
Clara Gaspar, September 2014

ACAT 2014

Summary of track1:
Computing Technology for

Physics Research

Clara Gaspar, September 2014

Some Numbers
❚  6 Plenary talks
❚  20 Parallel talks
❚  25 Posters
❚  Talk areas:
❙  Mostly Offline, some Online
❙  Mostly Software, some Hardware

❚  Thanks to the Session Advisors&Chairs:
❙  Axel Naumann, Niko Neufeld, Jiri Chudoba

2

Clara Gaspar, September 2014

Disclaimer
❚  Apologies in advance:
❙  For not being able to mention all talks/posters…
❙  For any Online bias…
❙  For any mistakes, misunderstandings or

omissions…

3

Clara Gaspar, September 2014

Trends
❚  If I had to choose keywords for this

summary:

❚  In the past there were:
❙  New tools, new features, new methodologies…

❚  Although there is also some of it…
❙  Now the main aim is optimize… and improve…

4

Optimization!!!
&

Improvement…

Clara Gaspar, September 2014 5

Optimization…

Clara Gaspar, September 2014

Optimize what?
❚  Optimize:
❙  CPU Resources
❙  Data I/O
❙  Cost
❙  Power Consumption
❙  Speed
❙  Performance in general…

❚  Main motivation for Online, Offline, Hardware
and Software developments

6

Clara Gaspar, September 2014

Optimize CPU Resources
❚  LHCb High Level Trigger
❙  Optimization by using farm idle time

(inter-fill gaps, machine shutdowns, etc.)

❙  In the process: Improve Trigger Quality
❙  For Upgrade: design detector for software…

7

The LHCb Trigger

Introduction

The Run I trigger

Level 0

Buffering

HLT1

HLT2

Performance

Run II

Upgrade

Tracking

Selections

Conclusions

C. Fitzpatrick

05/15/2014

Deferred trigger
� L0-accepted events sent to the Event Filter Farm to

be processed by the HLT

� Farm nodes idle between fills, large disks (1PB

total) not used by HLT software

� Instead: Buffer 20% of L0 events on EFF disks,

process in inter-fill time

� Effective 25% Extra CPU allowed us to lower

tracking thresholds from pT = 500→ 300 MeV

� Increased efficiency for charm signatures

� Peak disk usage, 88% after > 16h fill

Disk usage as a function of time

� Possible thanks to the ingenuity of the LHCb online team!

7 / 23

2012: Deferred Trigger
• LHC “only” delivers collisions ~35% of

the time

• trigger farm idle ~65% of the time!

• “Over commit” CPU resources, buffer
overflow to local disk & catch up in
between fills

• 20% of L0 triggers are “deferred”

• 25% extra CPU capacity!

• allows decrease of Hlt2 tracking
thresholds PT> 500 MeV/c→
PT>300 MeV/c

• Peak disk usage in 2012: 88%

The LHCb Trigger

Introduction

The Run I trigger

Level 0

Buffering

HLT1

HLT2

Performance

Run II

Upgrade

Tracking

Selections

Conclusions

C. Fitzpatrick

05/15/2014

Post-LS1 trigger

� Run II: No significant changes to detector, but the trigger architecture changes:

� Goal: make trigger more compatible with offline

analysis environment

� Requires HLT to perform detector alignment

and calibration

� Move buffering to after HLT1: Buffer at kHz
instead of MHz

� Buffer to disk while alignment is performed

� Run HLT2 after alignment

� Allows us to use selections similar to offline:

� eg: full RICH PID [EPJC 73 2431], currently
used in a limited capacity

� Major advantage: Allows prescaling of

Cabbibo-favored charm decays while keeping

100% of DCS.

13 / 23

Run2 Prospects
Changes in architecture:

• ‘Split’ Hlt1 and Hlt2

• Buffer data after HLT1, perform
alignment & calibration, prior to Hlt2

• Hlt2 now very close to offline
reconstruction, including RICH PID

• RICH PID allows pre-scaling of
Cabibbo favored charm, whilst
keeping the full suppressed rate.

• Increased output rate, add ‘parking’

• Investigate analysis directly on HLT
output only (2.5 kHz without offline
reconstruction)

RUN
1

RUN
2

Presented by G. Raven

Clara Gaspar, September 2014

Optimize I/O
❚  ALICE Analyses Train System
❙  Optimization by combining multiple analyses

in one grid job.

❙  In the process: Improve usability,
management and turn around time

8
!

"#$!%&'()!%*+,-./.!"0+/*!1-.2$3!4!5+067.!8/33$03+** !

"#$%&'(
! "#)*+$&!,&-&./0!1,&.!/$/02,+,!!!!!
(#!/!(./+$

! 31(#)/(+%!(&,(+$4

! "&$(./0!5#*!)/$/4&)&$(!6!
)&.4+$4!78+,(#4./),9

! :./+$!)/$/4&)&$(!6!
##;;&&'+$4!+$!,+$40&!<&!'/4&

:&,(

"#$=+41./(+#$

>1$

>&,10(

?

!

"#$!%&'()!%*+,-./.!"0+/*!1-.2$3!4!5+067.!8/33$03+** !

"#$%&'(
! "#)*+$&!,&-&./0!1,&.!/$/02,+,!!!!!
(#!/!(./+$

! 31(#)/(+%!(&,(+$4

! "&$(./0!5#*!)/$/4&)&$(!6!
)&.4+$4!78+,(#4./),9

! :./+$!)/$/4&)&$(!6!
##;;&&'+$4!+$!,+$40&!<&!'/4&

:&,(

"#$=+41./(+#$

>1$

>&,10(

?

Presented by M. Zimmermann

!

"#$!%&'()!%*+,-./.!"0+/*!1-.2$3!4!5+067.!8/33$03+** !

"#$#%&#%'&

()$%*!"#$#+& ,-., ,-./ ,-.0!
123#)456#278

9&2)& :- .,; .<<

()$%*& 0, := ;=

()$%*!)+*& .>/; 0;=0 ;00:

?+@A2)!5B!C5A& .,!@%66%5* ,:!@%66%5* /:!@%66%5*

()$%*!D$E5*&F)+* .0G= .-G. <G=

H$)#!5B!#I2!+&2)!
$*$6J&%&!75*2!D%#I!
#I2!#)$%*&

,;K >;K ;-K

H)5'2&&27!7$#$ L ;>!HM ./-!HM

(+)*!$)5+*7!#%@2 0=!I5+)& ,,!I5+)& .0!I5+)&

..

!

"#$!%&'()!%*+,-./.!"0+/*!1-.2$3!4!5+067.!8/33$03+** !

"#$%&'(
! "#)*+$&!,&-&./0!1,&.!/$/02,+,!!!!!
(#!/!(./+$

! 31(#)/(+%!(&,(+$4

! "&$(./0!5#*!)/$/4&)&$(!6!
)&.4+$4!78+,(#4./),9

! :./+$!)/$/4&)&$(!6!
##;;&&'+$4!+$!,+$40&!<&!'/4&

:&,(

"#$=+41./(+#$

>1$

>&,10(

?

!

"#$!%&'()!%*+,-./.!"0+/*!1-.2$3!4!5+067.!8/33$03+** !

"#$%&'(
! "#)*+$&!,&-&./0!1,&.!/$/02,+,!!!!!
(#!/!(./+$

! 31(#)/(+%!(&,(+$4

! "&$(./0!5#*!)/$/4&)&$(!6!
)&.4+$4!78+,(#4./),9

! :./+$!)/$/4&)&$(!6!
##;;&&'+$4!+$!,+$40&!<&!'/4&

:&,(

"#$=+41./(+#$

>1$

>&,10(

?

Clara Gaspar, September 2014

Optimize I/O
❚  Distributed File Systems

❘  Global federation of file systems · Hundreds of peta-
bytes of data · Hundreds of millions of objects

9

Use Cases and Demands

Mean
File Size

Change Frequency
Request Rate

MB/s

Request Rate
IOPS

Volume

Cache Hit Rate
Redundancy

Confidentiality

Data
Value

[Data are illustrative]

Data Classes
• Home folders –
• Physics Data –

• Recorded

• Simulated

• Analysis results

• Software binaries –
• Scratch area –

Depending on the use case, the dimensions span orders of magnitude

(logarithmic axes)

4 / 23

Conclusion

1 Distributed file systems stay

• physics data processing applications use file systems

• the hierarchical namespace is a natural way to organize data

2 Hard disks become data silos

• We need to focus on optimal bandwidth utilization

• Once written, we have to leave data where they are

→ storage and compute nodes coalesce

3 Every now and then, a new file system comes along —

they all are assembled from the same technology toolbox

• We need solidly engineered building blocks from this toolbox

• We need to validate early with our real application workload

23 / 23

Conclusion

1 Distributed file systems stay

• physics data processing applications use file systems

• the hierarchical namespace is a natural way to organize data

2 Hard disks become data silos

• We need to focus on optimal bandwidth utilization

• Once written, we have to leave data where they are

→ storage and compute nodes coalesce

3 Every now and then, a new file system comes along —

they all are assembled from the same technology toolbox

• We need solidly engineered building blocks from this toolbox

• We need to validate early with our real application workload

23 / 23

Presented by J. Blomer

Clara Gaspar, September 2014

Optimize I/O
❚  CVMFS
❙  SW distribution
❘  Many Users
❘  Scalable & Optimized

❚  Planning for Distributed Workflows

10

This is an output file created in Illustrator CS3

Colour reproduction
The badge version must only be reproduced on a
plain white background using the correct blue:
 Pantone: 286
 CMYK: 100 75 0 0
 RGB: 56 97 170
 Web: #3861AA

Where colour reproduction is not faithful, or the
background is not plain white, the logo should be
reproduced in black or white – whichever provides
the greatest contrast. The outline version of the
logo may be reproduced in another colour in
instances of single-colour print.

Clear space
A clear space must be respected around the logo:
other graphical or text elements must be no closer
than 25% of the logo’s width.

Placement on a document
Use of the logo at top-left or top-centre of a
document is reserved for official use.

Minimum size
Print: 10mm
Web: 60px

CERN Graphic Charter: use of the outline version of the CERN logo

Recent Developments in the CernVM-FS Server Backend - ACAT ’14 - Prague - René Meusel

What is CernVM-FS?
• Scalable software distribution system!

• Infrequent atomic updates in a central location

• Read-only access on the clients

• HTTP based global data transfer!

• Minimal protocol requirements

• Aggressive hierarchical cache strategy

• Assumption: Coherent working set on physically close nodes 
 (cf. software vs. data distribution)

• Accessible through a mounted file system (POSIX)

• FUSE module, NFS exported FUSE volume or Parrot

3

Introduction Use cases

Case 2: Data production. Optimization.

Consider entire GRID

Several possible data sources.

More complex network.

Limited storage at sites.

How to distribute jobs by sites?

Which file source to select?

What is the optimal transfer path?

Example: data-production at ANL [6]

ANL: many CPU’s, but slow

connection and small disk space.

NERSC: fast connection, large disk.

Optimization: Feed ANL from both

BNL and NERCS sites.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 5 / 22

Constraint Programming Model What is Constraint Programming?

What is Constrain Programming?

Constraint programming is a form of declarative programming.
Widely used in: scheduling, logistics, network planning, vehicle routing,
production optimization, etc.

Model

Parameters
constants

Variables
bool, int, float

Domains
set of values

Constraints

math expressions

Core
Redundant

Solution

Assign values to variables

to satisfy constraints.

Optimal solution

Maximize/minimize target

function.

Search

Algorithm:

e.g. backtracking.

◦ Variable order.

◦ Value order.

+ Consistency

Techniques.

Complete vs

Incomplete search.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 8 / 22

Presented by R. Meusel / D. Makatun

Use Case: STAR at BNL

Clara Gaspar, September 2014

Optimize Cost
❚  Massively Affordable Computing Project
❙  Optimization by using ARM SoC units

❙  In the process: reduce power consumption
11

High Data Throughput

Ethernet Interface

40 Gb/s

Multiple

System on Chips

> 60 GFLOPS

Appears as a

Single System

Presented by M. Cox

Clara Gaspar, September 2014

!"#$%&'()*!*+,#"(-.

16

Optimize power usage
❚  Optimization by using ARM (APM XGene1)

❚  Port CMS SW to
ARM v8 64 bits
❚  ARM is a relevant platform…

12

!"#$%&'(")*"#+#,(-"./%#0-(#"
!"##$%&'($)*+,%$-./0(12

3

Presented by D. Abdurachmanov

Clara Gaspar, September 2014

Optimize power usage

!"#$%&'"&()&*$+,-!./.0$+,-!$1$2*345&66

789"1:;39<=$2*8>&<"$8)>&<"?@&A

! !"#$%&'"(#)#&*"+"+(&%#,-.#/(/+%0#1)/%$#"2#<5**&9";B$3@3?;3);&#

%2%*3(4%55676%2+#%01%$$%$#+%782"'"3(

! 97)')1'%#+"#:;#-<=>-9#"2#?@A)++

! ."0&%+6+6B%#C6+8#D*%%2:;;#'%)$%*/#62#E;FG

! H%&'"(#)#5I''#,-.#/(/+%0#/"5+C)*%#/+)7J

! !"#$%/632#)#2%K+43%2%*)+6"2#,-.#/(/+%0#)2$#2%C#%01%$$%$#

+%782"'"36%/#+)*3%+623#,-.#/(/+%0/#+8)+#C"I'$#8@&*<8(&$(8A"$8C$"#&$

;?(?"3"?89A$%27"I2+%*%$#62#+8%#&*"+"+(&%#/(/+%0

! 97)')1'%#+"#E;;#-<=>-9#"2#F;@A)++

! ."0&%+6+6B%#C6+8#!"&:;;#'%)$%*/#62#E;F?

! !"#&"*+#)2$#"&+606L%#)#/0)''#2I01%*#"5#*&'*&A&9"3"?@&$DE3A<3;&$

3'';?<3"?89A$7)&)1'%#"5#%K&'"6+623#+86/#2%C#3%2%*)+6"2#"5#,-.#/(/+%0/

! M&#+"#FF#5I''4/7)'%#)&&'67)+6"2/

13

!"#$%&'"&()&*$+,-!./.0$+,-!$1$2*345&66

7#3"89$:;((;<=">$?;@3<3>9A

!"#$%&'()*+&$*,+-"*,.(/,+,(0"$1"$,+-"*

2334(%"$&5(67#*&(89:;

%&*B&*9 2/ %(3*"'#;?&9

+,-+ <=>4 ?@A4 >3@4

+,-C B=A4 C?D ?9@4 EB=<D 9AAA4 C?<D

===,*F(G&(,$&(5+-..(

-H*"$-*H(+,I.&+5'(

J3AA4

!"#$%&'"&()&*$+,-!./.0$+,-!$1$2*345&66

7#3"89$:;((;<=">$?;@3<3>9A

!"#$%&'()*+&$*,+-"*,.(/,+,(0"$1"$,+-"*

2334(%"$&5(67#*&(89:;

%&*B&*9 2/ %(3*"'#;?&9

+,-+ <=>4 ?@A4 >3@4

+,-C B=A4 C?D ?9@4 EB=<D 9AAA4 C?<D

===,*F(G&(,$&(5+-..(

-H*"$-*H(+,I.&+5'(

J3AA4

Presented by F. Mantovani

❚  Build a new class of sustainable computer:
faster, cheaper, more efficient

Clara Gaspar, September 2014

Optimize Power Usage

!"#$%&'()*+",-.,"/0120++345675'8"90:02$%;0<+"#$;%5<&=">?4?""@*0"(<A$';5+($<"6$<+5(<08"*0'0(<"(B"BCDE06+"+$"6*5<)0"1(+*$C+"<$+(60?,,

10 MW Datacenter Design Match-up
kWatts Best Practice Free Air @ 20C Free Air @ 35C NREL + Apollo

IT Load 10000 10000 11530 10000

DC Fan Load 400 400 1614 0

Chiller Load 1706 0 0 0

Evap. Towers 0 0 0 284

Water Pumps 114 0 0 40

UPS Losses 500 0 0 0

Power Distribution Losses 900 900 1038 400

Humidification/DeHum 100 200 231 0

Lighting 2 2 2 2

IT Load PUE 1.37 1.15 1.25 1.07

Total Power Consumption 13722 11502 14415 10726

,?FGH"5<<C52"0<0')&"B5:(<)BI"JK".-"60<+B"L"7M*N

14

❚  Optimization by using water cooling

Presented by V. Saviak

Clara Gaspar, September 2014

Optimize Memory Usage
❚  ATLAS FTK Simulation
❙  FTK HW implements a billion fold parallelism
❙  Main Problem:

One billion patterns
(35 GB)
❙  Solution:

Split into parallel jobs
Execute sequentially
on grid nodes
Combine results

15

ATLAS Trigger in Run 2 Will Use FTK: Fast TracKer

! !"#$%$&"'()*+%)#%),-./,/*$/0%)*%1"&02"&/%
2)$1%'3#$4,%/./'$&4*)'#%
5  6/$2//*%$1/%78%$&)++/&%"*0%97:%

;  !"#$%&'()*+,,)-"./0%12)*#").,,)'$'1-()3.((%12)45)

%
5 <,-&4=/#%$&)++/&%-/&>4&,"*'/%)*%,"*?%"&/"#%

; /@+@%!AB/$%4&%"%$&)++/&#%

A. Vaniachine

ACAT 2014
4

C
E

R
N

-L
H

C
C

-2
0

1
3

-0
0

7
/

A
T

L
A

S
-T

D
R

-0
2

1

2
6
/

0
7
/

2
0
1
3

CD8EF%!:G%'4,,)##)4*)*+%
CD8HF%!:G%>3..%'4*I+3&"J4*%

Presented by A. Vaniachine

Clara Gaspar, September 2014

Optimize Memory Usage
❚  By using concurrency
❙  In LHC Offline Frameworks:
❘  Gaudi in LHCb, ATLAS, FCC, HARP, Fermi, etc.
❘  Threaded Framework CMS
❘  Athena (Gaudi derivative) in ATLAS

❙  In many-core not enough memory/core
❙  Threads share more memory than independent

processes (although forking helps)
❙  But multi-threading an application brings many

synchronization problems:
❘  Workflow, data access, etc…

16

Clara Gaspar, September 2014

Concurrency in CMS
❚  Use Intel’s Threaded Building Blocks

❚  99.3% of reconstruction runs in parallel
17

• CMS Threaded Framework ACAT 2014

The Amdahl Problem
To keep 8 cores 95% busy need 99.2% of our code to run in parallel
Even quick running modules will bottleneck threading
a heuristic that worked -> fix the module that is waiting to execute

24

Given the 90% saturation at 16 cores we calculate that 99.3% of the
reconstruction code is run in parallel.

Saturation at 16 proc 90% Saturation at 16 threads

Utilization of Cores

Av
er

ag
e

U
til

iza
tio

n
of

 C
or

es

0.0

0.2

0.4

0.6

0.8

1.0

Number of Cores

0 2 4 6 8

80% 90% 95%
98% 99%

Parallel Fractions

• CMS Threaded Framework ACAT 2014

Memory Performance
The big win is in memory consumption and network load.

26

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

&#!!!"

'!!!!"

'#!!!"

!" #" $!" $#" %!" %#" &!"

!
"#
$%
&&
$

'()*+,$-.$/0,+"12$3$4-*2$

!"#$%&&$

()*"+,,"(-./0123)434"567" ()*"+,,"8)2)..3."5679"

CPU Usage Memory Usage

Presented by E. Sexton-Kennedy

Clara Gaspar, September 2014

Concurrency in Gaudi

Gaudi Components for Concurrency

[2]

Main processing components:
� events processed in loop and handed over to scheduler
� scheduler acquires algorithm instances from pool; submits task to Intel TBB
� each concurrently processed event has a dedicated slot multi-slot event store

Daniel Funke – Gaudi Components for Concurrency 2014-09-02 7/20

18

Unifying Control and Data Flow

Concurrent Gaudi:
� data dependencies need to be explicitly stated
� control and data flow expressed in a unified graph

� graph contains algorithm, data and decision nodes
� edges for control flow and data dependencies

� precedence-constrained graph for scheduling

Scheduling:
� keep list of executable algorithms
� propagate algorithm’s binary decision through graph
� mark produced data objects as present
� update execution list

brunel2012magdown
more information on scheduling in [4, forthcoming]

Daniel Funke – Gaudi Components for Concurrency 2014-09-02 11/20

❚  New components for Concurrency
❚  Unified control and data graph

❚  Backward compatible
❚  To be adopted gradually…

Presented by D. Funke

Clara Gaspar, September 2014

Concurrency in ATLAS
❚  Athena MP for RUN2
❚  ATLAS Reconstruction

(snippet)

❚  Future Frameworks Requirements Group
for RUN3

19

Multi-Processing Athena

• Simple parallelisation of the
ATLAS framework,Athena,
by forking after initialisation!

• Saves considerable memory
using Linux kernel’s ‘copy
on write’ feature!

• Will be a major part of
ATLAS’s Run 2 processing
(online and offline)!

• However, memory savings
(~0.8GB/additional event)
are unlikely to be enough
for post-Xeon architectures

7

Event 3

Event 1

Event 2

Event 4

Different Algorithms

Mother!
Process

Data Flow

• ATLAS reconstruction runs several 100
algorithms with 100s of data objects produced
in the event store

11

This is just a
snippet!!

And there are
hidden

dependencies
through public tools

Presented by R. Jones

Clara Gaspar, September 2014

Optimize CPU Cycles
❚  By Using Vectorization
❙  Vector instructions getting more important
❙  Peak performance only when using them well

❚  Efforts in:
❙  Simulation: GeantV and Geometry (VecGeom)
❙  And in ROOT

20

Modernizing ROOT; ACAT2014

The Hardware Landscape

2

• Hardware vendors raise computational power of today’s CPUs with
increasing support for parallelism:
– More cores (beyond the scope of this talk)
– Larger vector units, richer vector instruction sets

• Vector units: perform same operation on multiple data
– Data parallelism at instruction level

• Peak performance achievable only if vector units are properly used
– Especially for “extreme” architectures like the Xeon Phi

Double Double Double Double

Float Float Float Float Float Float Float Float

short short short short short short short short short short short short short short short short

128 bits (SSE X)

256 bits (AVX, AVX2)

Vector units are there to stay!

Clara Gaspar, September 2014

Vectorization in GeantV

P
ar

tic
le

s

GeantV features and fast sim

Andrei Gheata, ACAT 2014 25

GeantV
scheduler

Monitoring

Triggers, alarms A
C

TI
O

N
S

: i
nj

ec
t,

Ve
ct

or
/s

in
gl

e,
 p

rio
rit

iz
e,

di

gi
tiz

e,
 g

ar
ba

ge

co
lle

ct

Generator
Geometr

y filter

Logical
volume
trigger

Physics
filter

Particle
type,

energy
trigger

Fast
transport

filter

Geometr
y region,
particle
type,

energy

INPUT VECTORS OF PARTICLES

Vector
stepper

VecGeom
navigator

Fu
ll

ge
om

et
ry

S

im
pl

ifi
ed

ge

om
et

ry

Step
sampling

Filter neutrals
(Field)

Propagator

Physics
sampler

Tab. Xsec

Tab. final
state

samples

Phys. Process
post-step (Vector)

physics

Compute
final state

Step limiter
reshuffle

Secondaries

TabXsec
manager

OUTPUT VECTORS OF PARTICLES

FastSim
stepper

TO SCHEDULER

GPU
broker

User defined
param.
Fill output

vector

WORK QUEUE

THREADS

21 Presented by A. Gheata

Clara Gaspar, September 2014

GeantV Virtualization
❚  Parameters: basket size

22

❚  The vector size is a major
parameter of the model
❙  Impacts on vectorization potential

❚  The optimum value depends on
many parameters
❙  Such as geometry complexity, physics
❙  To be explored for several setups

❚  Small vectors = inefficient
vectorization, dispatching
becomes an overhead

❚  Large vectors = larger overheads
for scatter/gather, more garbage
collections (less transportable
baskets)

❚  The differences in total simulation
time can be as high as 30-40%
❙  Aiming for an automatic adjustment of

vector size per volume
❙  Performing at least as good as the

optimum for fixed vector size
Presented by A. Gheata

Clara Gaspar, September 2014

Vectorization in Geometry

23

Sandro Wenzel,ACAT2014

Approach to target software challenge

1 particle
API

many particle
API

solid primitives

common C++
template functions

8

• template C++ programming
solves code multiplication
issue

scalar types vector types

• reliable efficient SIMD
vectorization achieved by
using vector libraries
(e.g. Vc) providing C++
approach to explicit
vectorization
http://code.compeng.uni-frankfurt.de/projects/vc

Presented by S. Wenzel

Clara Gaspar, September 2014

Vectorization in Geometry

Sandro Wenzel,ACAT2014

0

375

750

1125

1500

DistanceToIn SafetyToIn In-or-Out?

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

R
O

O
T

G
4

U
S

o
li

d
s

V
e

cG
e

o
m

 s
ca

la
r

V
M

P

tim
e

un
its

Performance case study: the tube segment

• most used/important shape primitive

• also integral part of complex shapes: polycone

• extremely important to be as fast as we can

improved
scalar
performance
• improved

algorithms
(avoid atan2)

• template shape
specialization

excellent
SIMD vector
performance

total speedup cmp
to USolids3.3x 7x 13.62x

gcc 4.7; -O3 -funroll-loops -mavx; no FMA; Geant4 10 (Release); Root 5.34.18 (Release); benchmark with 1000 particles 1124 Presented by S. Wenzel

Clara Gaspar, September 2014

Vectorization in ROOT

Modernizing ROOT; ACAT2014

Effect of vectorisation

9

Fnc. Scalar SSE AVX2
Exp 8 3.5 1.7
Log 11.5 4.3 2.2
Sin 16.5 6.2 2.6
Cos 14.4 5.1 2.3
Tan 10.6 4.4 3.2
Asin 8.9 5.8 5
Acos 9.1 5.9 5.1
Atan 8.4 5.6 5.1
Atan2 19.9 12.7 8.4
Isqrt 4.3 1.8 0.4

Double
Precision

Time in ns per value calculated

Time per value
calculated

(Smaller is faster)
• Effect of vectorisation clearly visible

0

5

10

15

20
Exp

Log

Sin

Cos

Tan

Asin

Acos

Atan

Atan2

Isqrt
Scalar

SSE

AVX2

25

❚  Mathematics Library: Vdt

Presented by S. Wenzel

Clara Gaspar, September 2014

Vectorization in ROOT
❚  Explicit vectorization using Vc Library

Modernizing ROOT; ACAT2014

SMatrix Operations

19

• Operations in SMatrix using Vc::double_v instead of double

– speed-up obtained for processing operations on a list of 128
SMatrix<double,5,5> and SVector<double,5>

Sp
ee

d-
up

0

0.5

1

1.5

2

2.5

3
Ivy Bridge - clang 5.1 Autovec.

Vc scalar
Vc SSE
Vc AVX

 v•v M!v M!M M vTv M ATA -1 M
Presented by S. Wenzel

Clara Gaspar, September 2014

Optimize Speed
❚  Memory Models in HPC

27

!"#$%#&'($#)*+,-(".*
• /,0)#&,%*1#2'$3*4("*)(&5%*1267*&($&8"",$&.*
• 9))(1%*$($:&($;2&'$3*80<#6,%*6(*%7#",<*<#6#*
• =7(1$*6(*2-0"(>,*%&#)#?2)26.*(4*%7("6*&"2'&#)*",32($%*
• @"(-2%,*(4*!"#$%#&'($#)*+,-(".*

– @"(3"#-*1267*&(#"%,*6"#$%#&'($%*
– @,"4("-#$&,*)25,*A$,:3"#2$,<*)(&5*

• B(&8%*($*&("",&6$,%%C*68$,*4("*0,"4("-#$&,*
– D#%2,"*6(*",#%($*#?(86*($).*#*4,1*6"#$%#&'($%E*
– E*($).*4(&8%*($*#",#%*1267*6"8,*&($6,$'($*

• F#"<1#",*!+*2-0),-,$6#'($G*
– H$6,)I%*!=JC*#%*(4*F#%1,)):DJ*K<2%#?),<*2$*D*#$<*D@*-(<,)%*<8,*

6(*#*?83*<2%&(>,",<*2$*9838%6*LMNOP*
– HQ+I%*Q)8,*R,$,STC*UD$6,"0"2%,*DVNLC*@WXD/Y*

• V(-02),"%G*>,$<(":%0,&2A&C*3&&:OZ[*

Presented by A. Balaz

Clara Gaspar, September 2014

Optimize Speed
❚  Fast Detector Simulation
❙  By using pre-generated samples or parametrizations

28

Fast Simulation
Compensate the lack of time and
resources to produce MC
samples by a faster approach

Increase in throughput of O(10-100)

Fast simulation is an option for
many analyses
Price: physics performance, to
be considered case by case

Andrei Gheata, ACAT 2014 9

CMSSW 6.2

A.Giammanco, CHEP 2013

R.Harrington, 2nd LPCC

Run1 simulation - a CPU challenge
ATLAS: several billion events/year (~1/2 grid
resources)

Aiming for 1/1 ratio (1/3 full + 2/3 fast)
Last MC production (~7 Billion events) managed the opposite

Up to 6 minutes/event MB, largely dominated by calorimetry
CMS: several billion events/year

~20-100 sec/event full, ~1 sec/event fast
LHCb: few billion events produced

100/1 (rare signals) 1/100 (rest)
Simulation time: 1 min-1 hour/event range
Digitization: less than 1% of transport

ALICE: ~1 Billion simulated events (full)
Taking more than 50% of GRID resources
p-p at ~60s/event, Pb-Pb MB at ~ 10 min/event

Transport and generation: 70% (mostly ZDC)
Digitization: 30% (mostly TPC ExB, diffusion)

Andrei Gheata, ACAT 2014 7

ATLAS GRID CPU utilization

ALICE MC events per year

LHCb GRID usage 2013 2016
Sim 64.5% 63%
User 20.2% 8%
Rest (str, repro, rec) 15.3% 29%

More than 50% of CPU resources
Calorimetry is the winner
~25 billion events (~300 sec average)
250 CPU millennia of simulation !

See: Chapman et al
poster for more up to
date numbers

Presented by A. Gheata

Clara Gaspar, September 2014 29

Improvements…

Clara Gaspar, September 2014

Improve Flexibility/Lifetime

!

!"!#$%&'()$*+,-./)$0/1$'23$4$536$

5

!"#$%$%&'()**)%'+",*$%)-)&.

!/0
7,3,

*6829:2$09-;,<

!1+1(+23
(24+325
676+18

/5/38
676+18

81+/9!/+/
/3(:;<13

=/3,>7,3,
7/3/:3?+$03,3/

"?+;/+23?;/2$?@$A,B$*6829:2$CD1/+9E/;3F2$G,:H/;I

=JK!$L+,E/M?+H$23,+3/I$@+?E$3692$:?+;/+$NOE9-+,39?;P

30

!

!"!#$%&'()$*+,-./)$0/1$'
23
$4$5

36
$

%7

!"##$%&'(')"*+,,-

! !./0'12*34*$'5,++26*7,8'9%$#2:,%-$
$$$89/+9:/;$;,2$1+/2/<3/=

! >/22,-/?@./.:<-$2/+9:A/$B/A,C/$,<$:<23+.C/<3,D$1,+3$8E$0#!F$

8<D:</$:<E+,23+.A3.+/

! >@?B,2/=G$ED/H:BD/)$D882/DI$A8.1D/=$2I23/C

! !AA/13/=$9/+I$;/DDBI0#!F$A8DD,B8+,38+2$,<=$=/3/A38+$/H1/+32)$

A89/+2$36/$C8<:38+:<-$<//=2$8E$,DD$'J$0#!F$2.B2I23/C2$<8;

! K.CB/+$8E$A6,<</D2$6,2$:<A+/,2/=38L'7&&)$8+$H'5)$<.CB/+$8E$

=,3,$23+.A3.+/2$6,2$:<A+/,2/=$38$LM&&&)$8+$LH%5

! 0"8';<'=>*28?7,8@'5,#A+2>'=B28*'C%,62??78D
! "N*$E/,3.+/2$,==/=$,<=$3/23/=$:<$%&'()$<8;$;/$,+/$A8<E:=/<3$:<$

:32$A,1,B:D:3:/2O$P/1D8I:<-$E8+$,$E.DD$1+8=.A3:8<$.2,-/$:<$%&'5

! *+89/<$B/$B/$6/D1E.DG$,$E/;$,D,+C2$:C1D/C/<3/=$:<$F.<$'()$

2,9/=$C8<362$8E$;8+Q$E8+$36/$A8+/$3/,C$,<=$.2/+2O$>8+/$

.2/?A,2/2$38$B/$:C1D/C/<3/=$E8+$F.<$'5$,<=$B/I8<=O

! 9"*"%2'E+,C/;8+Q$E/,3.+/2$1D,<</=$E8+$%&'5$,<=$B/I8<=G
! >8=.D,+)$2A,D,BD/$,+A6:3/A3.+/$E8+$36/$"8<3+8D$0I23/C)$:<AD.=:<-$

+/C83/$A8<3+8D$:<3/+E,A/

! P/9/D81/+2$,<=$.2/+2$,+/$D88Q:<-$E8+;,+=$38$:C1D/C/<3,3:8<

Presented by D. Arkhipkin / L. Magnoni

❚  STAR

MESSAGING CONCEPTS AND FUNCTIONALITY TECHNOLOGY SUCCESSFUL STORIES SUMMARY

A LOOSELY-COUPLED SOLUTION: MESSAGING

To minimize producer and consumer dependencies

Data sent via an intermediate channel
Channel enhaced with functionality (e.g. queuing)
Message as the information building block

body: immutable, structured data (e.g. JSON, Protobuffer)
header: key/value pairs, used for routing

IT-SDC ACAT 2014 1-5 September L.Magnoni - 4

❚  Messaging Systems

Clara Gaspar, September 2014

Improve Operations

31

❚  The Error Reporting in the ATLAS TDAQ
System
❚  Intelligent operations of the data acquisition

system of the ATLAS Experiment at the LHC

Presented by S. Kolos / G. Avolio

Clara Gaspar, September 2014

Improving Usability
❚  Domain Specific Languages
❙  CppLINQ
❘  Moving from imperative to declarative tools
❘  Language integrated queries (C++ & SQL)
〡 return from(range).where(is_prime).sum();

❚  LINQtoROOT
❘  Using Functional Languages and Declarative

Programming to analyze ROOT data.
❘  Functional queries over ROOT data in C#

32 Presented by V. Vasiliev / G. Watts

Clara Gaspar, September 2014

Improve Usability
❚  Virtualization
❙  To extend beyond the grid:

supercomputers and clouds
❙  BELLE II Production System
❙  BigPanDa
❘  Location transparency of processing and data

❙  DII-HEP project in Finland
❙  Czech MetaCentrum
❙  WLCG Tier-2 Prague

33

Alexei Klimentov
BNL/PAS

Data fans out all over Europe

More than 25 billions bits transferred every second

� virtualized infrastructure
full-machine preemption, ondemand machines, virtual clusters

� distributed scheduling
� fairness model

fairshare, multi-resource fairness

Presented by P. Krokovny / A. Klimentov / T. Lindén / S. Toth / D. Adamova,

Clara Gaspar, September 2014 34

The Future…

Clara Gaspar, September 2014

Future Trends

35

❚  And Challenges of Scientific Computing

❚  Will not make our software simpler…
Presented by B. Jansik

Clara Gaspar, September 2014

Conclusions I
❚  In general we are preparing for:

36

High Luminosity LHC
• Very high pile up!

• Very high trigger
acceptance rates!

• Very challenging computing

2

Event Complexity
x Rate

Extreme Conditions

Clara Gaspar, September 2014

Conclusions II
❚  By making our software:
❙  More efficient
❘  Concurrency, Vectorization, etc…

❙  More flexible
❘  To allow using more powerful and/or cheaper and/or power

saving architectures: GPUs, ARMs, etc.

❙  Requires a lot of work/expertise and becomes extremely
complex
❘  But we’d still like to keep it transparent and user-friendly

(within frameworks, libraries, tools, etc)

❙  We moved from evaluation to design & implementation
❘  First results encouraging…

37

