Parallelization

• Accelerators are set via environment

CUBAACCEL=naccel (default: 0)
CUBAACCELMAX=paccel (default: 1 000)

or API call

call cubaaccel(naccel, paccel)

• Cores are set via environment

CUBACORES=ncores (default: no. of idle cores)
CUBACORESMAX=pcores (default: 10 000)

or API call

call cubacores(ncores, pcores)

T. Hahn, Concurrent Cuba – p.17

Spinning Cores

• Workers usually started and stopped automatically.
User can start them manually or keep them running.

• Start workers with cubafork, shut down with cubawait.

• Running workers will not ‘see’ subsequent changes in
master’s data (common) or code (dlsym).
(Can of course arrange with shared memory etc.)

• Keep cores running:

void *spin = NULL;

Vegas(..., &spin, ...);

...

cubawait(&spin);

Manually start cores:

void *spin;

cubafork(&spin);

Vegas(..., &spin, ...);

...

cubawait(&spin);

• Controlled through ‘Spinning Cores’ pointer.

T. Hahn, Concurrent Cuba – p.18

(De)Initialization of Workers

• Register init/exit functions with

cubainit(initfun, initarg);

cubaexit(exitfun, exitarg);

• Will be called as

initfun(initarg, &core);

exitfun(exitarg, &core);

where core has same meaning as in integrand:
core < 0: Accelerator, > 0: Core, = 32768: Master.

• Executed on worker after fork/before wait (always),
on master only when sampling is done.

• For Accelerators typically used to set up the GPU for the
integrand evaluations.

T. Hahn, Concurrent Cuba – p.19

Vectorization

• Vectorization = evaluate integrand for several points at
once (SIMD).

• Vector instructions commonly available (SSE, AVX).

• Cuba does not automatically vectorize integrand.

• Cuba can pass more than one point (nvec) per integrand
invocation.

• nvec need not correspond to hardware vector length –
can make sense e.g. if computations have significant
intermediate results in common.

T. Hahn, Concurrent Cuba – p.20

Concurrency Issues

• fork creates independent process image.

• Cannot easily communicate back results other than the
intended output to the master.

• Cannot easily communicate between workers.

• fork does not guard other common resources, e.g. files.

• If integrand writes to file, output may be ‘chaotic’.
No buffered output.
Better: each worker writes to own file.

T. Hahn, Concurrent Cuba – p.21

Speed-ups

Assess parallelization efficiency through

speed-up =
tserial

tN-cores
ideally = N.

• Parallelization overhead = Extra time for communication,
scheduling efficiency etc.
Overhead can be estimated through tserial/t1-core < 1.

• Load-levelling = Keeping cores busy. If only N − n busy,
absolute timing may be ok but N-core speed-up lousy.

• Caveat: Hyperthreading, e.g. i7 has 8 virtual, 4 real cores.

Speed-ups will obviously depend on the ‘cost’ of the
integrand: The more time a single integrand evaluation takes,
the better speed-ups can be expected to achieve.

T. Hahn, Concurrent Cuba – p.22

Timing Measurements

Timing measurements delicate on multicore systems:

• System timer (even ualarm) has granularity.

• Cannot use timer interrupt directly in integrand delay,
accumulates too large errors.

• First calibrate delay loop over sufficiently long time
interval.

• Use same calibrated value per machine for all runs.

• Repeat integrations such that each measurement takes a
reasonable minimum amount of time (to minimize
measurement errors).

• Disable processes like condor_start, autonice, etc.

T. Hahn, Concurrent Cuba – p.23

Timings: ‘easy’ vs ‘hard’

Cuhre
Divonne

Suave
Vegas

virtual coresreal cores

f‘easy’ = sin x cos y exp z, t = 1000µsec

87654321

7

6

5

4

3

2

1

Cuhre
Divonne

Suave
Vegas

f‘hard’ = Θ(1 − x2 − y2 − z2), t = 1000µsec

87654321

Cuhre
Divonne

Suave
Vegas

f‘hard’ = Θ(1 − x2 − y2 − z2), t = 10µsec

Cuhre
Divonne

Suave
Vegas

f‘easy’ = sin x cos y exp z, t = 10µsec

7

6

5

4

3

2

1

T. Hahn, Concurrent Cuba – p.24

Timings: all integrands

Divonne

virtual coresreal cores

87654321

7

6

5

4

3

2

1

Cuhre

87654321

Suave

all integrands, t = 1000µsec

Vegas

all integrands, t = 1000µsec

7

6

5

4

3

2

1

T. Hahn, Concurrent Cuba – p.25

Résumé

• Cuba now features concurrent sampling.

• Achieves significant speed-ups.

• No extra software needs to be installed.

• No reentrant integrand required.

• Parallelization is switched on automatically, can be
controlled through environment, API calls.

• More details in arXiv:1408.0663.

T. Hahn, Concurrent Cuba – p.26

BACKUP SLIDES

T. Hahn, Concurrent Cuba – p.27

Integrand Functions in the Result Plots

f1 = sin x cos y exp z, f2 =
cos y exp z

(x + y)2 + .003
,

f3 =
1

3.75 − cos(πx)− cos(πy)− cos(πz)
,

f4 = |x2 + y2 + z2 − .125|, f5 = exp(−x2 − y2 − z2),

f6 =
1

1 − xyz + 10−10
, f7 =

√

|x − y − z|,

f8 = exp(−xyz), f9 =
x2

cos(x + y + z + 1) + 5
,

f10 =







x > 1
2

1
√

xyz + 10−5

else
√

xyz

, f11 = Θ(1 − x2 − y2 − z2).

T. Hahn, Concurrent Cuba – p.28

Deterministic vs. Monte Carlo Methods

Deterministic

Use a Quadrature Formula

I f ≈ Qn f :=
n

∑
i=1

wi f (~xi)

with specially chosen

Nodes ~xi and Weights wi.

Error estimation e.g. by Null
Rules Nm which give zero
for functions Qn integrates
exactly and thus measure
errors due to “higher terms.”

Monte Carlo

Take the Statistical Average
over random samples ~xi

I f ≈ Mn f :=
1

n

n

∑
i=1

f (~xi) .

The Standard Deviation is a
probabilistic estimate of the
integration error:

σ(Mn f) =
√

Mn f 2 − M2
n f .

T. Hahn, Concurrent Cuba – p.29

Globally Adaptive Subdivision

If an error estimate is available, global adaptiveness is easy to
implement:

• Integrate the entire region: Itot ± Etot.

• while Etot > max(εrel Itot,εabs)

• Find the region r with the largest error.

• Bisect (or otherwise cut up) r.

• Integrate each subregion of r separately.

• Itot = ∑ Ii, Etot =
√

∑ E2
i .

• end while

T. Hahn, Concurrent Cuba – p.30

Importance Sampling

In Importance Sampling one introduces a weight function:

I f =
∫ 1

0
ddx w(~x)

f (~x)

w(~x)
, w(~x) > 0 , I w = 1 .

• One must be able to sample from the distribution w(~x),

• f /w should be “smooth,” such that σw(f /w) < σ(f),
e.g. w and f should have the same peak structure.

The ideal choice is known to be w(~x) = | f (~x)|/I f which has

σw(f /w) = 0.

Example: Vegas uses piecewise constant weight funct (grid).

T. Hahn, Concurrent Cuba – p.31

Stratified Sampling

Stratified Sampling works by sampling subregions. Consider:

n samples in na = n/2 samples in ra,
total region ra + rb nb = n/2 samples in rb

Integral I f ≈ Mn f I f ≈ 1
2(M

a
n/2

f + Mb
n/2

f)

Variance
σ2 f

n
1
4

(

σ2
a f

n/2
+

σ2
b f

n/2

)

= 1
2n

(

σ2
a f +σ2

b f
)

+ = 1
2n

(

σ2
a f +σ2

b f
)

1
4n

(

Ia f − Ib f
)2

The optimal reduction of variance is for na/nb = σa f /σb f .
Thus: Split up the integration region into parts with equal
variance, then sample all parts with same number of points.

But: naive splitting causes a 2d increase in regions!

T. Hahn, Concurrent Cuba – p.32

Number-Theoretic Methods

The basis for the number-theoretical formulas is the
Koksma–Hlawka Inequality:

The error of every Qn f = 1
n ∑n

i=1 f (~xi) is bounded by

|Qn f − I f | 6 V(f) D∗(~x1, . . . ,~xn) .

where V is the “Variation in the sense of Hardy and Krause”
and D∗ is the Discrepancy of the sequence ~x1, . . . ,~xn,

D∗(~x1, . . . ,~xn) = sup
r∈ [0,1]d

∣

∣

∣

∣

ν(r)

n
− Vol r

∣

∣

∣

∣

,

where ν(r) counts the ~xi that fall into r.
For an Equidistributed Sequence, ν(r) ∝ Vol r.

T. Hahn, Concurrent Cuba – p.33

Comparison of Sequences

Mersenne Twister Sobol
Pseudo-Random Numbers Quasi-Random Numbers

n = 3000 n = 4000

n = 1000 n = 2000

n = 3000 n = 4000

n = 1000 n = 2000

O(1/
√

n) O(logd−1 n/n)

T. Hahn, Concurrent Cuba – p.34

	Overview of the Cuba Routines
	Cuba Comparison
	Parallel Cuba
	Parallelization in Mathematica
	Parallelization Design Considerations
	Parallelization Design Considerations
	Parallelization Design Considerations
	fork vs. pthread_create
	Master--Worker Communication
	`Simple' Implementation
	Implementation for Divonne
	Divonne Algorithm
	Accelerators and Cores
	Accelerators Distribution Strategy
	Cores Distribution Strategy
	Controlling Parallelization
	Spinning Cores
	(De)Initialization
of Workers
	Vectorization
	Concurrency Issues
	Speed-ups
	Timing Measurements
	Timings: `easy' vs `hard'
	Timings: all integrands
	R'esum'e
	
	Integrand Functions in the Result Plots
	Deterministic vs. Monte Carlo Methods
	Globally Adaptive Subdivision
	Importance Sampling
	Stratified Sampling
	Number-Theoretic Methods
	Comparison of Sequences

