
A Survey of Distributed File System Technology

Jakob Blomer
CERN PH/SFT and Stanford University

ACAT 2014
Prague

1 / 23

Agenda

Motivation
∙ Physics experiments store their data in distributed file systems

∙ In High Energy Physics

∙ Global federation of file systems
∙ Hundreds of peta-bytes of data
∙ Hundreds of millions of objects

Outline
1 Usage of distributed file systems

2 Survey and taxonomy

3 Critical areas in distributed file systems for physics applications

4 Developments and future challenges

2 / 23

Distributed File Systems

1

A distributed file system (DFS) provides

1 persistent storage

2 of opaque data (files)

3 in a hierarchical namespace that is
shared among networked nodes

∙ Files survive the lifetime of processes and nodes

∙ POSIX-like interface: open(), close(), read(), write(), . . .

∙ Typically transparent to applications

∙ Data model and interface distinguish a DFS from
a distributed (No-)SQL database or a distributed key-value store

3 / 23

Distributed File Systems

1

Popular DFSs:

AFS, Ceph, CernVM-FS,
dCache, EOS, FhGFS,
GlusterFS, GPFS, HDFS,
Lustre, MooseFS, NFS,
PanFS, XrootD

A distributed file system (DFS) provides

1 persistent storage

2 of opaque data (files)

3 in a hierarchical namespace that is
shared among networked nodes

∙ Files survive the lifetime of processes and nodes

∙ POSIX-like interface: open(), close(), read(), write(), . . .

∙ Typically transparent to applications

∙ Data model and interface distinguish a DFS from
a distributed (No-)SQL database or a distributed key-value store

3 / 23

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
∙ Home folders

∙ Physics Data

∙ Recorded
∙ Simulated
∙ Analysis results

∙ Software binaries

∙ Scratch area

4 / 23

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
∙ Home folders –
∙ Physics Data

∙ Recorded
∙ Simulated
∙ Analysis results

∙ Software binaries

∙ Scratch area

4 / 23

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
∙ Home folders –
∙ Physics Data –

∙ Recorded
∙ Simulated
∙ Analysis results

∙ Software binaries

∙ Scratch area

4 / 23

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
∙ Home folders –
∙ Physics Data –

∙ Recorded
∙ Simulated
∙ Analysis results

∙ Software binaries –
∙ Scratch area

4 / 23

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
∙ Home folders –
∙ Physics Data –

∙ Recorded
∙ Simulated
∙ Analysis results

∙ Software binaries –
∙ Scratch area –

Depending on the use case, the dimensions span orders of magnitude
(logarithmic axes)

4 / 23

Distributed File Systems and Use Cases

> ls .
event_sample.root
analysis.C

File system:
“please take special care of this file!”

> ls /
/home
/data
/software
/scratch Im

pl
ic

it
Q

oS

∙ It is difficult to perform well
under usage characteristics that
differ by 4 orders of magnitude

∙ File system performance is
highly susceptible to
characteristics of individual
applications

∙ There is no interface to
specify quality of service (QoS)
for a particular file

We will deal with a number of
DFSs for the foreseeable future

5 / 23

Distributed File Systems and Use Cases

> ls .
event_sample.root
analysis.C

File system:
“please take special care of this file!”

> ls /
/home
/data
/software
/scratch Im

pl
ic

it
Q

oS

∙ It is difficult to perform well
under usage characteristics that
differ by 4 orders of magnitude

∙ File system performance is
highly susceptible to
characteristics of individual
applications

∙ There is no interface to
specify quality of service (QoS)
for a particular file

→ We will deal with a number of
DFSs for the foreseeable future

5 / 23

POSIX Compliance

∙ No DFS is fully POSIX
compliant

∙ It must provide just enough to
not break applications

∙ Field test necessary

File system operations
essential

create(), unlink(), stat()
open(), close(),
read(), write(), seek()

difficult for DFSs

File locks
Atomic rename()
Open unlinked files
Hard links

impossible for DFSs

Device files, IPC files

6 / 23

Architecture Sketches

∙
∙
∙

Network shares, client-server

/share

/share

Goals: Simplicity, separate storage from application
Example: NFS 3

7 / 23

Architecture Sketches

∙
∙
∙

Namespace delegation

/physics

/physics/ams
subtree

Goals: Scaling network shares, decentral administration
Example: AFS

8 / 23

Architecture Sketches

da
ta

m
et

a-
da

ta

∙ ∙ ∙ ∙
∙
∙

Object-based file system

delete()

create()

read()
write()

Goals: Separate meta-data from data, incremental scaling
Example: Google File System

9 / 23

Architecture Sketches

da
ta

m
et

a-
da

ta

∙ ∙ ∙

∙
∙
∙

Parallel file system

delete()

create()

read()
write()

Goals: Maximum throughput, optimized for large files
Example: Lustre

10 / 23

Architecture Sketches

da
ta

m
et

a-
da

ta

∙ ∙ ∙

∙
∙
∙

Distributed meta-data

delete()

create()

read()
write()

Goals: Avoid single point of failure and meta-data bottleneck
Example: Ceph

11 / 23

Architecture Sketches

Symmetric, peer-to-peer

Distributed hash table —
Hosts of pathn ○

hash(pathn)

Goals: Conceptual simplicity, inherently scalable
Difficult to deal with node churn, long lookup beyond LAN

Example: GlusterFS 12 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

1983

AFS

∙

Andrew File System
Client-server

∙ Roaming home folders

∙ Identity tokens and
access control lists (ACLs)

∙ Decentralized operation (“Cells”)

∙

“AFS was the first safe and efficient distributed com-
puting system, available [. . .] on campus. It was a
clear precursor to the Dropbox-like software pack-
ages today. [. . .] [It] allowed students (like Drew
Houston and Arash Ferdowsi) access to all their
stuff from any connected computer.”

http://www.wired.com/2011/12/backdrop-dropbox

13 / 23

http://www.wired.com/2011/12/backdrop-dropbox

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

1985

NFS

∙

Network File System
Client-server

∙ Focus on portability

∙ Separation of protocol
and implementation

∙ Stateless servers

∙ Fast crash recovery

∙

Sandberg, Goldberg, Kleiman, Walsh, Lyon (1985)

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

1995

Zebra

∙

Zebra File System
Parallel

∙ Striping and parity

∙ Redundant array of
inexpensive nodes (RAIN)

∙ Log-structured data

∙

sequential transfers. LFS is particularly effective for writing
small files, since it can write many files in a single transfer;
in contrast, traditional file systems require at least two
independent disk transfers for each file. Rosenblum reported
a tenfold speedup over traditional file systems for writing
small files. LFS is also well-suited for RAIDs because it
batches small writes together into large sequential transfers
and avoids the expensive parity updates associated with
small random writes.

Zebra can be thought of as a log-structured network file
system: whereas LFS uses the logging approach at the
interface between a file server and its disks, Zebra uses the
logging approach at the interface between a client and its
servers. Figure 4 illustrates this approach, which we call

per-client

 striping. Each Zebra client organizes its new file
data into an append-only log, which it then stripes across the
servers. The client computes parity for the log, not for
individual files. Each client creates its own log, so a single
stripe in the file system contains data written by a single
client.

Per-client striping has a number of advantages over per-
file striping. The first is that the servers are used efficiently
regardless of file sizes: large writes are striped, allowing
them to be completed in parallel, and small writes are
batched together by the log mechanism and written to the
servers in large transfers; no special handling is needed for
either case. Second, the parity mechanism is simplified.
Each client computes parity for its own log without fear of
interactions with other clients. Small files do not have
excessive parity overhead because parity is not computed
on a per-file basis. Furthermore, parity never needs to be
updated because file data are never overwritten in place.

The above introduction to per-client striping leaves
some unanswered questions. For example, how can files be
shared between client workstations if each client is writing
its own log? Zebra solves this problem by introducing a
central

file manager

, separate from the storage servers, that
manages metadata such as directories and file attributes and
supervises interactions between clients. Also, how is free

6
3

5
2

4
1

64

File Servers

1

⊗

 2

⊗

 3
4

⊗

 5

⊗

 6

1 2 3 5

File B
File A

File C
File D

Client’s Log

Figure 4

.

Per-client striping in Zebra

. Each client
forms its new file data into a single append-only log and
stripes this log across the servers. In this example file A
spans several servers while file B is stored entirely on a
single server. Parity is computed for the log, not for
individual files.

space reclaimed from the logs? Zebra solves this problem
with a

stripe cleaner

, which is analogous to the cleaner in a
log-structured file system. The next section provides a more
detailed discussion of these issues and several others.

3 Zebra Components

The Zebra file system contains four main components
as shown in Figure 5:

clients

, which are the machines that
run application programs;

storage servers

, which store file
data; a

file manager

, which manages the file and directory
structure of the file system; and a

stripe cleaner

, which
reclaims unused space on the storage servers. There may be
any number of clients and storage servers but only a single
file manager and stripe cleaner. More than one of these
components may share a single physical machine; for
example, it is possible for one machine to be both a storage
server and a client. The remainder of this section describes
each of the components in isolation; Section 4 then shows
how the components work together to implement operations
such as reading and writing files, and Sections 5 and 6
describe how Zebra deals with crashes.

We will describe Zebra under the assumption that there
are several storage servers, each with a single disk.
However, this need not be the case. For example, storage
servers could each contain several disks managed as a
RAID, thereby giving the appearance to clients of a single
disk with higher capacity and throughput. It is also possible
to put all of the disks on a single server; clients would treat
it as several logical servers, all implemented by the same
physical machine. This approach would still provide many
of Zebra’s benefits: clients would still batch small files for
transfer over the network, and it would still be possible to
reconstruct data after a disk failure. However, a single-
server Zebra system would limit system throughput to that
of the one server, and the system would not be able to
operate when the server is unavailable.

3.1 Clients

Clients are machines where application programs
execute. When an application reads a file the client must

Figure 5: Zebra schematic

. Clients run applications;
storage servers store data. The file manager and the
stripe cleaner can run on any machine in the system,
although it is likely that one machine will run both of
them. A storage server may also be a client.

Network

Client

File
Manager

Stripe
Cleaner

Client

Storage
Server

Storage
Server

Storage
Server

Storage
Server

Hartman, Ousterhout (1995)

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

2000

OceanStore

∙

OceanStore
Peer-to-peer

∙ “Global Scale”:
1010 users, 1014 files

∙ Untrusted infrastructure

∙ Based on peer-to-peer
overlay network

∙ Nomadic data through
aggressive caching

∙ Foundation for today’s
decentral dropbox replacements

∙
Ideally, a user would entrust all of his or her data to OceanStore;

in return, the utility’s economies of scale would yield much better
availability, performance, and reliability than would be available
otherwise. Further, the geographic distribution of servers would
support deep archival storage, i.e. storage that would survive ma-
jor disasters and regional outages. In a time when desktop worksta-
tions routinely ship with tens of gigabytes of spinning storage, the
management of data is far more expensive than the storage media.
OceanStore hopes to take advantage of this excess of storage space
to make the management of data seamless and carefree.

1.2 Two Unique Goals
The OceanStore system has two design goals that differentiate it
from similar systems: (1) the ability to be constructed from an un-
trusted infrastructure and (2) support of nomadic data.

Untrusted Infrastructure: OceanStore assumes that the infras-
tructure is fundamentally untrusted. Servers may crash without
warning or leak information to third parties. This lack of trust is in-
herent in the utility model and is different from other cryptographic
systems such as [35]. Only clients can be trusted with cleartext—all
information that enters the infrastructure must be encrypted. How-
ever, rather than assuming that servers are passive repositories of
information (such as in CFS [5]), we allow servers to be able to
participate in protocols for distributed consistency management. To
this end, we must assume that most of the servers are working cor-
rectly most of the time, and that there is one class of servers that we
can trust to carry out protocols on our behalf (but not trust with the
content of our data). This responsible party is financially responsi-
ble for the integrity of our data.

Nomadic Data: In a system as large as OceanStore, locality is
of extreme importance. Thus, we have as a goal that data can be
cached anywhere, anytime, as illustrated in Figure 1. We call this
policy promiscuous caching. Data that is allowed to flow freely is
called nomadic data. Note that nomadic data is an extreme con-
sequence of separating information from its physical location. Al-
though promiscuous caching complicates data coherence and loca-
tion, it provides great flexibility to optimize locality and to trade off
consistency for availability. To exploit this flexibility, continuous
introspective monitoring is used to discover tacit relationships be-
tween objects. The resulting “meta-information” is used for local-
ity management. Promiscuous caching is an important distinction
between OceanStore and systems such as NFS [43] and AFS [23]
in which cached data is confined to particular servers in particular
regions of the network. Experimental systems such as XFS [3] al-
low “cooperative caching” [12], but only in systems connected by
a fast LAN.

The rest of this paper is as follows: Section 2 gives a system-level
overview of the OceanStore system. Section 3 shows sample ap-
plications of the OceanStore. Section 4 gives more architectural
detail, and Section 5 reports on the status of the current prototype.
Section 6 examines related work. Concluding remarks are given in
Section 7.

2 SYSTEM OVERVIEW
An OceanStore prototype is currently under development. This sec-
tion provides a brief overview of the planned system. Details on the
individual system components are left to Section 4.
The fundamental unit in OceanStore is the persistent object.

Each object is named by a globally unique identifier, or GUID.

pool

pool

pool

pool

pool

pool

pool

Figure 1: The OceanStore system. The core of the system is
composed of a multitude of highly connected “pools”, among
which data is allowed to “flow” freely. Clients connect to one or
more pools, perhaps intermittently.

Objects are replicated and stored on multiple servers. This replica-
tion provides availability1 in the presence of network partitions and
durability against failure and attack. A given replica is independent
of the server on which it resides at any one time; thus we refer to
them as floating replicas.
A replica for an object is located through one of two mecha-

nisms. First, a fast, probabilistic algorithm attempts to find the
object near the requesting machine. If the probabilistic algorithm
fails, location is left to a slower, deterministic algorithm.
Objects in the OceanStore are modified through updates. Up-

dates contain information about what changes to make to an ob-
ject and the assumed state of the object under which those changes
were developed, much as in the Bayou system [13]. In principle,
every update to an OceanStore object creates a new version2. Con-
sistency based on versioning, while more expensive to implement
than update-in-place consistency, provides for cleaner recovery in
the face of system failures [49]. It also obviates the need for backup
and supports “permanent” pointers to information.
OceanStore objects exist in both active and archival forms. An

active form of an object is the latest version of its data together
with a handle for update. An archival form represents a permanent,
read-only version of the object. Archival versions of objects are
encoded with an erasure code and spread over hundreds or thou-
sands of servers [18]; since data can be reconstructed from any suf-
ficiently large subset of fragments, the result is that nothing short
of a global disaster could ever destroy information. We call this
highly redundant data encoding deep archival storage.
An application writer views the OceanStore as a number of ses-

sions. Each session is a sequence of read and write requests related
to one another through the session guarantees, in the style of the
Bayou system [13]. Session guarantees dictate the level of con-
sistency seen by a session’s reads and writes; they can range from
supporting extremely loose consistency semantics to supporting the
ACID semantics favored in databases. In support of legacy code,
OceanStore also provides an array of familiar interfaces such as the
Unix file system interface and a simple transactional interface.

If application semantics allow it, this availability is provided at the expense
of consistency.
In fact, groups of updates are combined to create new versions, and we
plan to provide interfaces for retiring old versions, as in the Elephant File
System [44].

2

Kubiatowicz et al. (2000)

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

2002

Venti

∙

Venti
Archival storage

∙ De-duplication through
content-addressable storage

∙ Content hashes provide
intrinsic file integrity

∙ Merkle trees verify the
file system hierarchy

∙

overlapped and do not benefit from the striping of the
index. One possible solution is a form of read-ahead.
When reading a block from the data log, it is feasible to
also read several following blocks. These extra blocks
can be added to the caches without referencing the
index. If blocks are read in the same order they were
written to the log, the latency of uncached index
lookups will be avoided. This strategy should work well
for streaming data such as multimedia files.

The basic assumption in Venti is that the growth in
capacity of disks combined with the removal of
duplicate blocks and compression of their contents
enables a model in which it is not necessary to reclaim
space by deleting archival data. To demonstrate why we
believe this model is practical, we present some
statistics derived from a decade’s use of the Plan 9 file
system.

The computing environment in which we work includes
two Plan 9 file servers named bootes and emelie.
Bootes was our primary file repository from 1990 until
1997 at which point it was superseded by emelie. Over
the life of these two file servers there have been 522
user accounts of which between 50 and 100 were active
at any given time. The file servers have hosted
numerous development projects and also contain
several large data sets including chess end games,
astronomical data, satellite imagery, and multimedia
files.

Figure 6 depicts the size of the active file system as
measured over time by du, the space consumed on the
jukebox, and the size of the jukebox’s data if it were to
be stored on Venti. The ratio of the size of the archival
data and the active file system is also given. As can be
seen, even without using Venti, the storage required to
implement the daily snapshots in Plan 9 is relatively
modest, a result of the block level incremental approach
to generating a snapshot. When the archival data is
stored to Venti the cost of retaining the snapshots is
reduced significantly. In the case of the emelie file
system, the size on Venti is only slightly larger than the
active file system; the cost of retaining the daily
snapshots is almost zero. Note that the amount of
storage that Venti uses for the snapshots would be the
same even if more conventional methods were used to
back up the file system. The Plan 9 approach to
snapshots is not a necessity, since Venti will remove
duplicate blocks.

When stored on Venti, the size of the jukebox data is
reduced by three factors: elimination of duplicate
blocks, elimination of block fragmentation, and
compression of the block contents. Table 2 presents the
percent reduction for each of these factors. Note, bootes
uses a 6 Kbyte block size while emelie uses 16 Kbyte,
so the effect of removing fragmentation is more
significant on emelie.

Bootes: storage size

0

50

100

150

200

250

300

Jul-90

Jan-91

Jul-91

Jan-92

Jul-92

Jan-93

Jul-93

Jan-94

Jul-94

Jan-95

Jul-95

Jan-96

Jul-96

Jan-97

Jul-97

Jan-98

Si
ze

 (G
b)

Emelie: storage size

0
50

100
150
200
250
300
350
400
450

Jan-97

Jul-97

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

Si
ze

 (G
b)

Jukebox
Venti
Active file system

Bootes: ratio of archival to active data

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Jul-90

Jan-91

Jul-91

Jan-92

Jul-92

Jan-93

Jul-93

Jan-94

Jul-94

Jan-95

Jul-95

Jan-96

Jul-96

Jan-97

Jul-97

R
at

io

Emelie: ratio of archival to active data

0

1

2

3

4

5

6

7

Jan-97

Jul-97

Jan-98

Jul-98

Jan-99

Jul-99

Jan-00

Jul-00

Jan-01

Jul-01

R
at

io

Jukebox / Active
Venti / Active

Figure 6. Graphs of the various sizes of two Plan 9 file servers.
Quinlan and Dorward (2002)

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

2003

GFS

∙

Google File System
Object-based

∙ Co-designed for map-reduce

∙ Coalesce storage and
compute nodes

∙ Serialize data access

∙

Google AppEngine documentation

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

2005

XRootD

∙

XRootD
Namespace delegation

∙ Global tree of redirectors

∙ Flexibility through
decomposition into
pluggable components

∙ Namespace independent
from data access

∙

redirect

redirect
open()

641 = 64

642 = 4096

Client
open()

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

cmsd

xrootd

open()

Hanushevsky (2013)

13 / 23

Milestones in Distributed File Systems
Biased towards open-source, production file systems

1983

AFS

1985

NFS

1995

Zebra

2000

OceanStore

2002

Venti

2003

GFS

2005

XRootD

2007

Ceph

2007

Ceph

∙

Ceph File System and RADOS
Parallel, distributed meta-data

∙ Peer-to-peer file system
at the cluster scale

∙ Data placement
across failure domains

∙ Adaptive workload
distribution

∙

choose(1,row)

choose(3,cabinet)

choose(1,disk)
·········

·········
·········

······

·········
·········

······
·········

······
·········

·········
·········

root

row2

row1 row3 row4

cab24cab21

cab22

cab23

Figure 5.1: A partial view of a four-level cluster map hierarchy consisting of rows, cabinets, and
shelves of disks. Bold lines illustrate items selected by each select operation in the placement
rule and fictitious mapping described by Table 5.1.

Action Resulting i⃗
take(root) root
select(1,row) row2
select(3,cabinet) cab21 cab23 cab24
select(1,disk) disk2107 disk2313 disk2437
emit

Table 5.1: A simple rule that distributes three replicas across three cabinets in the same row.

descends through any intermediate buckets, pseudo-randomly selecting a nested item in each

bucket using the function c(r,x) (defined for each kind of bucket in Section 5.2.4), until it finds

an item of the requested type t. The resulting n|⃗i| distinct items are placed back into the input i⃗

and either form the input for a subsequent select(n,t) or are moved into the result vector with an

emit operation.

As an example, the rule defined in Table 5.1 begins at the root of the hierarchy in

Figure 5.1 and with the first select(1,row) chooses a single bucket of type “row” (it selects row2).

91

Weil (2007)

13 / 23

A Taxonomy

Distributed
File Systems

Efficiency

Caching

Striping

Log-
structured

data

De-
duplication

Security,
Integrity

Content-
addressable

storage Snapshots

Merkle-
trees

Encryp-
tion

Scalability
Workload
adaptation

Dis-
tributed

hash
tables

Name-
space

delegation

Fault-
tolerance

Consensus

Check-
summing

Erasure
codes

Repli-
cation

14 / 23

Critical Areas in DFSs for Physics Applications

Fault-Tolerance
Fundamental problems as the number of components grows

1 Faults are the norm

2 Faults are often correlated

3 No safe way to distinguish temporary unavailability from faults

Bandwidth Utilization
∙ Data structures that work throughout the memory hierarchy

∙ Efficient writing of small files: analysis result merging, meta-data

15 / 23

Fault Tolerance and Data Reliability

Data Reliability Techniques

∙ Replication: simple and fast but large storage overhead

∙ Trend from random placement to “de-correlation”

∙ Erasure codes: any n + 𝜀 out of n + k blocks reconstruct data

∙ Different codes offer different trade-offs between
computational complexity and storage overhead

∙ Checksums: detect silent data corruption

Engineering Challenges

∙ Fault detection

∙ Automatic and fast recovery

∙ Failure prediction
e. g. based on MTTF and Markov models

16 / 23

Fault Tolerance and Data Reliability

Example from Google data centers
impact under a variety of replication schemes and
placement policies. (Sections 5 and 6)

• Formulate a Markov model for data availability, that
can scale to arbitrary cell sizes, and captures the in-
teraction of failures with replication policies and re-
covery times. (Section 7)

• Introduce multi-cell replication schemes and com-
pare the availability and bandwidth trade-offs
against single-cell schemes. (Sections 7 and 8)

• Show the impact of hardware failure on our cells is
significantly smaller than the impact of effectively
tuning recovery and replication parameters. (Sec-
tion 8)

Our results show the importance of considering
cluster-wide failure events in the choice of replication
and recovery policies.

2 Background

We study end to end data availability in a cloud com-
puting storage environment. These environments often
use loosely coupled distributed storage systems such as
GFS [1, 16] due to the parallel I/O and cost advantages
they provide over traditional SAN and NAS solutions. A
few relevant characteristics of such systems are:

• Storage server programs running on physical ma-
chines in a datacenter, managing local disk storage
on behalf of the distributed storage cluster. We refer
to the storage server programs as storage nodes or
nodes.

• A pool of storage service masters managing data
placement, load balancing and recovery, and moni-
toring of storage nodes.

• A replication or erasure code mechanism for user
data to provide resilience to individual component
failures.

A large collection of nodes along with their higher
level coordination processes [17] are called a cell or
storage cell. These systems usually operate in a shared
pool of machines running a wide variety of applications.
A typical cell may comprise many thousands of nodes
housed together in a single building or set of colocated
buildings.

2.1 Availability

A storage node becomes unavailable when it fails to re-
spond positively to periodic health checking pings sent

 0

 20

 40

 60

 80

 100

1s 10s 1min 15min 1h 6h 1d 7d 1mon

Ev
en

ts
 (%

)

Unavailability event duration

Figure 1: Cumulative distribution function of the duration of
node unavailability periods.

by our monitoring system. The node remains unavail-
able until it regains responsiveness or the storage system
reconstructs the data from other surviving nodes.

Nodes can become unavailable for a large number of
reasons. For example, a storage node or networking
switch can be overloaded; a node binary or operating
system may crash or restart; a machine may experience
a hardware error; automated repair processes may tem-
porarily remove disks or machines; or the whole clus-
ter could be brought down for maintenance. The vast
majority of such unavailability events are transient and
do not result in permanent data loss. Figure 1 plots the
CDF of node unavailability duration, showing that less
than 10% of events last longer than 15 minutes. This
data is gathered from tens of Google storage cells, each
with 1000 to 7000 nodes, over a one year period. The
cells are located in different datacenters and geographi-
cal regions, and have been used continuously by different
projects within Google. We use this dataset throughout
the paper, unless otherwise specified.

Experience shows that while short unavailability
events are most frequent, they tend to have a minor im-
pact on cluster-level availability and data loss. This is
because our distributed storage systems typically add
enough redundancy to allow data to be served from other
sources when a particular node is unavailable. Longer
unavailability events, on the other hand, make it more
likely that faults will overlap in such a way that data
could become unavailable at the cluster level for long
periods of time. Therefore, while we track unavailabil-
ity metrics at multiple time scales in our system, in this
paper we focus only on events that are 15 minutes or
longer. This interval is long enough to exclude the ma-
jority of benign transient events while not too long to ex-
clude significant cluster-wide phenomena. As in [11], we
observe that initiating recovery after transient failures is
inefficient and reduces resources available for other op-
erations. For these reasons, GFS typically waits 15 min-
utes before commencing recovery of data on unavailable
nodes.

2

Ford et al. (2010) Link

Statistical separation
of temporary and
permanent faults

17 / 23

https://www.usenix.org/conference/osdi10/availability-globally-distributed-storage-systems

Log-Structured Data

Unix file system

Log-structured file system

Disk

Disk

· · · Log −→

File Inode

Directory Index

Idea: Store all
modifications in a
change log

Use full hardware
bandwidth for
small objects

Used by

∙ Zebra experimental DFS

∙ Commercial filers
(e. g. NetApp)

∙ Key-value stores

∙ File systems for
flash memory

Advantages

∙ Minimal seek, in-place updates

∙ Fast and robust crash recovery

∙ Efficient allocation in
DRAM, flash, and disks

∙ Applicable for merging, meta-data

18 / 23

Do we get what we need?

Typical physics experiment cluster

∙ Up to 1 000 standard nodes

∙ 1 GbE or 10 GbE network,
high bisection bandwidth

Goals for a DFS for analysis applications

∙ At least 90 % available disk capacity

∙ At least 50 % of maximum
aggregated throughput

∙ Fault-tolerant to a small number
of disk/node failures

∙ Symmetric architecture, fully decentralized

Bruce Allen, MPI for Gravitational Physics (2009) Link

19 / 23

https://domino.mpi-inf.mpg.de/internet/events.nsf/3802238747b751e6c12564c10080ba87/1c248658b78580d1c12575620039ba08!OpenDocument

Complexity and Decomposition in Distributed File Systems
For a DFS: At least 5 years from inception to widespread adoption

Complexity

∙ Open source DFSs comprise some 100 kLOC to 750 kLOC

∙ It takes a community effort to stabilize them

∙ Once established, it can become prohibitively expensive
to move to a different DFS (data lock-in)

Decomposition

∙ Good track record of “outsourcing” tasks
e. g. authentication (Kerberos), distributed coordination (ZooKeeper)

∙ Ongoing: separation of namespace and data access

∙ Increases the number of standards and interfaces and
temporarily increases the effort on the development side

⊕ Faster adaption to a changing computing landscape

20 / 23

Complexity and Decomposition in Distributed File Systems
For a DFS: At least 5 years from inception to widespread adoption

Complexity

∙ Open source DFSs comprise some 100 kLOC to 750 kLOC

∙ It takes a community effort to stabilize them

∙ Once established, it can become prohibitively expensive
to move to a different DFS (data lock-in)

Decomposition

∙ Good track record of “outsourcing” tasks
e. g. authentication (Kerberos), distributed coordination (ZooKeeper)

∙ Ongoing: separation of namespace and data access

∙ Increases the number of standards and interfaces and
temporarily increases the effort on the development side

⊕ Faster adaption to a changing computing landscape

20 / 23

Distributed File Systems in the Exascale

×1

×10

×100

×1000

1994 2004 2014

In
cr

ea
se

Year

HDD
DRAM

∙ Bandwidth
� Capacity

∙ “Exascale” computing
(EB of data, 1018 ops/s)
envisaged by 2020

∙ Storage capacity and
bandwidth scale at
different pace

∙ It will be more difficult or
impossible to constantly
“move data in and out”

Ethernet bandwidth scaled
similarly to capacity

Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution

21 / 23

Distributed File Systems in the Exascale

×1

×10

×100

×1000

1994 2004 2014

In
cr

ea
se

Year

HDD
DRAM

Ethernet

∙ Bandwidth
� Capacity

∙ “Exascale” computing
(EB of data, 1018 ops/s)
envisaged by 2020

∙ Storage capacity and
bandwidth scale at
different pace

∙ It will be more difficult or
impossible to constantly
“move data in and out”

∙ Ethernet bandwidth scaled
similarly to capacity

Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution

21 / 23

Distributed File Systems in the Exascale

×1

×10

×100

×1000

1994 2004 2014

In
cr

ea
se

Year

HDD
DRAM

Ethernet

∙ Bandwidth
� Capacity

∙ “Exascale” computing
(EB of data, 1018 ops/s)
envisaged by 2020

∙ Storage capacity and
bandwidth scale at
different pace

∙ It will be more difficult or
impossible to constantly
“move data in and out”

∙ Ethernet bandwidth scaled
similarly to capacity

∙ Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution

21 / 23

Distributed File Systems in the Exascale

Example from HPC

Checkpointing is the state-of-the-art technique for delivering
fault tolerance for high-performance computing (HPC) on large-
scale systems. It has been shown that writing the state of a process
to persistent storage is the largest contributor to the performance
overhead of checkpointing [12]. Let's assume that parallel file
systems are expected to continue to improve linearly in
throughput with the growing number of nodes (an optimistic
assumption); however, note that per node memory (the amount of
state that is to be saved) will likely continue to grow
exponentially. Assume the MTTF is modeled after the BlueGene
with a claimed 1000 years MTTF per node (another optimistic
assumption). Figure 5 shows the expected MTTF of about 7 days
for a 0.8 petaflop IBM BlueGene/P with 64K nodes, while the
checkpointing overhead is about 34 minutes; at 1M nodes (~1
exaflop), the MTTF would be only 8.4 hours, while the
checkpointing overhead would be over 9 hours.

Figure 5: Expected checkpointing cost and MTTF towards

exascale
Simulations results (see Figure 6) from 1K nodes to 2M nodes
(simulating HEC from 2000 to 2019) show the application uptime
collapse for capability HEC systems. Today, 20% or more of the
computing capacity in a large HPC system is wasted due to
failures and recoveries [12], which is confirmed by the simulation
results.

Figure 6: Simulation application uptime towards exascale

The distributed file system shown in the simulation results is a
hypothetical file system that could scale near linearly by
preserving the data locality in checkpointing. The application

requirements are modeled to include 7 days of computing on the
entire HEC system. By 1M nodes, checkpointing with parallel file
systems (red line with circle symbol) has a complete performance
collapse (as was predicted from Figure 5). Note that the
hypothetical distributed file system (blue line with hollow circle
symbol) could still have 90%+ uptime even at exascale levels.

3. RADICAL NEW VISION
We believe the HEC community needs to develop both the
theoretical and practical aspects of building efficient and scalable
distributed storage for HEC systems that will scale four orders of
magnitude in concurrency. We believe that emerging distributed
file systems could co-exist with existing parallel file systems, and
could be optimized to support a subset of workloads critical for
HPC and MTC workloads at exascale. There have been other
distributed file systems proposed in the past, such as Google's
GFS [13] and Yahoo's HDFS [14]; however these have not been
widely adopted in HEC due to the workloads, data access patterns,
and supported interfaces (POSIX [15]) being quite different.
Current file systems lack scalable distributed metadata
management, and well defined interfaces to expose data locality
for general computing frameworks that are not constrained by the
map-reduce model to allow data-aware job scheduling with batch
schedulers (e.g. PBS [16], SGE [17], Condor [18], Falkon [19]).
We believe that future HEC systems should be designed with non-
volatile memory (e.g. solid state memory [20], phase change
memory [21]) on every compute node (Figure 7); every compute
node would actively participate in the metadata and data
management, leveraging the abundance of computational power
many-core processors will have and the many orders of magnitude
higher bisection bandwidth in multi-dimensional torus networks
as compared to available cost effective bandwidth into remote
network persistent storage. This shift in large-scale storage
architecture design will lead to improving application
performance and scalability for some of the most demanding
applications. This shift in design is controversial as it requires
storage architectures in HEC to be redefined from their traditional
architectures of the past several decades. This new approach was
not feasible up to recently due to the unreliable spinning disk
technology [22] that has dominated the persistent storage space
since the dawn of supercomputing. However, the advancements in
solid-state memory (with MTTF of over two million hours [23])
have opened up opportunities to rethink storage systems for HEC,
distributing storage on every compute node, without sacrificing
node reliability or power consumption. The benefits of this new
architecture lies in its enabling of some workloads to scale near-
linearly with systems scales by leveraging data locality and the
full network bisection bandwidth.

Figure 7: Proposed storage architecture with persistent local

storage on every compute node

0.1

1

10

100

1000

Sy
st
em

�M
TT
F�
(h
ou

rs
)

Ch
ec
kp
oi
nt
in
g�
O
ve
rh
ea
d�
(h
ou

rs
)

System�Scale�(#�of�Nodes)

System�MTTF�(hours)
Checkpoint�Overhead�(hours)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
pp

lic
at
io
n�
U
pt
im

e�
%

Scale�(#�of�nodes)

No�Checkpointing
Checkpointing�to�Parallel�File�System
Checkpointing�to�Distributed�File�System

2000
BG/L

1024�nodes

2007
BG/L

106,496�nodes�

2009
BG/P

73,728�nodes�

2019
~1,000,000��nodes

13

Raicu, Foster, Beckman (2011) Link

∙ “Exascale” computing
(EB of data, 1018 ops/s)
envisaged by 2020

∙ Storage capacity and
bandwidth scale at
different pace

∙ It will be more difficult or
impossible to constantly
“move data in and out”

∙ Ethernet bandwidth scaled
similarly to capacity

∙ Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution

21 / 23

http://dl.acm.org/citation.cfm?id=1996034

The Road Ahead

Distributed File Systems

∙ Seamless integration with applications

∙ Feature-rich: quotas, permissions, links

∙ Globally federated namespace

Key-Value and Blob Stores

∙ Very good scalability on local networks

∙ Flat namespace + search facility

∙ Turns out that certain types of data
don’t need a hierarchical namespace
e. g. cached objects, media, VM images

Building
Blocks

22 / 23

The Road Ahead

Data Sharing Distributed File Systems

∙ Seamless integration with applications

∙ Feature-rich: quotas, permissions, links

∙ Globally federated namespace

Data Provisioning Key-Value and Blob Stores

∙ Very good scalability on local networks

∙ Flat namespace + search facility

∙ Turns out that certain types of data
don’t need a hierarchical namespace
e. g. cached objects, media, VM images

Building
Blocks

22 / 23

Conclusion

1 Distributed file systems stay
∙ physics data processing applications use file systems
∙ the hierarchical namespace is a natural way to organize data

2 Hard disks become data silos
∙ We need to focus on optimal bandwidth utilization
∙ Once written, we have to leave data where they are

→ storage and compute nodes coalesce

3 Every now and then, a new file system comes along —
they all are assembled from the same technology toolbox

∙ We need solidly engineered building blocks from this toolbox
∙ We need to validate early with our real application workload

23 / 23

Conclusion

1 Distributed file systems stay
∙ physics data processing applications use file systems
∙ the hierarchical namespace is a natural way to organize data

2 Hard disks become data silos
∙ We need to focus on optimal bandwidth utilization
∙ Once written, we have to leave data where they are

→ storage and compute nodes coalesce

3 Every now and then, a new file system comes along —
they all are assembled from the same technology toolbox

∙ We need solidly engineered building blocks from this toolbox
∙ We need to validate early with our real application workload

23 / 23

Conclusion

1 Distributed file systems stay
∙ physics data processing applications use file systems
∙ the hierarchical namespace is a natural way to organize data

2 Hard disks become data silos
∙ We need to focus on optimal bandwidth utilization
∙ Once written, we have to leave data where they are

→ storage and compute nodes coalesce

3 Every now and then, a new file system comes along —
they all are assembled from the same technology toolbox

∙ We need solidly engineered building blocks from this toolbox
∙ We need to validate early with our real application workload

23 / 23

ht
tp

:/
/l

on
el

yc
ha

ir
sa

tc
er

n.
tu

mb
lr

.c
om

http://lonelychairsatcern.tumblr.com

Backup Slides

Source of Hardware Bandwidth and Capacity Numbers
Method and entries marked † from Patterson (2004) Link

Hard Disk Drives DRAM Ethernet
Year Capacity Bandwidth Capacity Bandwidth Bandwidth

1993 16Mibit/chip† 267MiB/s†

1994 4.3GB† 9MB/s†

1995 100Mbit/s†

2003 73.4GB† 86MB/s† 10Gbit/s†
2004 512Mibit/chip 3.2 GiB/s

2014 6TB 220MB/s‡ 8Gibit/chip 25.6 GiB/s 100Gbit/s
Increase ×1395 ×24 ×512 ×98 ×1000

‡http://www.storagereview.com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4

HDD: Seagate ST15150 (1994)†, Seagate 373453 (2004)†,
Seagate ST6000NM0034 (2014)

DRAM: Fast Page DRAM (1993)†, DDR2-400 (2004), DDR4-3200 (2014)
Ethernet: Fast Ethernet IEEE 802.3u (1995)†, 10 GbitE IEEE 802.3ae (2003)†,

100 GbitE IEEE 802.3bj (2014)

High-end SSD example: Hitachi FlashMAX III (2014), ≈2 TB, ≈2 GB/s

26 / 23

http://dl.acm.org/citation.cfm?id=1022596
http://www.storagereview.com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4

Data Integrity and File System Snapshots

Root (/)

Contents: A, B

hash(hA, hB)

/A

Contents: 𝛼, 𝛽

hash(h𝛼, h𝛽) =: hA

/A/𝛼

Contents: data𝛼

hash(data𝛼) =: h𝛼

/A/𝛽

Contents: data𝛽

hash(data𝛽) =: h𝛽

/B

Contents: ∅

hash(∅) =: hB

Merkle tree

∙ Hash tree with cryptographic
hash function provides
secure identifier for sub trees

∙ It is easy to sign a small hash
value (data authenticity)

∙ Efficient calculation of changes
(fast replication)

∙ Bonus: versioning and data
de-duplication

∙ Full potential together with
content-addressable storage

∙ Self-verifying data chunks,
trivial to distribute and cache

27 / 23

Data Integrity and File System Snapshots

hash(hA, hB)

Contents: hA [A], hB [B]

hash(h𝛼, h𝛽)=: hA

Contents: h𝛼 [𝛼], h𝛽 [𝛽]

hash(data𝛼)=: h𝛼

Contents: data𝛼

hash(data𝛽)=: h𝛽

Contents: data𝛽

hash(∅)=: hB

Contents: ∅

Merkle tree
⊕

Content-addressable storage

∙ Hash tree with cryptographic
hash function provides
secure identifier for sub trees

∙ It is easy to sign a small hash
value (data authenticity)

∙ Efficient calculation of changes
(fast replication)

∙ Bonus: versioning and data
de-duplication

∙ Full potential together with
content-addressable storage

∙ Self-verifying data chunks,
trivial to distribute and cache

27 / 23

Bibliography I

Survey Articles

Satyanarayanan, M. (1990).
A survey of distributed file systems.
Annual Review of Computer Science, 4(1):73–104.

Guan, P., Kuhl, M., Li, Z., and Liu, X. (2000).
A survey of distributed file systems.
University of California, San Diego.

Agarwal, P. and Li, H. C. (2003).
A survey of secure, fault-tolerant distributed file systems.
URL:
http://www.cs.utexas.edu/users/browne/cs395f2003/projects/LiAgarwalReport.pdf.

Thanh, T. D., Mohan, S., Choi, E., Kim, S., and Kim, P. (2008).
A taxonomy and survey on distributed file systems.
In Proc. int. conf. on Networked Computing and Advanced Information
Management (NCM’08), pages 144 – 149.

Depardon, B., Séguin, C., and Mahec, G. L. (2013).
Analysis of six distributed file systems.
Technical Report hal-00789086, Université de Picardie Jules Verne.

28 / 23

Bibliography II

Donvito, G., Marzulli, G., and Diacono, D. (2014).
Testing of several distributed file-systems (hdfs, ceph and glusterfs) for
supporting the hep experiment analysis.
Journal of Physics: Conference Series, 513.

File Systems

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1985).
Design and implementation of the sun network filesystem.
In Proc. of the Summer USENIX conference, pages 119–130.

Morris, J. H., Satyanarayanan, M., Conner, M. H., Howard, J. H., Rosenthal, D.
S. H., and Smith, F. D. (1986).
Andrew: A distributed personal computing environment.
Communications of the ACM, 29(3):184–201.

Hartman, J. H. and Osterhout, J. K. (1995).
The Zebra striped network file system.
ACM Transactions on Computer Systems, 13(3):274–310.

29 / 23

Bibliography III

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B.
(2000).
OceanStore: An architecture for global-scale persistent storage.
ACM SIGPLAN Notices, 35(11):190–201.

Quinlan, S. and Dorward, S. (2002).
Venti: a new approach to archival storage.
In Proc. of the 1st USENIX Conf. on File and Storage Technologies (FAST’02),
pages 89–102.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003).
The Google file system.
ACM SIGOPS Operating Systems Review, 37(5):29–43.

Schwan, P. (2003).
Lustre: Building a file system for 1,000-node clusters.
In Proc. of the 2003 Linux Symposium, pages 380–386.

Dorigo, A., Elmer, P., Furano, F., and Hanushevsky, A. (2005).
XROOTD - a highly scalable architecture for data access.
WSEAS Transactions on Computers, 4(4):348–353.

30 / 23

Bibliography IV

Weil, S. A. (2007).
Ceph: reliable, scalable, and high-performance distributed storage.
PhD thesis, University of California Santa Cruz.

31 / 23

	Usage of distributed file systems
	Survey and Taxonomy
	Critical areas in distributed file system for physics applications
	Developments and future challenges
	Appendix
	Backup Slides

