Redberry: a computer algebra system
designed for tensor manipulation

Stanislav Poslavsky

Institute for High Energy Physics,
Protvino, Russia

SRRC RF ITEP of NRC Kurchtov Institutes,
Moscow, Russia

Dmitry Bolotin

Institute of Bioorganic Chemistry of RAS,
Moscow, Russia

Outline

Specific features of tensorial CAS

%%% Specific features of tensorial CAS
Redberry'’s place among tensor software

Key features of Redberry & examples

' Algorithms & performance

Specific features of tensorial CAS

Automatic relabeling of Comparison of expressions

dummy indices

- Simplifications: reduce similar terms

is critical for all CAS operations. Few examples:
A AR + AAY =2A,A8

Substitutions: substitute R.g=R" into Ry R™ . . . -
o o - - Substitutions: matching both free and dummy indices

without relabeling: the correct way:

RE ,-R“T n fo J“.TR.'JT:};; ! .
P i 2 h apply Fu.ﬁ -F:r}' 3 Tﬁ? to F.i"‘r FH"?‘ E?Ji = T“r“ F.U'-_T

. i 242
Expand: expand power (p,,p* +m*) « Functions: matching both arguments and indices

- gives: pup'p.p” +2m°p,p* +m'

apply fur(Tag) = 2,°%aw t0 fas(Yays) = YalUu¥ys

Symmetries & antisymmetries

« Ability to define arbitrary symmetries is a key feature of
tensorial CAS

- Both symmetries and antisymmetries must be considered in
matching and simplification

For example, if Rabed = Reaba = —Riaca

= RabMRcfchEbe + Rfcdeubrchdhm =0

Another example: if Wasede = Webeda = Webade

= (Woge T A Waae? t Waea T+ Wane™ + W 's? W pmgis Won it Wesngi t Woeenig + Wrongs)
(Whae" +~Weoae! + Whea +Wape” +Wae s W Wosni; + Wengis+ Wean i+ Wroni + Wiergi) = 0

il

Automatic relabeling of
dummy indices

Is critical for all CAS operations. Few examples:

Substitutions: substitute Rag=R'aus into Ry,rR™

without relabeling: the correct way:

Iz KT W - B
R pu'rR 7 R“MTR Tﬁ”

Expand: expand power (p,p" + m2)2

- gives: Py p¥ pop” +2 m? PMP“ + m*

Comparison of expressions

- Simplifications: reduce similar terms

A AP + A AY =2 A, AV
- Substitutions: matching both free and dummy indices
apply F¥¥F,, - TP, to FPYF* Fs, = T7,F",

- Functions: matching both arguments and indices

apply fuv(Tap) = 2.Car 0 fap(Yays) = YaYu¥"ys

Symmetries & antisymmetries

- Ability to define arbitrary symmetries is a key feature of
tensorial CAS

- Both symmetries and antisymmetries must be considered in
matching and simplification

For example, ki Rabcd — Rcdba, — _Rbacd

= RadeRefchefa,b 1 chdeabTCRfdba —(

Another example: If Wabede = Webcda = Webade

= (Whae” +Wiae” + Waed " +Wape? + Wae's?) Weshjit Wen it Wejn pit W penis+ Wiengi) —
(Whode™ +Wade” + Whea” +Wape” +Wae s?) Weshii+Wenpii ¥ Wein i+ W penij+Wiengi) = 0

“Teil

Specific features of tensorial CAS

Automatic relabeling of Comparison of expressions

dummy indices

- Simplifications: reduce similar terms

is critical for all CAS operations. Few examples:
A AR + AAY =2A,A8

Substitutions: substitute R.g=R" into Ry R™ . . . -
o o - - Substitutions: matching both free and dummy indices

without relabeling: the correct way:

RE ,-R“T n fo J“.TR.'JT:};; ! .
P i 2 h apply Fu.ﬁ -F:r}' 3 Tﬁ? to F.i"‘r FH"?‘ E?Ji = T“r“ F.U'-_T

. i 242
Expand: expand power (p,,p* +m*) « Functions: matching both arguments and indices

- gives: pup'p.p” +2m°p,p* +m'

apply fur(Tag) = 2,°%aw t0 fas(Yays) = YalUu¥ys

Symmetries & antisymmetries

« Ability to define arbitrary symmetries is a key feature of
tensorial CAS

- Both symmetries and antisymmetries must be considered in
matching and simplification

For example, if Rabed = Reaba = —Riaca

= RabMRcfchEbe + Rfcdeubrchdhm =0

Another example: if Wasede = Webeda = Webade

= (Woge T A Waae? t Waea T+ Wane™ + W 's? W pmgis Won it Wesngi t Woeenig + Wrongs)
(Whae" +~Weoae! + Whea +Wape” +Wae s W Wosni; + Wengis+ Wean i+ Wroni + Wiergi) = 0

il

Redberry's place among tensor software

=

- Mathematica packages: xAct, Tensorial, Ricci, etc.>
. Non f
- Maple packages: Maple Physics, GRTensorll, etc. TS
- Standalone tools: Cadabra, Reduce etc.

Redberry is aimed at solution of large scale problems with
millions of tensorial terms in a reasonable time

E. g. calculation of one-loop counterterms of gravitational field requires to process
~ 700 000 tensorial terms with ~ 8 multipliers and ~ 10 indices per term takes in
Redberry less than 8 minutes (on this Mac Book Air)

The performance is main objective

Example: assuming that Wabcde - Webcda - chade check

(Waae” +Whoae” + Wied 7+ Wape +Wae's?)) Wephiit Wengiit Wein it Wsenij + Weenji) —
(Whode™ +Whae” + Whed? " +Wape ? +Wae's?) (Wehij +Wen i+ Wein i+ Wrehij+Wienji) = 0

Redberry | Cadabra | xAct Maple Physics
2ms | 180ms | 180ms | 200ms

Timing:

Key features of Redberry

v tensor symmetries, multiple index types, dummy indices

handling, LaTeX-style i/o
+ a wide range of tensor-specific transformations and

simplification routines
v HEP features: Dirac & SU(N) algebra, one-loop counterterms
calculation etc.
programming language with internal support of symbolic

\}

tensor algebra
free & open-source with extensive API for developers

\}

Scattering in gravity

Calculate matrix element of scalar particle scattering by

Toy example

1. Setup symmetries flaped = Redba = —Rpace
2. Substitute

Ropead = (2Rotea + Fooa — Fogecdf3 N 2Rppeg ™ Ropog ™™

exchanging one massive Fierz-Pauli graviton in D dimensions
Redberry code:

PFh[]uh pbmwzt

. . . D= "'D_{mn h}[n al = UF alp_al * P_nblp_al + hln | nalp_al)/2
3. Simplify and check that result is zero nnlp_al + P_oblp_al/(0-1))/(p_s e Lt
Redberry code: V= f. J[u k] p mek_n = (1/2)=g_mn*(p_a - k_a)=(p~a - k™a)'.t
// Setup symmet;‘_{es f. hJIn a, k] ~{ab cd}[pl_a - kl_al+V_cd[p2_a, k2_a]'.t
addSymmetries 'R ah:d [le, 21, [1, 311.p, -[I1, B@I1.p u: & & P! >

ff Define substitutic am bles
Sh 1'L setia dl f[p ‘m*, p2_a: ‘m*, kl_a: ‘m*, kZ_a: ‘m‘l)

subs = R abc d (Z*R abcd + R_achd - R_adbc)/3'.

// Input expre ” . alemant

expr = 2*R ahcd*R achd R_abed+R™abed ' . = :s p d.m .; E'l..ul:m ene s & 'd*ii=D'.t) >> M

ff Apply substitution and expand n = (mShell & ‘u = demes2 = 5 = 1:'.t & Factor) »= M
println M

expr = (subs & Expand) = EXpr
ro

println expr //pri (160 — 2y MY — Ben® (MY — 1)s + (D — 43t) — 2
4]

1D — 1M M2)
+ M (AD — s A0 — 1)t + (0 — 1007} + 40 — QM7+ 400 — 290Y)

Toy example

1. Setup symmetries Raped = Bedba = —Rbacd
2. Substitute
Ra’de = (2Ra.bcd + Rade _ Rﬂdbc)/S in 2RabcdRGde _ RabcdRade

3. Simplify and check that result is zero
Redberry code:

// Setup symmetries

// Define substitution

subs = 'R_abecd = (2xR_abcd + R_acbd - R_adbc)/3'.t
// Input expression

expr = '2xR_abcdxR™acbd - R_abcdxR™abcd'.t

// Apply substitution and expand

expr = (subs & Expand) >> expr

println expr //prints zero

Scattering In gravity

Calculate matrix element of scalar particle scattering by
exchanging one massive Fierz-Pauli graviton in D dimensions

Redberry code:

// Auxiliary tensor

P = "P_ab[p_al = g_ab + p_axp_b/Mx*2'.t

// Fierz-Pauli graviton propagator

D=""'D_{mn ab}[p_al = ((P_ma[p_al] * P_nb[p_al + P_mb[p_a] * P_na[p_al)/2
- P_mn[p_a] * P_ab[p_al/(D-1))/(p_axp™a + Mxx2)'"''.t

// Scalar—-graviton vertex

V="V_{mn}[p_a, k al] = p_mxk_n + p_nxk_m - (1/2)*g_mnk(p_a - k_a)*(p™a - k™a)'.t

// Matrix element

M = 'V_{ab}[pl_a, kl_a]xD"{ab cd}[pl_a - kl_alxV_cd[p2_a, k2_a]'.t

// Apply substitutions

M=(D&V&P) >M

// Set up Mandelstam variables

mShell = setMandelstam([pl_a: 'm', p2_a: 'm', kl_a: 'm', k2_a: 'm'])

// Simplifications of matrix element
M = (ExpandAll & EliminateMetrics & 'd*i_i = D'.t) >> M
M = (mShell & 'u = 4xmxx2 - s - t'.t & Factor) >> M
println M
1
4(D —1)M* (M? +1t)
+ M* (4D —1)s* + 4(D — 1)st + (D — 10)t*) + 4(D — 4)M*t* + 4(D — 2)t*)

(16(D — 2)m* M* —8m? (M*(2(D — 1)s + (D — 4)t) — 2M*t?)

Algorithms

- The main atomic operation in any CAS is comparison of expressions

- Contractions between indices forms a mathematical graph, and thus comparison
becomes an expensive operation which strongly affects the overall performance

of CAS

Common approach:
canonicalisation

(Rodionov & Taranov 1989, Portugal 1999)

sort using symmetries, sort multipliers), then comparison becomes trivial:

RR 4. R0 — —R™ gRupep R
R'rr:d;fRa.brchdba — RabndRabe}'Rchd

« The algorithm is equivalent to finding double coset representatives
% NP-hard problem in general (Butler 1984, Luks 1993, Holt 2005)

% Works only with products of simple tensors (need to expand if
product contains sum)

- Main idea: put indices of all expressions into "canonical” form (rename dummies,

Redberry's approach: graph-based

- i/ f_‘_ |
tensor com parison N
:._ ' I-"r " i {
(Rodionov & Taranov 1989) /n R pas
Ta) . (A
o . M e
Graph: multipliers - vertexes, dummies - edges At Oy Ay

Comparison of tensors = graph isomorphism (Gl) problem

+ Redberry does not perform expensive "canonicalisation” of terms

- It searches for isomorphisms (mappings of indices) between tensors and

does not rely on canonical form of expressions

+ Althought, Gl is at least NP, in all practical cases it can be solved very

efficiently (McKay, 1980)

- Redberry uses its own implementation of Gl problem optimized for

typical expressions arising in real calculations

Pesfarmance

Common approach:
canonicalisation

(Rodionov & Taranov 1989, Portugal 1999)

- Main idea: put indices of all expressions into "canonical” form (rename dummies,
sort using symmetries, sort multipliers), then comparison becomes trivial:

RadeRefchefab N _RabcdRabefRefcd
R'rcdea,brchdba N RabcdRabefRede

- The algorithm is equivalent to finding double coset representatives

X NP-hard problem in general (Butler 1984, Luks 1993, Holt 2005)

x Works only with products of simple tensors (need to expand if
product contains sum)

“Teil

Redberry's approach: graph-based
tensor comparison

(Rodionov & Taranov 1989)

Graph: multipliers - vertexes, dummies - edges Aak™ Cpy AP
Comparison of tensors = graph isomorphism (Gl) problem

- Redberry does not perform expensive "canonicalisation” of terms

- It searches for isomorphisms (mappings of indices) between tensors and
does not rely on canonical form of expressions

- Althought, Gl is at least NP, in all practical cases it can be solved very

efficiently (McKay, 1980)
- Redberry uses its own implementation of Gl problem optimized for
typical expressions arising in real calculations

Performance

KL g T = e
= . =
wiitys FTezZl l: :-:I |:3 » :I
[

Performance

Typical problem: expand out product of sums and collect similar terms:
- involve nearly all internal low-level CAS routines
- strongly affects the overall performance of real calculations
- critical for ability of CAS to manage large-scale problems (huge expressions)

We used two systems for comparison:

- Cadabra v. 1.29: free and open-source, uses canonicalisation approach and
employs same engine as xAct
- Maple 17 Physics (latest): commercial and non free, the approach is unknown

Lx]

E
mEEE
323
23

949 term

(FuvaT” sWo? + .
(T WY Fpay + ... (99 terms)) = 0

Atomic comparison

+ Generate sum of 100 random different terms, rearrange indices (rename dummies
and shuffle indices within symmetries) and subtract from itself, e. g. :

) -

iy - - .
i Fedberry sym
| Cadabra sym
: + Hedberry

10y % = Maple
£ © Cudabra

1

- Generate random nested products of sums, expand, rearrange

|-.|’! 1
I-Ifr' A B o
| i .
W 1 1y
" | .- y 1 E . e
= e 1 £
= | - -~ - o
L . 1 51
o - e
| - - b
||F!-' = it
= |‘|/‘ T T T T ! 1 : - I_J T:f T BTl
Hedberry, Redborry, s

Expand nested sums

indices (rename dummies and shuffle indices within symmetries),
and subtract from itself, e. g. :
(F;uz (T!J-“de - J + ---}(Rf.m(Fpi;Rr’r + } + } x (} -
(FL I R Ry, P Reey + ...) = 0

Atomic comparison

- Generate sum of 100 random different terms, rearrange indices (rename dummies
and shuffle indices within symmetries) and subtract from itself, e. g. :

(FMVQ,TU[gWa’B + ...(99 trﬂ-'r'ms)) —
(T ,WYPE, 0y + ... (99 terms)) = 0

10% : : : 10? : : : : :
< Redberry sym o < Redberry sym
o Cadabra sym o O Cadabra sym
1020 ¢ Redberry | + Redberry
® Maple o ¢ 10t = Maple
e (Cadabra ¢ (Cadabra
[]
8
@ 5 M L i g ot
: TR S :
100 got ° &
¢ " 1 ! 6 o % |
I . :> % y t —1
| | O 0 107"
10! i §e % * .
gasded’
102 ' : : : : . . : : 10—} . - - - E : :
2 1 G 8 10 12 14 16 18 20 5 10 15 20 25 30 35 40 45
Average product size Average indices number

z Freli

Expand nested sums

- Generate random nested products of sums, expand, rearrange
indices (rename dummies and shuffle indices within symmetries),

and subtract from itself, e. 8. :

(B (THR™ + ..) 4+ .0)) (Rap (FPaRey + .0) +) X (c00) —
(F, , T"°RFRg,FP o Ry + ...) = 0

3 10°
10 i
.l’ .
L] - - P
102k 10%F e
: . .
10"k 10T)
wm L]
%) ¢
= 100 £ 10%
o = o
= 8 .«
10°1 107! .
1072]”—2
10735 - v - - X 10-3k e ,
107 0= 19 10 10 10% 10 0% 10?2 10! 10 10! 102 10°
Redberry, s Redberry, s

Algorithms

- The main atomic operation in any CAS is comparison of expressions

- Contractions between indices forms a mathematical graph, and thus comparison
becomes an expensive operation which strongly affects the overall performance

of CAS

Common approach:
canonicalisation

(Rodionov & Taranov 1989, Portugal 1999)

sort using symmetries, sort multipliers), then comparison becomes trivial:

RR 4. R0 — —R™ gRupep R
R'rr:d;fRa.brchdba — RabndRabe}'Rchd

« The algorithm is equivalent to finding double coset representatives
% NP-hard problem in general (Butler 1984, Luks 1993, Holt 2005)

% Works only with products of simple tensors (need to expand if
product contains sum)

- Main idea: put indices of all expressions into "canonical” form (rename dummies,

Redberry's approach: graph-based

- i/ f_‘_ |
tensor com parison N
:._ ' I-"r " i {
(Rodionov & Taranov 1989) /n R pas
Ta) . (A
o . M e
Graph: multipliers - vertexes, dummies - edges At Oy Ay

Comparison of tensors = graph isomorphism (Gl) problem

+ Redberry does not perform expensive "canonicalisation” of terms

- It searches for isomorphisms (mappings of indices) between tensors and

does not rely on canonical form of expressions

+ Althought, Gl is at least NP, in all practical cases it can be solved very

efficiently (McKay, 1980)

- Redberry uses its own implementation of Gl problem optimized for

typical expressions arising in real calculations

Pesfarmance

Technical detalls

- Programming language: Java, Groovy (for user interface)

« Operating system: any Linux, Windows, Mac
- Lines of code: 132 148

- User interface: IntelliJ IDEA (syntax highlighting, code completion),
command line is also available

- License: GNU GPL v3 (free and open source)
- Requirements: Java 7+, Groovy 2+

Full overview and comprehensive documentation:

http://redberry.cc

Thank you!

References

- D. A. Bolotin, S. V. Poslavsky, "Introduction to Redberry: a computer algebra system
designed for tensor manipulation”, arXiv:1302.1219 [¢s.5C]

- J. M. Martin-Garcia et.al, "xAct: Efficient tensor computer algebra for
Mathematica", http://xact.es/

» Kasper Peeters, "Introducing Cadabra: a symbolic computer algebra system for
field theory problems”, hep-th/0701238

- A. Ya. Rodionov, A. Yu. Taranov, "Combinatorial aspects of simplification of
algebraic expressions”, Eurocal ‘87, Lecture Notes in Computer Science Volume
378, 1989, pp 192-201

- R. Portugal, "Algorithmic simplification of tensor expressions’, J. Phys. A 32 (1999)
7779-7789

- G. Butler, "On Computing Double Coset Representatives in Permutation Groups”, in
Computational Group Theory, ed. M. D. Atkinson, Academic Press (1984), 283--290

- Eugene M. Luks, "Permutation groups and polynomial-time computation’, In
Finkelstein and Kantor [FK93], pages 139-175

» Derek F. Holt, Bettina Eick, Eamonn A. O'Brien, "Handbook Of Computational Group
Theory", Chapman and Hall/CRC, 2005

1. Setup symmetries Rgbed = Redba = —Rbacd

2. Check that R¥ apResacR + Rre¥ Rop™Rg™ = 0

Redberry code:

// Setup symmetries

println expr //prints zero

Mappings of indices

- The result of comparison is not just logical "true” or "false" but a
complicated mapping:

FoyGY ——— F,GY = { a—i }

maps to c—]J

- Several mappings can be found for a pair of tensors. E.g., if Ry IS
antisymmetric, then

a—a a—c
RabAc + RbcAa RabAc + RbcAa = 4 b - b and — b— b
maps to c—c c—a

- When mapping tensor onto itself, we obtain permutational symmetries of
its indices, so

= Finding symmetries of tensors = graph automorphism (GA) problem

Examples

Examples

- Find possible mappings between tensors

_(Ada + ApaAdp)deqi — AabAquik and (Amn - A-mpApn)leij + A?nnAnink

setAntiSymmetric 'A_mn', 'F_mnab'
from = '(A_m™n - A_m*pxA_p~*n)*F_nk*i_j + A_mn*A~n_j*xA"i k'.t
to = '-(A_d*a + A_p~axA_d~p)*F~d_kg~i - A*a_bxA~b_g*A~i k'.t
mappings = from % to
for (mapping in mappings)

println mapping

-{_i->_i, _j->_q, _k->_k, _m->"a}
{_i->"k, _j—>_q, _k—>"i, _m->"a}

- Find symmetries of (RabcAde + RpdeAac) A + Raap

addSymmetry 'R_abc', -[[0, 1]1].p
setSymmetric 'A_ab'
expr = '(R_abcxA_de + R_bdexA_ac)xA”ce + R_adb'.t
symmetries = findIndicesSymmetries('_abd'.si, expr)
for (sym in symmetries)

println sym

+[]
_[[01 2]]

