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Agenda

Motivation
e Physics experiments store their data in distributed file systems
e In High Energy Physics

o Global federation of file systems
e Hundreds of peta-bytes of data
e Hundreds of millions of objects

Outline

@ Usage of distributed file systems
® Survey and taxonomy
© Critical areas in distributed file systems for physics applications

@ Developments and future challenges
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Distributed File Systems

A distributed file system (DFS) provides
@ persistent storage
@® of opaque data (files)

© in a hierarchical namespace that is
shared among networked nodes

e Files survive the lifetime of processes and nodes
e POSIX-like interface: open(), close(), read(), write(), ...

e Typically transparent to applications

e Data model and interface distinguish a DFS from
a distributed (No-)SQL database or a distributed key-value store
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Distributed File Systems

B

Popular DFSs:

AFS, Ceph, CernVM-FS,
dCache, EOS, FhGFS,
GlusterFS, GPFS, HDFS,
Lustre, MooseFS, NFS,
PanFS, XrootD

A distributed file system (DFS) provides

@ persistent storage
@® of opaque data (files)

© in a hierarchical namespace that is
shared among networked nodes

e Files survive the lifetime of processes and nodes
e POSIX-like interface: open(), close(), read(), write(), ...

e Typically transparent to applications
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a distributed (No-)SQL database or a distributed key-value store
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[Data are illustrative]

Use Cases and Demands

Data Classes
e Home folders
o Physics Data

e Recorded
e Simulated
e Analysis results

e Software binaries

e Scratch area
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Use Cases and Demands
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Depending on the use case, the dimensions span orders of magnitude

(logarithmic axes)
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Distributed File Systems and Use Cases

>1s . e It is difficult to perform well
eveit-éamlc’le'rwt under usage characteristics that
e differ by 4 orders of magnitude

e File system performance is
highly susceptible to
characteristics of individual
applications

File system:
“please take special care of this file!”

e There is no interface to
specify quality of service (QoS)
for a particular file
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Distributed File Systems and Use Cases

>1s .
event_sample.root

analysis.C

File system:

“please take special care of this file!”

>1ls /
/home

/data
/software
/scratch

Implicit QoS

It is difficult to perform well
under usage characteristics that
differ by 4 orders of magnitude

File system performance is
highly susceptible to
characteristics of individual
applications

There is no interface to
specify quality of service (QoS)
for a particular file

We will deal with a number of
DFSs for the foreseeable future
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No DFS is fully POSIX
compliant

[t must provide just enough to
not break applications

Field test necessary

POSIX Compliance

File system operations

essential

create(), unlink(), stat()
open(), close(),
read(), write(), seek()

difficult for DFSs

File locks

Atomic rename ()
Open unlinked files
Hard links

impossible for DFSs
Device files, IPC files



Architecture Sketches

Network shares, client-server

Goals: Simplicity, separate storage from application
Example: NFS3
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Architecture Sketches

Namespace delegation

2‘ -

‘ /physics —
/
.=

/physics/ams
subtree

Goals: Scaling network shares, decentral administration
Example: AFS
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meta-data

data

Architecture Sketches

Object-based file system

—— delete() ———— .. ‘
\

create()

\
read() — e ‘

— erte
]
[ )

Goals: Separate meta-data from data, incremental scaling
Example: Google File System
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meta-data

data

Architecture Sketches

Parallel file system

——— delete() ——— .
create()
v i read() == -

— write()

[ | [ | [N .

L]

. . o o0 o

Goals: Maximum throughput, optimized for large files

Example: Lustre
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meta-data

data

Architecture Sketches

Distributed meta-data

—— delete() ——— .. -
create()
v i read() == -
— write()
[ | [ | [N .
L]
. . o o0 o
Goals:  Avoid single point of failure and meta-data bottleneck

Example: Ceph
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Architecture Sketches

Symmetric, peer-to-peer

hash(path,,)

~ Distributed hash table —
Hosts of path, O

&
Goals:  Conceptual simplicity, inherently scalable

Difficult to deal with node churn, long lookup beyond LAN
Example: GlusterFS 12/23




Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
| | ! ! ! I
I | I | | |
T T T T T T
AFS NFS Zebra OceanStore GFS Ceph

Venti XRootD
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
1 Il Il [l [l [l
— i | 1 |
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD

“AFS was the first safe and efficient distributed com-
puting system, available [...] on campus. It was a
clear precursor to the Dropbox-like software pack-
ages today. [...] [It] allowed students (like Drew
Houston and Arash Ferdowsi) access to all their
stuff from any connected computer.”

http://www.wired.com/2011/12/backdrop-dropbox

Andrew File System
Client-server

e Roaming home folders

o |dentity tokens and

access control lists (ACLs)

o Decentralized operation (“Cells")
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
] ' ! ! ! !
1 T 1 1 t T
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD

Network File System

CLIENT SERVER Client-server

m m e Focus on portability
e Separation of protocol

mpmentr
and implementation

e Stateless servers

PC Filesystem

l 42 Filesysl:m—l l NFS Filesystem I Server Routines ]

o Fast crash recovery

RPC / XDR RPC / XDR

Network
-

Sandberg, Goldberg, Kleiman, Walsh, Lyon (1985)
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
! ! = | | |
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD
) ) Zebra File System
File B File C Parallel
File A File D
| l Yy, ‘ | o Striping and parity
[1]2]3]4]5]c] NSRRI (e
inexpensive nodes (RAIN)
e |og-structured data

1®2®3
4®5®6

File Servers

Hartman, Ousterhout (1995)
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
Il Il Il 1 [l [l
: : : 1 : :
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD
OceanStore

(CD RN L Peer-to-peer
/ \ “Global Scale™
1010 users, 104 files

Untrusted infrastructure

_
e Based on peer-to-peer
\ overlay network
e Nomadic data through
pd aggressive caching

e Foundation for today's
decentral dropbox replacements

Kubiatowicz et al. (2000)
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

Ratio

2002 2005
1983 1985 1995 2000 2003 2007
| 1 : ! ! !
I | I T
1 T T T T T
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD
= = = = Venti
Emelie: ratio of archival to active data Archival storage

T
_ |~ Venti/ Active e De-duplication through

content-addressable storage

o Content hashes provide
intrinsic file integrity

”””””””””””” o Merkle trees verify the
file system hierarchy

z67nr
g6-uer -
g6-Inr
66-uer -
66-Inr
00-uer -
0oinr
1o-uer -
Lorine

Quinlan and Dorward (2002)
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
1 1 1 1 1 1
: : : : ! :
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD

Shufme Reduce

Google AppEngine documentation

Google File System
Object-based

o Co-designed for map-reduce

e Coalesce storage and

compute nodes

o Serialize data

access

13/23



Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1983 1985 1995 2000 2003 2007
| 1 : : ! !
i ! ! i =]
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD
XRootD

open()
el

open| i
et et
open()

641 = 64
spEssssas

cmsd
642 = 409

cmsd cmsd cmsd

Hanushevsky (2013)

cmsd

Namespace delegation

o Global tree of redirectors

o Flexibility through
decomposition into
pluggable components

e Namespace independent
from data access
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Milestones in Distributed File Systems

Biased towards open-source, production file systems

2002 2005
1083 1985 1995 2000 2003 2007
! ! | | | $
AFS NFS Zebra OceanStore GFS Ceph
Venti XRootD
= — Ceph File System and RADOS
Action Resulting i Parallel, distributed meta-data
take(root) root )
select(1,row) row2 e Peer-to-peer file system
select(3 cabinet) | cab21 cab23 cab24 at the cluster scale
select(1,disk) disk2107 disk2313 disk2437 e Data placement
emit across failure domains

Weil (2007)

e Adaptive workload
distribution
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Check-
summing
Consensus

Erasure
codes

Fault-
tolerance

Repli-
cation

Name-
space
delegation

Scalability

Distributed
File Systems

Caching

Striping

De-
duplication

og-
structured
data

Security,
Integrity

Content-
addressable
storage

A Taxonomy

Dis-
tributed
LEE
tables

Workload
adaptation

Encryp-
tion

Merkle-
trees

Snapshots
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Critical Areas in DFSs for Physics Applications

Fault-Tolerance

Fundamental problems as the number of components grows
@ Faults are the norm
® Faults are often correlated

©® No safe way to distinguish temporary unavailability from faults

Bandwidth Utilization
e Data structures that work throughout the memory hierarchy

o Efficient writing of small files: analysis result merging, meta-data
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Fault Tolerance and Data Reliability

Data Reliability Techniques
e Replication: simple and fast but large storage overhead
e Trend from random placement to “de-correlation”
e Erasure codes: any n+ ¢ out of n+ k blocks reconstruct data

o Different codes offer different trade-offs between
computational complexity and storage overhead

e Checksums: detect silent data corruption

Engineering Challenges
e Fault detection
e Automatic and fast recovery

e Failure prediction
e.g. based on MTTF and Markov models
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Fault Tolerance and Data Reliability

Example from Google data centers

100

80 /

o /

‘0 Statistical separation
/ of temporary and

20 permanent faults

Events (%)

0
1s 10s 1min 15min 1h 6h 1d 7d 1mon
Unavailability event duration

Ford et al. (2010) (< Link
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https://www.usenix.org/conference/osdi10/availability-globally-distributed-storage-systems

Unix file system

i

Disk

Log-structured file system

Disk

Q I Log_>

Used by

e Zebra experimental DFS

e Commercial filers
(e.g. NetApp)

Key-value stores

File systems for
flash memory

Log-Structured Data

Idea: Store all
modifications in a

I File I Inode Change |og

Use full hardware
IDirectory I'"dex bandwidth for

small objects

Advantages
e Minimal seek, in-place updates
e Fast and robust crash recovery

e Efficient allocation in
DRAM, flash, and disks

e Applicable for merging, meta-data
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Do we get what we need?

Typical physics experiment cluster
e Up to 1000 standard nodes

e 1 GbE or 10 GbE network,
high bisection bandwidth

Goals for a DFS for analysis applications

o At least 90 % available disk capacity

o At least 50 % of maximum
aggregated throughput

e Fault-tolerant to a small number
of disk/node failures

e Symmetric architecture, fully decentralized

Bruce Allen, MPI for Gravitational Physics (2009) Link
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https://domino.mpi-inf.mpg.de/internet/events.nsf/3802238747b751e6c12564c10080ba87/1c248658b78580d1c12575620039ba08!OpenDocument

Complexity and Decomposition in Distributed File Systems
For a DFS: At least 5 years from inception to widespread adoption
Complexity

e Open source DFSs comprise some 100 kLOC to 750 kLOC
e |t takes a community effort to stabilize them

e Once established, it can become prohibitively expensive
to move to a different DFS (data lock-in)

20/23



Complexity and Decomposition in Distributed File Systems

For a DFS: At least 5 years from inception to widespread adoption
Complexity

e Open source DFSs comprise some 100 kLOC to 750 kLOC

e |t takes a community effort to stabilize them

e Once established, it can become prohibitively expensive
to move to a different DFS (data lock-in)

Decomposition

e Good track record of “outsourcing” tasks
e.g. authentication (Kerberos), distributed coordination (ZooKeeper)

e Ongoing: separation of namespace and data access

e Increases the number of standards and interfaces and
temporarily increases the effort on the development side

@ Faster adaption to a changing computing landscape
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Increase

%1000

x100

x10

x1

Distributed File Systems in the Exascale

® Bandwidth
m Capacity

| ® “Exascale” computing
/ (EB of data, 108 ops/s)
= envisaged by 2020

® Storage capacity and
bandwidth scale at
different pace

e It will be more difficult or
impossible to constantly
“move data in and out”

2004

Year

2014
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Increase

%1000

x100

x10

x1

Distributed File Systems in the Exascale

[ ] ® “Exascale” computing
(EB of data, 108 ops/s)
envisaged by 2020

HDD ——
DRAM ——
Ethernet ———

® Storage capacity and
bandwidth scale at
different pace

e It will be more difficult or
impossible to constantly
“move data in and out”

e Ethernet bandwidth scaled
® Bandwidth similarly to capacity

m Capacity

2004 2014
Year
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Increase

Distributed File Systems in the Exascale

[
x1000 |-
- HDD
L DRAM
Ethernet
x100
x10
i ® Bandwidth
m Capacity
%1 | |
1994 2004 2014
Year

“Exascale” computing
(EB of data, 108 ops/s)
envisaged by 2020

Storage capacity and
bandwidth scale at
different pace

It will be more difficult or
impossible to constantly
“move data in and out”

Ethernet bandwidth scaled
similarly to capacity

Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution
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System MTTF (hours)
Checkpointing Overhead (hours)

Distributed File Systems in the Exascale

Example from HPC

1000
—System MTTF (hours)

-=-Checkpoint Overhead (hours)

100
10
1
0.1
© Vv > P ©
o, \% '\,\6\ r\,"\’b‘ Qﬁb Cb‘/\
G ) o gV ,\/‘Qv

System Scale (# of Nodes)

Raicu, Foster, Beckman (2011) Link

“Exascale” computing
(EB of data, 10™® ops/s)
envisaged by 2020

Storage capacity and
bandwidth scale at
different pace

It will be more difficult or
impossible to constantly
“move data in and out”

Ethernet bandwidth scaled
similarly to capacity

Yielding segregation of
storage and computing to
a symmetric DFS can be
part of a solution
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http://dl.acm.org/citation.cfm?id=1996034

The Road Ahead

Distributed File Systems

e Seamless integration with applications

e Feature-rich: quotas, permissions, links

e Globally federated namespace
k\ > Building
Blocks

-

Key-Value and Blob Stores
e Very good scalability on local networks
e Flat namespace + search facility

e Turns out that certain types of data
don't need a hierarchical namespace
e. g. cached objects, media, VM images




The Road Ah

Data Sharing Distributed File Systems
e Seamless integration with applications

e Feature-rich: quotas, permissions, links

e Globally federated namespace

= D

ead

Data Provisioning Key-Value and Blob Stores
e Very good scalability on local networks
e Flat namespace + search facility

e Turns out that certain types of data
don't need a hierarchical namespace
e. g. cached objects, media, VM images




Conclusion
@ Distributed file systems stay

e physics data processing applications use file systems
e the hierarchical namespace is a natural way to organize data
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Conclusion

@ Distributed file systems stay

e physics data processing applications use file systems
e the hierarchical namespace is a natural way to organize data

® Hard disks become data silos

e We need to focus on optimal bandwidth utilization
e Once written, we have to leave data where they are
— storage and compute nodes coalesce
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Conclusion

@ Distributed file systems stay

e physics data processing applications use file systems
e the hierarchical namespace is a natural way to organize data

® Hard disks become data silos

e We need to focus on optimal bandwidth utilization
e Once written, we have to leave data where they are
— storage and compute nodes coalesce

© Every now and then, a new file system comes along —
they all are assembled from the same technology toolbox

e We need solidly engineered building blocks from this toolbox
e We need to validate early with our real application workload
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http://lonelychairsatcern.tumblr.com

Backup Slides



Source of Hardware Bandwidth and Capacity Numbers

Method and entries marked t from Patterson (2004) (iLink

Hard Disk Drives DRAM Ethernet
Year Capacity  Bandwidth ~ Capacity Bandwidth Bandwidth
1993 16 Mibit/chipf 267 MiB/st
1994 43GBT  9MB/st
1995 100 Mbit/st
2003 73.4GBT 86 MB/st 10 Gbit /st
2004 512 Mibit/chip  3.2GiB/s
2014 6TB 220MB/st  8Gibit/chip 25.6GiB/s 100 Gbit/s
Increase %1395 x24 x512 X938 x 1000

Ih\:tp://www .storagereview. com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4

HDD:  Seagate ST15150 (1994)", Seagate 373453 (2004)T,
Seagate ST6000NMO0034 (2014)

DRAM: Fast Page DRAM (1993), DDR2-400 (2004), DDR4-3200 (2014)
Ethernet: Fast Ethernet IEEE 802.3u (1995)T, 10 GbitE IEEE 802.3ae (2003)T,
100 GbitE IEEE 802.3bj (2014)

High-end SSD example: Hitachi FlashMAX Ill (2014), ~2TB, ~2GB/s
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http://dl.acm.org/citation.cfm?id=1022596
http://www.storagereview.com/seagate_enterprise_capacity_6tb_35_sas_hdd_review_v4

Data Integrity and File System Snapshots

Root (/)
Contents: A, B e Hash tree with cryptographic
hash(ha, hg) hash function provides

———

secure identifier for sub trees
/ \ e |t is easy to sign a small hash

/A ;B value (data authenticity)
Contents: a, Contents: () o Efficient calculation of changes
hash(ha, hs) =: ha hash(0) =: hs (fast replication)

|\ e Bonus: versioning and data
de-duplication

Al | [ /am

Contents: data, Contents: datag

hash(data,) =: ha hash(datag) =: hg

Merkle tree
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Data Integrity and File System Snapshots

[ hash(ha, hg) ]
lContents: ha [A], he [B]J

[ hash(hq, h5) =:hpy ] hash;(.a) =:hp
l

Contents: hq [a], hg [ﬂ]J [ Contents: ) J

[ hash(dataq) = he ] hash(datag) =: hg

l Contents: data, J Contents: datag
L

Merkle tree

2]
Content-addressable storage

Hash tree with cryptographic
hash function provides
secure identifier for sub trees

It is easy to sign a small hash
value (data authenticity)

Efficient calculation of changes
(fast replication)

Bonus: versioning and data
de-duplication

Full potential together with
content-addressable storage

Self-verifying data chunks,
trivial to distribute and cache
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