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Specific features of tensorial CAS

Automatic relabeling of Comparison of expressions

dummy indices

- Simplifications: reduce similar terms

is critical for all CAS operations. Few examples:
A AR + AAY =2A,A8

Substitutions: substitute R.g=R" into Ry R™ . . . -
o o - - Substitutions: matching both free and dummy indices

without relabeling: the correct way:

RE ,-R“T n fo J“.TR.'JT:};; ! .
P i 2 h apply Fu.ﬁ -F:r}' 3 Tﬁ? to F.i"‘r FH"?‘ E?Ji = T“r“ F.U'-_T

. i 242
Expand: expand power  (p,,p* +m*) « Functions: matching both arguments and indices

- gives: pup'p.p” +2m°p,p* +m'

apply fur(Tag) = 2,°%aw t0  fas(Yays) = YalUu¥ys

Symmetries & antisymmetries

« Ability to define arbitrary symmetries is a key feature of
tensorial CAS

- Both symmetries and antisymmetries must be considered in
matching and simplification

For example, if Rabed = Reaba = —Riaca

= RabMRcfchEbe + Rfcdeubrchdhm =0

Another example: if Wasede = Webeda = Webade

= (Woge T A Waae? t Waea T+ Wane™ + W 's? W pmgis Won it Wesngi t Woeenig + Wrongs)
(Whae" +~Weoae! + Whea +Wape” +Wae s W Wosni; + Wengis+ Wean i+ Wroni + Wiergi) = 0

il




Automatic relabeling of
dummy indices

Is critical for all CAS operations. Few examples:

Substitutions: substitute Rag=R'aus into Ry,rR™

without relabeling: the correct way:

Iz KT W - B
R pu'rR 7 R“MTR Tﬁ”

Expand: expand power  (p,p" + m2)2

- gives: Py p¥ pop” +2 m? PMP“ + m*




Comparison of expressions

- Simplifications: reduce similar terms

A AP + A AY =2 A, AV
- Substitutions: matching both free and dummy indices
apply F¥¥F,, - TP, to FPYF* Fs, = T7,F",

- Functions: matching both arguments and indices

apply fuv(Tap) = 2.Car 0 fap(Yays) = YaYu¥"ys




Symmetries & antisymmetries

- Ability to define arbitrary symmetries is a key feature of
tensorial CAS

- Both symmetries and antisymmetries must be considered in
matching and simplification

For example, ki Rabcd — Rcdba, — _Rbacd

= RadeRefchefa,b 1 chdeabTCRfdba —(

Another example: If Wabede = Webcda = Webade

= (Whae” +Wiae” + Waed " +Wape? + Wae's?) Weshjit Wen it Wejn pit W penis+ Wiengi) —
(Whode™ +Wade” + Whea” +Wape” +Wae s?) Weshii+Wenpii ¥ Wein i+ W penij+Wiengi) = 0
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Redberry's place among tensor software

=

- Mathematica packages: xAct, Tensorial, Ricci, etc.>
. Non f
- Maple packages: Maple Physics, GRTensorll, etc. TS
- Standalone tools: Cadabra, Reduce etc.

Redberry is aimed at solution of large scale problems with
millions of tensorial terms in a reasonable time

E. g. calculation of one-loop counterterms of gravitational field requires to process
~ 700 000 tensorial terms with ~ 8 multipliers and ~ 10 indices per term takes in
Redberry less than 8 minutes (on this Mac Book Air)

The performance is main objective

Example: assuming that Wabcde - Webcda - chade check

(Waae” +Whoae” + Wied 7+ Wape +Wae's?) ) Wephiit Wengiit Wein it Wsenij + Weenji) —
(Whode™ +Whae” + Whed? " +Wape ? +Wae's? ) (Wehij +Wen i+ Wein i+ Wrehij+Wienji) = 0

Redberry | Cadabra | xAct  Maple Physics
2ms | 180ms | 180ms |  200ms

Timing:



Key features of Redberry

v tensor symmetries, multiple index types, dummy indices

handling, LaTeX-style i/o
+ a wide range of tensor-specific transformations and

simplification routines
v HEP features: Dirac & SU(N) algebra, one-loop counterterms
calculation etc.
programming language with internal support of symbolic

\}

tensor algebra
free & open-source with extensive API for developers

\}

Scattering in gravity

Calculate matrix element of scalar particle scattering by

Toy example

1. Setup symmetries flaped = Redba = —Rpace
2. Substitute

Ropead = (2Rotea + Fooa — Fogecdf3 N 2Rppeg ™ Ropog ™™

exchanging one massive Fierz-Pauli graviton in D dimensions
Redberry code:

PFh[]uh pbmwzt

. . . D= "'D_{mn h}[n al = UF alp_al * P_nblp_al + hln | nalp_al)/2
3. Simplify and check that result is zero nnlp_al + P_oblp_al/(0-1))/(p_s e Lt
Redberry code: V= f. J[u k ] p mek_n = (1/2)=g_mn*(p_a - k_a)=(p~a - k™a)'.t
// Setup symmet;‘_{es f. hJIn a, k ] ~{ab cd}[pl_a - kl_al+V_cd[p2_a, k2_a]'.t
addSymmetries 'R ah:d [le, 21, [1, 311.p, -[I1, B@I1.p u: & & P! >

ff Define substitutic am bles
Sh 1'L setia dl f[p ‘m*, p2_a: ‘m*, kl_a: ‘m*, kZ_a: ‘m‘l)

subs = R abc d (Z*R abcd + R_achd - R_adbc)/3'.

// Input expre ” . alemant

expr = 2*R ahcd*R achd R_abed+R™abed ' . = :s p d.m .; E'l..ul:m ene s & 'd*ii=D'.t) >> M

ff Apply substitution and expand n = (mShell & ‘u = demes2 = 5 = 1:'.t & Factor) »= M
println M

expr = (subs & Expand) = EXpr
ro

println expr //pri (160 — 2y MY — Ben® (MY — 1)s + (D — 43t) — 2
4]

1D — 1M M2 )
+ M (AD — s A0 — 1)t + (0 — 1007} + 40 — QM7+ 400 — 290Y)




Toy example

1. Setup symmetries Raped = Bedba = —Rbacd
2. Substitute
Ra’de = (2Ra.bcd + Rade _ Rﬂdbc)/S in 2RabcdRGde _ RabcdRade

3. Simplify and check that result is zero
Redberry code:

// Setup symmetries

// Define substitution

subs = 'R_abecd = (2xR_abcd + R_acbd - R_adbc)/3'.t
// Input expression

expr = '2xR_abcdxR™acbd - R_abcdxR™abcd'.t

// Apply substitution and expand

expr = (subs & Expand) >> expr

println expr //prints zero




Scattering In gravity

Calculate matrix element of scalar particle scattering by
exchanging one massive Fierz-Pauli graviton in D dimensions

Redberry code:

// Auxiliary tensor

P = "P_ab[p_al = g_ab + p_axp_b/Mx*2'.t

// Fierz-Pauli graviton propagator

D=""'D_{mn ab}[p_al = ((P_ma[p_al] * P_nb[p_al + P_mb[p_a] * P_na[p_al)/2
- P_mn[p_a] * P_ab[p_al/(D-1))/(p_axp™a + Mxx2)'"''.t

// Scalar—-graviton vertex

V="V_{mn}[p_a, k al] = p_mxk_n + p_nxk_m - (1/2)*g_mnk(p_a - k_a)*(p™a - k™a)'.t

// Matrix element

M = 'V_{ab}[pl_a, kl_a]xD"{ab cd}[pl_a - kl_alxV_cd[p2_a, k2_a]'.t

// Apply substitutions

M=(D&V&P) >M

// Set up Mandelstam variables

mShell = setMandelstam([pl_a: 'm', p2_a: 'm', kl_a: 'm', k2_a: 'm'])

// Simplifications of matrix element
M = (ExpandAll & EliminateMetrics & 'd*i_i = D'.t) >> M
M = (mShell & 'u = 4xmxx2 - s - t'.t & Factor) >> M
println M
1
4(D —1)M* (M? +1t)
+ M* (4D —1)s* + 4(D — 1)st + (D — 10)t*) + 4(D — 4)M*t* + 4(D — 2)t*)

(16(D — 2)m* M* —8m? (M*(2(D — 1)s + (D — 4)t) — 2M*t?)




Algorithms

- The main atomic operation in any CAS is comparison of expressions

- Contractions between indices forms a mathematical graph, and thus comparison
becomes an expensive operation which strongly affects the overall performance

of CAS

Common approach:
canonicalisation

(Rodionov & Taranov 1989, Portugal 1999)

sort using symmetries, sort multipliers), then comparison becomes trivial:

RR 4. R0 —  —R™ gRupep R
R'rr:d;fRa.brchdba — RabndRabe}'Rchd

« The algorithm is equivalent to finding double coset representatives
% NP-hard problem in general (Butler 1984, Luks 1993, Holt 2005)

% Works only with products of simple tensors (need to expand if
product contains sum)

- Main idea: put indices of all expressions into "canonical” form (rename dummies,

Redberry's approach: graph-based

- i/ f_‘_ |
tensor com parison N
:._ ' I-"r " i {
(Rodionov & Taranov 1989) /n R pas
Ta) . (A
o . M e
Graph: multipliers - vertexes, dummies - edges At Oy Ay

Comparison of tensors = graph isomorphism (Gl) problem

+ Redberry does not perform expensive "canonicalisation” of terms

- It searches for isomorphisms (mappings of indices) between tensors and

does not rely on canonical form of expressions

+ Althought, Gl is at least NP, in all practical cases it can be solved very

efficiently (McKay, 1980)

- Redberry uses its own implementation of Gl problem optimized for

typical expressions arising in real calculations

Pesfarmance




Common approach:
canonicalisation

(Rodionov & Taranov 1989, Portugal 1999)

- Main idea: put indices of all expressions into "canonical” form (rename dummies,
sort using symmetries, sort multipliers), then comparison becomes trivial:

RadeRefchefab N _RabcdRabefRefcd
R'rcdea,brchdba N RabcdRabefRede
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Redberry's approach: graph-based
tensor comparison

(Rodionov & Taranov 1989)

Graph: multipliers - vertexes, dummies - edges Aak™ Cpy AP
Comparison of tensors = graph isomorphism (Gl) problem

- Redberry does not perform expensive "canonicalisation” of terms

- It searches for isomorphisms (mappings of indices) between tensors and
does not rely on canonical form of expressions

- Althought, Gl is at least NP, in all practical cases it can be solved very

efficiently (McKay, 1980)
- Redberry uses its own implementation of Gl problem optimized for
typical expressions arising in real calculations

Performance
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Performance

Typical problem: expand out product of sums and collect similar terms:
- involve nearly all internal low-level CAS routines
- strongly affects the overall performance of real calculations
- critical for ability of CAS to manage large-scale problems (huge expressions)

We used two systems for comparison:

- Cadabra v. 1.29: free and open-source, uses canonicalisation approach and
employs same engine as xAct
- Maple 17 Physics (latest): commercial and non free, the approach is unknown

Lx]

E
mEEE
323
23

949 term

(FuvaT” sWo? + .
(T WY Fpay + ... (99 terms)) = 0

Atomic comparison

+ Generate sum of 100 random different terms, rearrange indices (rename dummies
and shuffle indices within symmetries) and subtract from itself, e. g. :

) -

iy - - .
i Fedberry sym
| Cadabra sym
: +  Hedberry

10y % = Maple
£ ©  Cudabra

1

- Generate random nested products of sums, expand, rearrange

|-.|’! 1
I-Ifr' A B o
| i .
W 1 1y
" | .- y 1 E . e
= e 1 £
= | - -~ - o
L . 1 51
o - e
| - - b
||F!-' = it
= |‘|/‘ T T T T ! 1 : - I_J T:f T BTl
Hedberry, Redborry, s

Expand nested sums

indices (rename dummies and shuffle indices within symmetries),
and subtract from itself, e. g. :
(F;uz (T!J-“de - J + ---}(Rf.m(Fpi;Rr’r + } + } x (} -
(FL I R Ry, P Reey + ...) = 0




Atomic comparison

- Generate sum of 100 random different terms, rearrange indices (rename dummies
and shuffle indices within symmetries) and subtract from itself, e. g. :

(FMVQ,TU[gWa’B + ...(99 trﬂ-'r'ms)) —
(T ,WYPE, 0y + ... (99 terms)) = 0

10% : : : 10? : : : : :
<  Redberry sym o < Redberry sym
o Cadabra sym o O Cadabra sym
1020 ¢ Redberry | + Redberry
®  Maple o ¢ 10t = Maple
e (Cadabra ¢ (Cadabra
[ ]
8
@ 5 M L i g ot
: TR S :
100 got ° &
¢ " 1 ! 6 o % |
I . :> % y t —1
| | O 0 107"
10! i §e % * .
gasded’
102 ' : : : : . . : : 10—} . - - - E : :
2 1 G 8 10 12 14 16 18 20 5 10 15 20 25 30 35 40 45
Average product size Average indices number

z Freli




Expand nested sums

- Generate random nested products of sums, expand, rearrange
indices (rename dummies and shuffle indices within symmetries),

and subtract from itself, e. 8. :

(B (THR™ + ..) 4+ .0)) (Rap (FPaRey + .0) + ) X (c00) —
(F, , T"°RFRg,FP o Ry + ...) = 0

3 10°
10 i
.l’ .
L ] - - P
102k 10%F e
: . .
10"k 10T )
wm L ]
% ) ¢
= 100 £ 10%
o = o
= 8 .«
10°1 107! .
1072 ]”—2
10735 - v - - X 10-3k e ,
107 0= 19 10 10 10% 10 0% 10?2 10! 10 10! 102 10°
Redberry, s Redberry, s
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Technical detalls

- Programming language: Java, Groovy (for user interface)

« Operating system: any Linux, Windows, Mac
- Lines of code: 132 148

- User interface: IntelliJ IDEA (syntax highlighting, code completion),
command line is also available

- License: GNU GPL v3 (free and open source)
- Requirements: Java 7+, Groovy 2+

Full overview and comprehensive documentation:

http://redberry.cc




Thank you!
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1. Setup symmetries  Rgbed = Redba = —Rbacd

2. Check that R¥ apResacR + Rre¥ Rop™Rg™ = 0

Redberry code:

// Setup symmetries

println expr //prints zero




Mappings of indices

- The result of comparison is not just logical "true” or "false" but a
complicated mapping:

FoyGY ——— F,GY = { a—i }

maps to c—]J

- Several mappings can be found for a pair of tensors. E.g., if Ry IS
antisymmetric, then

a—a a—c
RabAc + RbcAa RabAc + RbcAa = 4 b - b and — b— b
maps to c—c c—a

- When mapping tensor onto itself, we obtain permutational symmetries of
its indices, so

= Finding symmetries of tensors = graph automorphism (GA) problem

Examples




Examples

- Find possible mappings between tensors

_(Ada + ApaAdp)deqi — AabAquik and (Amn - A-mpApn)leij + A?nnAnink

setAntiSymmetric 'A_mn', 'F_mnab'
from = '(A_m™n - A_m*pxA_p~*n)*F_nk*i_j + A_mn*A~n_j*xA"i k'.t
to = '-(A_d*a + A_p~axA_d~p)*F~d_kg~i - A*a_bxA~b_g*A~i k'.t
mappings = from % to
for (mapping in mappings)

println mapping

-{_i->_i, _j->_q, _k->_k, _m->"a}
{_i->"k, _j—>_q, _k—>"i, _m->"a}

- Find symmetries of (RabcAde + RpdeAac) A + Raap

addSymmetry 'R_abc', -[[0, 1]1].p
setSymmetric 'A_ab'
expr = '(R_abcxA_de + R_bdexA_ac)xA”ce + R_adb'.t
symmetries = findIndicesSymmetries('_abd'.si, expr)
for (sym in symmetries)

println sym

+[]
_[[01 2]]




