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"The presentation you are about to watch might look like (bad)
parody. Its content is not fact checked. Its reporter is not a

journalist. And his opinions might not be fully thought through."

freely adopted from “John Stuart”
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= A personal view of MVA history in HEP

= Some highlights

= Challenges

= What about the future ?

Helge Voss

Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014



A Snort risiory Of VIV.- =y

= Already in the very beginning intelligent “Multivariate Pattern

Recognition” was used to identify particles ....

= But later it became a bit ‘out of fashion’ with the advent of computers

= ... although | guess some Fisher-Discriminants (Linear Decision Boundary) were
used her and there .. If | remember correctly my PhD supervisor mentioning such
things being used back in MARKIII

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014
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A Snort rlisiory OF VI V.A
= TAUPID .. (my first encounter .. Again, that might absolutly not be the first or most important)

= ALEPH (LEP) and later OPAL Tau-particle-identification with a

“Likelihood” classifier (Naive Bayesian)

N ..... Particle identification was crucial for the understanding of T decays in order to separate

electrons, muons and hadrons. At the beginning, most people were using cuts, but a likelihood
method TAUPID was soon developed by Zhiging Zhang and Michel which proved so superior thai
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A Snort rlistory OfF YIV- -

... and of course elsewhere..
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Neural Networks in High Energy Physics

Carsten Peterson?

.. Although people have always felt that the advance is somewhat

slow...

High Energy Physics

The progress of exploiting ANN in high enregy physics has been somewhat slow. Partly this con-
servatism is due to the a misconception that ANN approaches contain an element of "black box
magic” as compared to conventional approaches. I hope I have convinced the reader that this is not
the case. Statistical interpretation of the answers makes the ANN approach as well-defined to use
as the discriminant ones.



A Snort rlistory OF VIVEA

... and MVA usage in ‘particle searches’ was ‘taboo’

Until LEP2 Higgs search set on to break that, sometimes facing

fierce resistance which were replied to like this:

“If you are out looking for a spouse and apply ‘hard cuts’, you’re

also not going to get anywhere”

NOTE: by the mid '90s, ANNs were ‘already’ out of fashion in the
machine learning community. Why didn’t we pick up on SVM or

“Boosted Decision Trees (1996) ??
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The searches for the Standard Model Higgs boson
carried out by the four LEP experiments extended

the sensitive range well beyond that anticipated at the
beginning of the LEP programme [26]. This is due to
the higher energy achieved and to more sophisticated

detectors and analysis techniques
The LEP Working Group for Higgs Boson Searches / Physics Letters B 565 (2003) 61-75

= Well... sure, the ‘more sophistication’is NOT ONLY multivariate

techniques, but it sure plays its part of it
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= And obviously ... the other side of the Atlantic was at least as active...
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Boosiacl Decision Traes!

Studies of Boosted Decision Trees
for MiniBooNE Particle Identification

Hai-Jun Yang®=! Byron P. Roe®, Ji Zhu?

2 eparimend of Phgsics, University of Michigan, Ann Arbor, MT J8109 US54
b Department of Statistics, Universily of Michigan, Ann Arbor, MT J5109, UUSA
£ Los Alomos National Labomiory, Les Alomoes, NM 5TE{S, 54

Ahstract

Bovated decission trees are apphed to particle identific
experiment operated at Fermm Watonal Accelerator La
neatrino cscillations. Mumerous attempts are made to t
trees, to compare performance of vanoons boosting algont
vitrtithles for optimal performance.

DO Single Top discovery

Helge Voss

- Made BDTs popular in HEP

MiniBooNE, B.Roe et.a., NIM

543(2005)

Decision Trees - 49 input variables

Object Kinematics
PT (jetl)
pr(jet2)
pr(jet3)
pr(jetd)

PT (best1)
pr(notbestl)
pr(notbest2)
pr(tagl)

pr (untagl)
pr (untag2)

Angular Correlations
AR(jetl jet2)
cos(bestl lepton)hesttop
cos(bestl,notbestl)pestrop
cos(tagl,alliets)a11jeus
cos(tagl lepton )bt,n,ggcdtop
cos(jetl.alljets) 11501
COEUetlrlepton)btaggedtop
cos(jet2,alljets) 411501
cos(jet2,lepton)piaggediop
cos(lepton, Q(lepton) X z)hesttop
cos(leptonpesrop besttopconMrame)
cm(kptonl)taggcdtup Jbtaggedtopcmframe)
cos(notbest,alljets)a1je0s
cos(notbest,lepton ) esttop
cos(untagl.alliets) a1 ets
CO'S('-'“Tagl-lepton}btuggedtop

Yann Coadou (CERN) — Boosted decision t

Multivariate Data Analysis in HEP. Successes, challenges and future outlook.

Event Kinematics
Aplanarity(alljets, W)
MW bestl) ( “best” top mass)
M(W tagl) (“b-tagged” top mass)
Hr (alljets)

Hr (alljets—best1)

Hr (alljets—tagl)

Hy(alljets, W)

Hy(jetl,jet2)

Hr (jetl,jet2, W)

M (alljets)

M {alljets —best1)

M(alljets—tagl)

M(jetl,jer2)

M{jet1,jet2, W)

M (jetl,jet2)

Mz (W)

Missing E

pr(alljets—bestl)

pr(alljets—tagl)

pr(jetl,jet2)

Q(lepton) x nj{untagl)
5

Sphericity (alljets, W)

Weorkshop on Top Physics 20/10/07 15

@ Adding variables
does not degrade
performance

@ Tlested shorter
lists, lost some
sensitivity

@ Same list used
for all channels

ACAT2014




CVIS rligys Discovery

(such 2 nice exarmole for YIVA uszage)

" MVA regression for energy calibration

CM5/1

A
e

P Photon Energy Corrections, Scale and Resolution

ECAL cluster energies corrected using a MC trained multivariate regression
— Improves resolution and restores flat response of energy scale versus pileup

— Inputs: Raw cluster energies and positions, lateral and longitudinal shower shape
variables, local shower positions w.r.t. crystal geometry, pileup estimators

+ Regression also used to provide a per photon energy resolution estimate
+ Energy Scale and resolution: use Z—e*e-

> LI | T 1T 1T I T T 17T I LI I B | LI I | | L > X-IDJ
= _ - 120}
3 F CMS Preliminary e MO ] i} - imi -
g 00— oo i T MC smeared O [ CMS Preliminary 2011, 7TeV Esus ryoean
g [ L=53f" | —+— data — [ .
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1000 = & 80— ey
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aoo:— B 602
600/ - [
5 ] 40—
400 - '
L ] 201
200~ _ [ i
L g ] P s—— j B
%5 B0 85 90 95 100 105 60 80 100 120
M, (GeVic?) M, (GeVic?)
Non converted photons in the barrel |n|<1 Effect of the regression on the Z->e*e"
peak
PPC 2012 - KIAS - Nov 5th Javier Cuevas, University of Oviedc 14
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CVIS rligys Discovery -

(such 2 nice exarmole for YIVA uszage)

»  Multivariate electron identification in 2012 f  SME priminay
ECAL, tracker, ECAL-tracker-HCAL § 0.9F
matching and impact parameter (IP) S osF
obsewables 2 o7t
('\l‘w o ' 5 0.6
.e?-’"-':_"'f. —> @ 0.5 >10 GV : == BDT e 2011
H Yy ﬂ'd'_ zu-f.ﬂ:IGc'l.F_ — BDT = 2011
 Analysis selection (MultiVariate Analysis E::: Cut Based vs MVA
MVA) 0 D ;
— Vertex 1D ) O~ 005 01 015 02 02 03
* Input variables: ¥p;>®aks) 'n_balance wrt yy, Javier Cuevas, UBRekgraund Efficiancy

Helge Voss

conversions information
— ID photons p,>m,, /3 pr,>m,. /4
* MVA Diphoton discriminant categories

— High score
* signal-like events

* goodm,, resolution

— Designed to be m,, independent
— Trained on signal and background MC

— Input variables:
* Kinematic variables: p 1, / m,,, n,, cos(,- @,)
* Photon ID MVA output for each photon

* Per-event mass resolutions for the correct and
incorrect choice of vertex

PPC 2012 - KIAS - Nov sth Javier Cuevas, University of Oviedo

ViUVl ldLle dld AlialysIs 1l FIEF. ductesses, ciianenges and future outlook. ACAT2014
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LHC b CERN-FH-EP-21 3138
LHCE- AP ER- 2401 3046
July 18, 3011

Measurement of the HE — pp~ branching
fraction and search for B® — ptp— decays
at the LHCD experiment

The analysis strategy 1s very similar to that em-

ployed in Ref. [12], with a different

multivariate op-

erator based on a boosted decision trees algorithm

0

(BDT) [15.16]] After trigger and loose selection re-

quirements, B( o 1T~ candidates are classified ac-
cording to dimuon mvariant mass and BDT output.

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014




= And can be successfully employed in numerous places
= Almost everything we ‘look at’ or ‘study’ is depending on

multiple variables ©

= Detector signal reconstruction (i.e. cluster energy in calorimeter)
= Particle reconstruction/classification
= Event classification
= Automatic fault detection
= At the machine?

= At the detector — online histograms



= \Which variables to choose

= Which classifier — modelling flexibility
= Test the generalisation properties of the fitted model

" [ssues with limited ‘training/testing/validation samples sizes’

= And of course — the never ending story of - Systematic uncertatinties



systematic‘ Lneeriainiies
" minimize “systematic” uncertainties (robustness)

—“classical cuts” : do not cut near steep edges, or in regions
of large sys. uncertainty

— hard to translate to MVAS:

artificially degrade discriminative power (shifting/smearing) of
systematically “uncertain” observables IN THE TRAINING

— remove/smooth the ‘edges’ > MVA does not try to exploit them

Signal Background




SYsternel
MVA-decision boundaries

vari

e Looser MVA-cut = wider

boundaries in BOTH variables

You actually want a boundary
like THIS

Tight boundaries in varl

Loose boundaries in varQO

vari

= YES it works !

= Sure, it is of course similar to ‘mixing different

Monte Carlos’ as proposed earlier by others...

Helge Voss
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What aire VIVAsS ?

Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014
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Viultivariaie Event Classificatior)

TMVA Input Variablesiog(sIPS_pi)

Normalized

1 2 3

4 L

log(sIPS_pi)

[TMVAIn put Variableslog (FS_Bd)|

lo

g(FS_Bd)

log(alPS_IMinus)

Helge Voss

po

3

“feature
space”

J

L
——

%
T

" Each event, if Signal or Background, has “D” measured variables.

S

" Find a mapping from D-dimensional input/observable/’feature” space

to one dimensional output 3 4l < signal
> class labels w” 12 0, y(S) 5 Fpee remor
o £ 2 Type 2 Error
y(X): R">R: :: %jfé////}}

)1 08 06 -04 02 0

— P

02 04 06 08

" y(x): “test statistic” in D-dimensional space of input variables

" distributions of y(x): PDF¢(y) and PDFg(y)

® used to set the selection cut! > cut: sig

y(X):
—> efficiency and purity

" y(x)=const: surface defining the decision boundary.

nal

" overlap of PDF¢(y) and PDFg(y) = separation power , purity

Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014

1

= cut: decision boundary
< cut: background
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What is y(x) ??

= A neural network
= A decision tree
= A boosted decision tree forest

= A multidimensional/projective likelihood

- The same stuff out of which the ‘dreams’ of Al are born — or better..

which comes from Al or general ‘pattern recognition’ research

- Stuff that powers nowadays ‘BIG DATA business’, search engines and
social network studies for targeted advertisment ... ®

- Stuff that is extremely fast evolving !!



Wnere co we ¢o frorn nere 7

= We like to think in HEP that we are “state of the art”
* In MVA techniques, we’ve certainly always lagged behind

= ... and the gap is in my opinion growing rather than closing !



Dego Negitworks

Deep Learning in High-Energy Physics: Improving the Search for Exotic Particles

P. Baldi,! P. Sadowski,' and D. Whiteson?
'Dept.  of Computer Seience, UC Irvine, Irvine, CA 92617
*Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle
discoveries. Finding these rare exotic particles requires solving difficult signal-versus-background
classification problems, hence machine learning approaches are often used for this task. Standard
approaches in the past have relied on ‘shallow’ machine learning models that have a limited capac-
ity to learn complex non-linear functions of the inputs, and rely on a pain-staking search through
manually constructed non-linear inputs. Progress on this problem has slowed, as a variety of tech-
niques (neural networks, boosted decision trees, support vector machines) have shown equivalent
performance. Recent advances in the field of deep learning, particularly with artificial neural net-
works, make 1t possible to learn more complex functions and better discriminate between signal
and background classes. Using benchmark datasets, we show that deep learming methods need no
manually constructed inputs and yet improve the AUC (Area Under the ROC Curve) classification
metric by as much as 8% over the best current approaches. This 15 a large relative improvement and

014

| demonstrates that deep learning approaches can improve the power of collider searches for exotic

o particles.

L

—_ The field of high energy physics is devoted to the study ~ used in high-energy physics fail to capture all of the
= of the elementary constituents of matter. By investigat- available information, even when hoosted hy manually-

ing the structure of matter and the laws that govern its  constructed physics-inspired features. This effectively re-

= Yes... but look at the date ? 2014 !
= Deep networks became ‘mainstream’ after 2006 when “Google
learned to find cats”
= [t has since revolutionised the fields of “speech and image

recognition”

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014
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. Di
= A fairly ‘standard’ neural : -
y -
7, S
N '

network architecture with

MANY hidden layers

X

= Conventional training

.b
»;
P

‘0»7
lfA .

“;;i“

(backpropagation)

proves ineffective

* Pre-training individual layers as “auto-encoders” or “Restricted
Boltzman Machines” (networks that are trained unsupervised

and can ‘learn’ a probability density)

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014 23



2009 7 =

= 2006 .. When the world embraced “DEEP learning”
= We celebrated MiniBooNE'’s first venture into BDTs
= TMVA is shipped as a ROOT “add on package”
= And the majority of HEP physicists started to like MVAs
= Easy accessibility of TMVA via ROOT and its ease of use are
key ingredients to its success over ‘competitors’ like

StatPatternRecognition or other non-HEP packages



2009 7 =

= Endless discussions about possible ‘problems’ with MVA
(systematic etc) show:
= We (physicists) are smart and try to really understand what we are
doing
= But it also shows:
= Sophisticated techniques are of course more difficult to grasp
than ‘cuts’
= To tap into the extremely valuable resource of pattern
recognition techniques, the ‘physicist way’ of everyone re-

Inventing the wheel does not seem promising to me here.



Wrere co we ¢o frorm rlers =

- Butis THIS the answer ??

Customer Solutions Competitions Community v Sign up Login

3 $13,000 * 1,602 teams
nggs Higgs Boson Machine Learning Challenge
challena Enter/Merge by
Chailenge
Mon 12 May 2014 Mon 15 Sep 2014 (12 days to go)

Competition Details »
Home
Datz Use the ATLAS experiment to identify the
Make a submission .
Higgs boson

Information

Description

Run: 204153

Evaluation Event: 356369265
Rules

Prizes ) 2012-05-30 20:31:28 UTC
About the Sponsors
Timeline

Forum

Leaderboard

1. Gabor Melis
. Tim Salimans

Lubo% Moti's team

wom

nhixShaze




SUNINzry - -
= MVA'’s are great

= MVA'’s are widely used in HEP

= MVA'’s are even “widelier” used outside HEP

= MVA’s are complicated to understand and to code !

= MVA'’s and work thereon still is not ‘funded’ buy HEP like

“Detector/Accelerator development” for example is:

« note: before TMVA in ROQOT, the majority of the HEP community only used/knew
simple cuts which often perform much worse

« significant improvement in physics reach (imagine how much a 20% better
accelerator/detectors would cost?)

« provide state of the art analysis tools for state of the art
accelerator/detectors

- And | think we should have a much larger concentrated effort to put
HEP to ‘state of the art’ in pattern recognition, then this one paid TMVA

position | was unsuccessfully asking for!

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014 27
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Narzl] Matwor Prlstory” = =

= Developed to ‘simulate’ the working of the brain (McCulloch 1943)

= somewhat but not terribly successful until:

= Backpropagation was invented (1974 —reinvented 1985) (use ‘chain
IL(y(w ij)Ytrue)
owij

rule’ to calculate gradients of loss function ( ) and adjust weights towards

smaller L)

= but: “many layers” still didn’t prove very helpful (despite that fact
that our brain has quite a few more than 2)

— vanishing gradient problem

- and it finds ‘local minima only’
Hidden

6 [ ] Input

Output

global maximum

local maximum

local minimum

global minimum

=6 I | ! ! ! N

0 0.2 0.4 0.6 0.8 1 1.2



Dego NgiWworks == NetWorss
witn rnzny nicelen layers

= That’s apparently “all” it means ... although ‘deep’ somehow in

statistical terms would mean apparently:

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014
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Training cleso networks -

©

= The new trick is: pre-training + final backpropagation to “fine-tune”
- initialize the weights not ‘random’ but ‘sensibly” by
- ‘unsupervised training of’ each individual layer, one at the time,
as an:
. auto-encoder (definite patterns)

. restricted-Boltzmann-machine (probabilistic patterns)

Boltzmann Restricted
I‘u'lachme Boltzmann
Machme

Hidden

‘-.»"|5|ble



Helge Voss

LayerL,

Layer L,

Alto-Encocler =

= network that ‘reproduces’ its input
= hidden layer <input layer

- - hidden layer ‘dimensionality reduction’
needs to ‘focus/learn’ the important

features that make up the input

Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014
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Resirictec Solizrnann Viacnine ==

Boltzmann Restricted

Machme Boltzmann A network with ‘symmetric’ weights
Machme
Hidden () () i.e. not ‘feed-forward’
‘-.-"|5|ble ': A A
|nput %ﬂ:ﬂ’ -

= if you ‘train’ it (i.e. determine the weights) it can ‘learn’ a probability

distribution of the input (training events)

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014 33



Restiricisc Solizrnzrnn Viacnine =

Boltzmann Restricted

Machme Boltzmann A network with ‘symmetric’ weights
Machme
Hidden  (* @ i.e. not ‘feed-forward’
Visible ( ':
'“put‘éﬁ;’ o

= if you ‘train’ it (i.e. determine the weights) it can ‘learn’ a probability
distribution of the input (training events)

= ... aeeh .. what the hell does THAT mean ??

= each network configuration (state) is ‘associated’ with an ‘energy’
= the various states are populated according to the probability density
given in the training data (given a particular energy | guess)

(hmm... given that | understood it ‘correctly’)



Deego Neiwork iraining gt

The “output” of the first layer (hidden layer of the first RBM trained) is

used as input for training the second RBM etc..)

QO00000) h

REM

OO00000) 7 @DDﬁJCJEJ@ h;

REM : v
CO0OCCO »  ©OOO00OD) M @DGPDG@‘ i
o s il
COO0C00 » ©©COOOCO) @OC}C EJCJUD x
(a) Train RBM (b) Train RBM (¢) Train RBM for h*
for x for h' and y
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decays?

invariant masses

Could this be: 4-vectors
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Sorneinineg else we missec? -

= Plenty! (somewhat embarrassingly but: as | said many times, our ‘pattern
recognition’ tasks in HEP are very simple compared to “Artificial Intelligence” or
even just “image recognition” )
= Dropout ! (anew regularizer of weights against overfitting etc. 2>
Bagging done in implicitly in ONE signle neural network)
‘strange’ activation functions 2> digital rather than analog output
= what are ‘convolutional networks’ ?

= what about more ‘complicated’ structures like, built out of many building

Number of output

blocks like this: %E“‘?\ chiannidly
\ ’(\ Size =5

Number
of maps =8

One layer

Number of input
channels =3

Image Size = 200

http://www.deeplearning.net/tutorial/
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ReadingOnDeepNetworks

Helge Voss Multivariate Data Analysis in HEP. Successes, challenges and future outlook. ACAT2014 38



