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The ATLAS experiment is scaling up Big Data processing for the next LHC run 
using a multilevel workflow system comprised of many layers. In Big Data 
processing ATLAS deals with datasets, not individual files. Similarly a task 
(comprised of many jobs) has become a unit of the ATLAS workflow in distributed 
computing. Each task performs the data processing as the transformation of input 
datasets into output datasets, with about 0.8M tasks processed per year. In order 
to manage the diversity of LHC physics (exceeding 35K physics samples per 
year), the individual data processing tasks are organized in workflows (Figure 1).   

Conclusions and next steps: The ATLAS production system fully satisfies the 
requirements of ATLAS data reprocessing, simulations, and production by physics 
groups. The LHC shutdown provided an opportunity for enhancing the production 
system, whilst retaining those core capabilities most valued by production managers. 
As the ATLAS experiment continues optimising the use of Grid computing resources in 
preparation for the LHC data taking in 2015, the next generation production system is 
ready for integration with other layers. The commissioning is in progress, scaling up 
the production system for a growing number of tasks and transformations that will 
process data for physics analysis and other ATLAS main activity areas: Trigger, Data 
Preparation and Software & Computing. 
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INTRODUCTION 
The ACAT workshop series, formerly known as AIHENP (Artificial Intelligence in High Energy and 

Nuclear Physics), was created back in 1990. Its main purpose is to gather three different 

communities: experimental and theoretical researchers as well as computer scientists to critically 

analyze past achievements and to propose new or advanced techniques to building better 

computing tools to boost scientific research, in particular in physics.  

In the past, it has established bridges between physics and computer science research, facilitating 

advances in our understanding of the Universe at its smallest and largest scales. With the Large 

Hadron Collider, FAIR, eRHIC, EIC, the future International Linear Collider and the many astronomy 

and astrophysics experiments collecting larger and larger amounts of data, deep communication 

and cooperation are needed now more than ever. 

The 16th edition of ACAT will explore the boundaries of computing system architectures, data 

analysis algorithmics, automatic calculations as well as theoretical calculation technologies. It will 

create a forum for confronting and exchanging ideas among these fields and will explore and 

promote new approaches in computing technologies for scientific research. 

Although mainly focusing on high-energy physics, talks related to nuclear physics, astrophysics, 

laser and condensed matter physics, earth physics, biophysics, and others, are most welcome. 

ACAT’14  is  co-organized by 

x Charles University in Prague, Faculty of Mathematics and Physics   

x Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering  

x Institute of Physics, Academy of Sciences of the Czech Republic  

x Nuclear Physics Institute, Academy of Sciences of the Czech Republic   

 

Further bulletins will provide information about the conference program along with preliminary 

registration and hotel accommodation information. 
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2010 1 2.6 6.0 

2011 1 3.1 4.2 

2012 2 14.6 5.6 

2013 2 4.4* 3.1 
* In 2013 reprocessing, 2.2 PB of input data were used for selecting about 15% of all 
  events for reconstruction, thus reducing CPU resources vs. the 2012 reprocessing. 

The LHC shutdown provided an opportunity to enhance the system architecture 
improving the performance and scalability [1]. The new bi-level workflow manager - 
ProdSys2 - generates actual workflow tasks, with their jobs executed across more 
than a hundred distributed computing sites by PanDA – the ATLAS job-level workload 
management system [2, 3] (Figure 2). The new system is being integrated with outer 
layers: at the top, the enhanced ATLAS Metadata Interface (AMI) [4] configures the 
data transformation parameters; at the bottom, the new distributed data management 
system Rucio [5] transfers datasets between the sites. 

Data Transformation Configuration Level: AMI tag 

Workflow Management Level: DEfT 
• Workflow configuration layer: deft-ui 
• Task definition layer: deft-core 

Workload Management Level: PanDA 
•  Job definition layer: JEDI 
•  Job execution layer: PanDA 

Data Management Level: Rucio 

Figure 2: Multi-level architecture of the new ATLAS production system.    
On the upper level, the Database Engine for Tasks (DEfT) empowers 
production managers with templated workflow definitions [3]. On the lower 
level, the Job Execution and Definition Interface (JEDI) is integrated with 
PanDA to provide dynamic job definition tailored to the sites capabilities. 

References: 
[1] D. Golubkov et al. “ATLAS Grid Data Processing: system evolution and scalability” 2012 J. Phys.: Conf. Ser. 396 032049  
[2] T. Maeno et al. “Evolution of the ATLAS PanDA workload management system for exascale computational science” 2014 J. Phys.: Conf. Ser. 513 032062    
[3] K. De et al. “Task Management in the New ATLAS Production System” 2014 J. Phys.: Conf. Ser. 513 032078   
[4] J. Fulachier et al. “Looking back on 10 years of the ATLAS Metadata Interface” 2014 J. Phys.: Conf. Ser. 513 042019 
[5] V. Garonne et al. “The ATLAS Distributed Data Management project: Past and Future” 2012 J. Phys.: Conf. Ser. 396 032045 

23245% 4453%

4441%

1034%
880%564%

84%
67%

59%
58%

28%
19%

       Figure 3: The number   
of datasets produced during  

one of the simulations campaigns   
 
  
 

Figure 1: The Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and 
minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, 
reconstruct data, convert the reconstructed data into ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary. 

Requirements: Figure 3 represents the scale and variety of requirements from 
physics groups, with the number of datasets dominated by datasets of SUSY grids. 
Figure 4 shows that the new system has to be flexible as the number of data 
transformations grows exponentially during LHC data taking and beyond. 
Implementation: In the bi-level ProdSys2, the JEDI layer is coupled with PanDA, 
while the DEfT layer implemented as the flexible database engine for bookkeeping. 
These two independent layers communicate via customized JSON protocol. 
Late binding: During task execution the dynamic job definition tailors the jobs based 
on the actual resources: disk space, CPU-time, memory, networks, etc. In contrast, 
the first production system employs a static definition of the jobs.  
Analysis: The new system provides additional capabilities for ATLAS physicists. 
Reprocessing: A starting point for physics analysis of LHC data is reconstruction. 
Following the prompt reconstruction, the ATLAS data are reprocessed on the Grid, 
which improves the quality of the reconstructed data for analysis. The collaboration 
completed four major reprocessing campaigns, with up to 2 PB of data being 
reprocessed every year. Automatic job resubmission avoids data losses at the 
expense of CPU time used by the failed jobs. The table below shows that failures are 
no longer a problem, as the fraction of CPU-time used for data recovery is small. Figure 4: Continuous growth in the rate of new data transformations 

added to the system upon requests from the production managers. 
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