
Planning for distributed workflows: constraint-based
co-scheduling of computational jobs and data placement

in distributed environments

Dzmitry Makatun 1 3 Jérôme Lauret2

Michal Šumbera 1 Hana Rudová 4

1Nuclear Physics Institute, Academy of Sciences, Czech Republic

2Brookhaven National Laboratory, USA

3Czech Technical University in Prague, Czech Republic

4Masaryk University, Czech Republic

d.i.makatun@gmail.com

September 4, 2014

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 1 / 22



Outline

1 Introduction
Motivation
Use cases
Goal

2 Constraint Programming Model
What is Constraint Programming?
Variables
Solving procedure
Constraints

3 Testing simulations

4 Conclusions and future plans

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 2 / 22



Introduction Motivation

Motivation
Previous work

It was shown that global planning of data-transferring over Grid can outperform
well known heuristics (e.g. P2P, Xrootd reasoning). a

a
Michal Zerola et al ”One click dataset transfer: toward efficient coupling of distributed storage resources and

CPUs”, 2012 J. Phys.: Conf. Ser. 368 012022 doi:10.1088/1742-6596/368/1/012022

Extension

Global planning for entire data-processing routine in distributed environment.

Example of optimization

What would be optimal:

? Send a job to a site with slow connection or wait for a free slot at local
site?

? Access data remotely or transfer it before the job starts?

Heuristics such as [Pull a job when CPU slot is free] will not give
the answer.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 3 / 22



Introduction Use cases

Case 1: Data production. Planning remote site usage.

RAW data is located at BNL.

Computational resources are available at BNL
and several remote sites.

Long I/O overheads when accessing remotely
stored data can reduce the applications
CPUTime/WallTime ratio [6, 3].

How should we split a given dataset between
sites to complete the processing faster?

Manually adjust the number of remote jobs to meet
the network throughput, but what if:

- More sites

- Changing network load

This should be automated.

BNL
HPSS

RCFcentral
 NFS

CPUs

NFS

CPUs

NFS
KISTI

PDSF

Input data flow

Output data flow 

CPU to storage connection

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 4 / 22



Introduction Use cases

Case 2: Data production. Optimization.

Consider entire GRID

Several possible data sources.

More complex network.

Limited storage at sites.

How to distribute jobs by sites?

Which file source to select?

What is the optimal transfer path?

Example: data-production at ANL [6]

ANL: many CPU’s, but slow
connection and small disk space.

NERSC: fast connection, large disk.

Optimization: Feed ANL from both
BNL and NERCS sites.

BNL

RCFcentral
 NFS

CPUs

small
NFS

CPUs

large
NFS

HPSS
ANL

NERSC

HPSS

Input data flow

Output data flow 

Partial input data replication

CPU to storage connection

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 5 / 22



Introduction Use cases

Case 3: User analysis.

Input data can be at any storage in
the system.

Data can be replicated.

Each file can be requested by
multiple jobs.

1 CPU per job.

The size of output of analysis is
negligible compared to input size.

The processing time estimates are
imprecise.

How to distribute the load?

When and where to replicate
the data?

...

SITE 1

SITE 2

SITE N ... 

central
NFS

HPSS
Global

Redirector

 ... 

NFSHPSS
Global

Redirector

Processing
node

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 6 / 22



Introduction Goal

Goal

Create a global scheduler for Grid which will reason about:
1.data transferring, 2. CPU allocation, 3. data storage.

Optimization

None of the resources (network links, data storages and CPUs) are
over-saturated at any moment of time.

The jobs are executed where the data is pre-placed.

No excessive transfers or data replication.

Minimal overall makespan for a given set of tasks.

Constraint programming with its techniques for scheduling, planning
and optimization is a natural choice.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 7 / 22



Constraint Programming Model What is Constraint Programming?

What is Constrain Programming?

Constraint programming is a form of declarative programming.
Widely used in: scheduling, logistics, network planning, vehicle routing,
production optimization, etc.

Model

Parameters
constants

Variables
bool, int, float

Domains
set of values

Constraints
math expressions

Core
Redundant

Solution

Assign values to variables
to satisfy constraints.

Optimal solution

Maximize/minimize target
function.

Search

Algorithm:
e.g. backtracking.

◦ Variable order.

◦ Value order.

+ Consistency
Techniques.

Complete vs
Incomplete search.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 8 / 22



Constraint Programming Model Variables

Data-production problem: Input.

NODE
Ncpu
Disk

NODE
Ncpu
Disk

NODE
Ncpu
Disk NODE

Ncpu
Disk

JOBS:

Duration
Input Size
Output Size

LINKS:
Slowdown

Assumptions

In previous work [2] it was proved that:

There is advantage to plan and schedule jobs by chunks.

+ More adaptability to changing environment.
+ Faster plan creation.

The network links can be considered as unary resources: one
file-transfer at a time over link.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 9 / 22



Constraint Programming Model Variables

Data-production problem: Variables.

Input parameters:

Nodes c

- CPUs: NCPU (c)
- Disk space: Disk(c)

Links l

- Starting Node.
- End node.
- Slowdown = 1 / Bandwidth

Jobs j

- Duration.
- Input size.
- Output size.
- Input source node(s).
- Output destination node(s).

Domain variables:

Yjc ∈ {0, 1} job j
processed at node c.

Xfl ∈ {0, 1} file f
transferred over link l .

Jsj start time of job j .

Tsfl start time of transfer
of file f over link l .

Dependent on above

Fsfc start time of file f
placement at node c .

Fdurfc duration of file f
placement at node c .

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 10 / 22



Constraint Programming Model Solving procedure

Solving procedure overview.

1 Initialization Stage. Estimate TimeLimit.
2 Planning Stage. Instantiate a part of domain variables with the help

of simplified constraints.

a. Assign jobs to computational nodes.
b. Select transfer paths for input and output files.
c. Additional constraints: load balance, etc.
d. Find a solution for the sub-problem.

3 Scheduling stage: define start time for each operation.

a. Constraints on order of operations.
b. Cumulative constraints.
c. Minimize target function: (e.g. makespan).

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 11 / 22



Constraint Programming Model Constraints

Planning stage (core constraints)
Each job processed exactly at one node:

∀j ∈ J :
∑

c∈C

Yjc = 1

Target function Test - estimated makespan.

For each node c: TProcessing + TInputTransfer + TOutputTransfer ≤ Test

Path selection

File can be transferred from/to each node at most once.

1. Transfer input file from sources over 1 link.

2. Transfer output to final destination over 1 link.

3. Intermediate node: If ∃ incoming transfer ⇔ ∃ outgoing
transfer.

4. Selected processing node: 1 incoming input transfer, 1
outgoing input transfer.

1 2

3

4

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 12 / 22



Constraint Programming Model Constraints

Scheduling Stage: order of tasks.

Outgoing transfer starts after the incomming one is finished:

Ts- transfer start. ∀f ∈ F , ∀c ∈ IntermediateNode

Tsflout ≥ Tsflin
+ Size(f ) · Slowdown(lin)

Jobs starts after the input file transfer is finished

Js-job start. ∀j ∈ J, l ∈ L, f = InputFile(j)

Jsj ≥ Tsfl + InputSize(j) · Slowdown(l)

Output file is transferred after the job is finished

∀j ∈ J, l ∈ L, f = OutputFile(j)

Jsj + Dur(j) ≤ Tsfl

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 13 / 22



Constraint Programming Model Constraints

Scheduling Stage: data placement

Space reservation at destination node is made when transfer starts

Fs - start of file placement. l is link to c : Fsfc = Tsfl

File can be deleted from start node of a link after the transfer

Fdur - duration of file placement.
Fsfc + Fdurfc = Tsfl + Size(f ) · Slowdown(l)

At selected processing node

When a job starts space for output is reserved f = OutputFile(j) :
Fsfc = Jsj

When a job finishes it’s input file can be deleted f = InputFile(j) :
Fsfc + Fdurfc = Jsj + Duration(j)

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 14 / 22



Constraint Programming Model Constraints

Scheduling Stage: cumulative constraints.

cumulative

Requires that a set of tasks given
by start times s, durations d,
and resource usage r, never
require more than a resource
limit b at any time.

Task Start Duration Usage Limit

Job Jsjc Duration(j) 1 NCPU(c)

Transfer Tsfl Size(f ) · Slowdown(l) 1 1

File placement Fsfc Fdurfc Size(f ) Disk(c)

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 15 / 22



Testing simulations

Testing simulations: problem setup.
Input for simulations

Job input size: random 1..20

Job duration: 1..48

Job output Size: 1..22

Input/output size and duration are
proportional.

Tested algorithms

All jobs processed at LOCAL node
by input order.

Equal CPU load.
Processed by input order.

Optimized.
Planner: minimize estimated makespan.
Scheduler: minimize makespan.

LOCAL

central
 storage

10 CPUs

NFS

REMOTE

10 CPUs

NFS

Sl = 1Sl = 1

Sl = 0

Sl = 0

Constraints for storage capacity are omitted.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 16 / 22



Testing simulations

Testing simulations: results.

0 20 40 60 80 100 120 140 160 180 200 220
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300
1 local + 1 remote node (10 CPU's at each)

equal load

all jobs local

optimized

Number of jobs in scheduled chunk

m
ak

es
pa

n
 (

tim
e 

u
n

its
)

equal load: +166% optimized: -15% of makespan compared to local processing

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 17 / 22



Conclusions and future plans

Conclusions

Conclusions

Mathematical model (Constraint Satisfaction Problem) for scheduling
of data-production over Grid was formulated.

In simulated environment, where a remote site has the same CPU
number as a local site, but data transfer overhead is comparable to
job duration:

Maintaining equal CPU load at local and remote sites increases the
makespan more then twice;
Scheduling with consideration of transfer overhead can reduce
makespan by 15%.

compared to local only processing.

Proposed approach can provide optimization and automatic
adaptation to fluctuating resources with no need for manual
adjustment of work-flow at each site or tuning of heuristics.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 18 / 22



Conclusions and future plans

Future plans

Test on larger problems (more nodes, more CPUs, more links).
Compare results to statistic logs.

Implement a custom search heuristics for CSP.

Improve search performance in order to enable online scheduling.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 19 / 22



Conclusions and future plans

End.

Thank you for your attention.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 20 / 22



Conclusions and future plans

Backup 1. Link selection: loop elimination.

For each subset of k nodes Ck the number of
transfers on internal links should be less then k .

∀f ∈ F ,∀k : 2 ≤ k ≤ ‖C‖,∀Ck ⊂ C∑
l∈L:Begin(l)∈Ck∧End(l)∈Ck

xfl < k

Source(f) Dest(f)

If too many constraints => slows down the search.

Work around: Use for k = 2 only. Remove the rest of cycles after the
plan is generated [4].

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 21 / 22



Conclusions and future plans

Backup 2. Link selection.

1 2

3

4

File can be transferred from/to each node at most once:
∀c ∈ C :

∑
l∈inLinks(c)

Xfl ≤ 1;
∑

l∈outLinks(c)

Xfl ≤ 1;

1. Transfer input file from source:∀f ∈ InputFiles :∑
l∈linksFromSources

Xfl = 1;
∑

l∈linksToSources

Xfl = 0

2. Transfer output to final destination: ∀f ∈ OutputFiles :∑
l∈linksToDest

Xfl = 1,
∑

l∈linksFromDest

Xfl = 0

3. At intermediate node: ∑
l∈inLinks(c)

Xfl =
∑

l∈outLinks(c)

Xfl

4. At selected processing node: Yjc = true, fin = InputFile(j),
fout = OutputFile(j)

∑
l∈inLinks(c)

Xfinl = 1;
∑

l∈outLinks(c)

Xfinl = 0;∑
l∈inLinks(c)

Xfout l = 0;
∑

l∈outLinks(c)

Xfout l = 1;

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 22 / 22



Conclusions and future plans

[1] Makatun D, Lauret J and Šumbera M 2013 Study of cache
performance in distributed environment for data processing, J. Phys.:
Conf. Ser. ACAT Conf. Peking 2013

[2] Zerola M, Lauret J, Barták R and Šumbera M 2012 One click dataset
transfer: toward efficient coupling of distributed storage resources and
CPUs J. Phys.: Conf. Ser. 368

[3] Horký J, Lokaj́ıček M and Peisar J 2013 Influence of Distributing a
Tier-2 Data Storage on Physics Analysis J. Phys.: Conf. Ser. ACAT
Conf. Peking

[4] Troubil P and Rudová H 2011 Integer Linear Programming Models for
Media Streams Planning. Lecture Notes in Management Science 3
509-522

[5] L. Betev, A. Gheata, M. Gheata, C. Grigoras and P. Hristov 2014
Performance optimisations for distributed analysis in ALICE J. Phys.
Conf. Ser. 523 (2014) 012014.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 22 / 22



Conclusions and future plans

[6] J. Balewski, J. Lauret, D. Olson, I. Sakrejda, D. Arkhipkin,
J. Bresnahan, K. Keahey and J. Porter et al., Offloading peak
processing to virtual farm by STAR experiment at RHIC 2012 J. Phys.
Conf. Ser. 368 (2012) 012011.

Dzmitry Makatun (NPI ASCR) ACAT 2014, Prague September 4, 2014 22 / 22


	Introduction
	Motivation
	Use cases
	Goal

	Constraint Programming Model
	What is Constraint Programming?
	Variables
	Solving procedure
	Constraints

	Testing simulations
	Conclusions and future plans

