YEARS /ANS CERN
ADAPTATIVE TRACK SCHEDULING TO
OPTIMIZE CONCURRENCY AND

VECTORIZATION IN GEANTV

J Apostolakis, M Bandieramonte, G Bitzes, R Brun, P Canal,
F Carminati, J C De Fine Licht, L Duhem, V D Elvira, A Gheata,
S Jun, G Lima, M Novak, R Sehgal, O Shadura, S Wenzel

ACAT 2014
Prague, 1-5 September 2014

Outlook

- GeantV: project description

- The data model: vectors and baskets
- The track dispatching model

- Vectorization overheads

- Scalability and performance

- Optimizing concurrency

- Optimizing the model parameters

Andrei Gheata 3

The project goals

- Started in 2012

Prototype a new approach to
speedup particle transport
simulation

- Most simulation time spent in few
percent of volumes ==

- Enforce locality and vectorization
transporting groups of tracks

- Add parallelism on top Datieten
- Add new entity to control the |

workflow .

Disk

[Generate(Nevents)]

pick-up

transportable baskets
que baskets

Digitize & 1/O thread

L

Worker threads

y

SyoeJ} Uo dooj Jayojedsi

ain scheduler

O O 6spatcher thread

Output tracks Crossing tracks

Push collection

« Evolved into an ambitious project exploring*ffany dimensions of
performance

— Locality (cache coherence, data structures)

— Parallelism (multi/many core, SIMD)

— Vector dispatching down to algorithms

— Transparent usage of resources (CPU/GPU)

— Algorithm template specializations & generality of code (next talk)
— Physics & geometry algorithm improvements

R&D directions |

» Locality by geometry or physics

« Data structures, SOA types : je

» Concurrency libraries » Dispatch efficient vectors

« Steering code * Manage concurrency and

* Base classes, interfaces resources

+ Management and configuration '+ Schedule transportation, user

» Testing, benchmarking, | code, 1/0 based on queues
development tools .« Optimize model parameters

"« Next generation geometry
: modeling

« Transforming existing G4 ,
'« Template specialized algorithms

algorithms into “kernels”

* Support for vectorization .« Re-usability of inlined “codelets”
* Fasttabulated physics GeantV /'« CPUIGPU transparent support
* Template specializations kernel pport for vectorization
» Support for user fast si

models

Geometry

iques for efficient
drithm vectorization and
eyond: see talk of
Sandro Wenzel in this
session

geant.web.cern.ch

http://geant.web.cern.ch
http://geant.web.cern.ch

Andrei Gheata 5

Data structures for vectorization .

GeantTrack GeantTrack v 00 40 80 co 00

fEvent *fEventV

fEvslot *fEvslotV

fParticle 28 *fParticleV

fPDG JC>) *fPDGV .

- pd

fXpos gl *fXposV S
N fYpos % *fYposV Q
(3 fZpOS Sl *fZposV Cﬁ
hl 7Xdlir M £ dlirV =
o : > e o
< fydir fydirVv
A Zdir *Zdirv fSnextV fSafetyV S

a

Edep *fEdepV fPathV fNextpathV %

Pstep *fPstepV «Q

Shext *fSnextV L

Safety *fSafetyV N

Andrei Gheata 6

Track locality criteria

- Putting together tracks having some locality criteria -> baskets
- Geometry: particles located in the same detector (logical) volume -> stepper
- Physics: particles matching type/energy range -> physics processes
- Custom: e.g. triggers for fast physics handover
- After some processing stage a particle is “stamped” for the next stage
- Produced new particles added to the “basket” output

- Currently stages are chained, in future the particle will be “released” for more
efficient re-scheduling

Transport (thread local)

_—

Scheduling

Scheduling
(cgncurrent)

(concurrent)

Physics (thread local)

Andrei Gheata 7

GeantV features

GeantV
scheduler

Physics Fast
filter transport
filter

Geometry

Generator filter

Geometry
. Particle region,
Logical i
type, particle
volume T tvpe
trigger e upe
trigger energy THREADS

Particles

Monitoring

digitize, garbage
collect

ACTIONS: inject,
Vector/single, prioritize

Triggers, alarms

FastSim GPU Vector Physics
stepper broker stepper { sampler
User defined VecGeonm Stelp e Phyz.sz?:ess (Vector)
param. navigator sampiing manager : : physics
Fill output Filter neutrals
vector (Field) Compute
Propagator || "> ¢
Step limiter . Tob Seal
State
samples

Andrei Gheata 8

GPU Connector to the Vector Prototype

- Goals
- Pick up baskets and select only tracks GPU can handle

- Maximize kernel coherence
- Adapt to GPU ‘ideal’ bucket size (very different from CPU)
- Without hanging on to event too long

- Implementation
- Stage particles in a set of buckets

- Type(s) of bucket is customizable.
» For example based on particle/energy that have a common (sub)set of
physics models likely to apply
« Keep order provided by main scheduler
- Delay the start of a kernel/task until it has enough data or has not

received any new data in a while

- Start uploads after each basket processing to maximize overlap
(even before the bucket is full) -> asynchronous transfers

Andrei Gheata 9

Scheduling features

Automatic threshold-

1...Nyorumes based basket dispatch Transport
 — queue W empty
" Pushon
| TGeoVolume " threshold W full

Basket pool Basket manager

Reusage of b:asT‘

' transported

recyc Work balancing:
AddTrack.-"" On-demand event F“_:O_ _
el flushing mechanisml Prioritize events:
el LIFO
Generator Scheduler < Stepper
1 "'Nworkers 1 "'Nworkers

Andrei Gheata

Challenges for vectorization

- Pre-requirement to use vectorized: contiguity and
alignment of the track arrays

A

Method(fXposV,..., fNtracks)
> or
Method(GeantTrack v &)

Use

fEventV fParticleV

« During transport, tracks stop leaving holes in the

container .
Compact
A /
fEventV fParticleV
\ A B
fEventV fParticleV . Move
Compact N

fEventV fParticleV fEventV fParticleV

Andrei Gheata

Vector dispatching overheads

- Track selection according some criteria

Reshuffle

>

fEventV fParticleV e fEventV fParticleVv

« Tracks have to be copied to a receiver during
rescheduling

B

A ~EBB§—~—~—>
fEventV fParticleV .
. multithreaded
fEventV fParticleV
Copy

/f;ventv fParticleV

Andrei Gheata

Scheduling actions

- The scheduler has to apply policies to:
- Provide work balancing (concurrency)
- Single work queue
- Keep memory under control
- Buffering limited number of events
- Prioritizing events, prioritizing 1/0
+ Issuing event flushing actions
- Keep the vectors up (most of the time)

- Optimize vector size
- Too large: to many pending baskets
» Too small: inefficient vectorization

- Trigger postponing tracks or tracking with scalar algorithms

- Sensors/triggers
- Work queue size thresholds
- Memory threshold
- Vector size threshold

Andrei Gheata

Scalability for MT Is challenging

« Performance is constantly monitored

— Jenkins module run daily
e Allow ina and fixin 1000 events with 100 tracks each,
boa?ﬂe?]gceégc’[g and J measured on a 24-core dual socket E5-
1L e 2695 v2 @ 2.40GHz (IVB).
« Amdahl still high due to criticity of
basket-to-queue dispatching

operations

Turbo off

% Locks and Waits Locks and Waits viewpoint (cha

& Analysis Target Analysis Type | | Kt summary | ECRELIRIngY % Caller/Callee | |+% Top-down Tree | | BE Tasks and Frames

Grouping: | Sync Object / Function / Call Stack CI |
.) Wait Time by Utilizationw o Wait Spin Object Object Creation Module and 1
Sync Object / Function / Call Stack M. .
Bide mro Dor B Bover Count Tme ™M “Npe Function Bottleneck due to dynamic
~Mutex 0xB0d1cag4 102.9255 [243.287 1.5065 Mutex libThread.so!TPosixMutex::TPosi...” object a”ocatlon Of naVIQatlon)
<TPosixMutex::Lock 102.9255 [N 243,287 1.506s lib.. Mutex libThread.so!TPosixMutex::TPosi...
=~ TMutex::Lock 102.925s [243,287 1.506s lib.. Mutex libThread.so!TMutex::Lock . States 4

. TLockGuard:: TLockGuard 102.925s [243,287 1.506s lib.. Mutex libThread.so!TLockGuard:: TLock..

* Tstorage::ObjectAlloc 97.921s \ 226,643 1 4065 m libThread.so!TStorage: Ob]ectAIIoc

b TStorage::ObjectDealloc 5.004s 16,644 '0.100s lib.. Mutex libThread. solTStorage::ObjectDe ...
P Condition Variable 0x65d351a3 50.028s [N 873 0s Condit ... libThread.solTPosixCondition:: TP ...
P Condition Variable 0xf28dc0a5 16.5505 [1 0s Condit ... libThread.so! TPesixCondition:: TP ... e—e New implementation ||
P Mutex 0x1131fdfe 6.837s [l 31 0s Mutex libThread.so!TPosixMutex::TPosi... e Old implementation
PStream 0x8cac9108 0.580s | 2 0s Stream libCore.so!T5tring::Gets P

" . " - " " L L L L L
P Condition Variable 0xac308924 0.199s| 1 0s Condit ... ibThread.so!TPosixCondition:: TP ... 1 2 4 8 12 16 24

Threads

Andrei Gheata

“Fast” physics and upgrades

Optimizing the performance of GEANT4 physics will have a long path

Goal: compact, simple and realistic physics to study the prototype
concepts and behavior

Requirements: reproduce physics well enough to study the prototype
behavior
- energy deposit, track length, # steps, # secondary tracks, etc.

Implementation:

- tabulated vales of x-sections(+dE/dx) from any GEANTA4 physics list for all particles
and all elements over a flexible energy grid (EM and hadronic processes)

- flexible number of final states for all particles, all active reactions, all elements are
also extracted from GEANT4 and stored in tables

Status: | GEANT4 GEANT4
— a complete particle transport has been Geant4 TabXsec

physics physics

iImplemented based on these tables both behind
the prototype and behind GEANT4

— possible to test new concepts, performance
relative to GEANT4 tracking GeantV

— individual physics processes can be replaced by Optimized
their optimized version when ready physics

Andrei Gheata

Preliminary performance checks

Is overhead larger than gain?

- Simple example imported from GEANT4
novice examples

- Scintillator+absorber calorimeter

- 30 MeV to 30 GeV electrons, 100K primaries

- Physics reproduced, small differences to be
investigated for the highest energy

- Single thread performance expected to
increase with the setup complexity
- Evolve the example

GEANT4+TabPhys .
GEANT-V+TGeo+TabPhys I
GEANT-V+VecGeom+TabPhys mmwmm

- ExXNO3 example

Caching&SIMD
- overheads

P Scintillator

Energy [MeV]

10f

Energy [MeV]
[

o
=

(=]

0.001

Mean energy deposit in ABSORBER

G4-GaPhys
G4-TabPhys L
GV-TabPhys

Mean energy deposit in GAP

T T T ' T
% G4-G4Phys = ©
. " lg4-TabPhys = *
GV-TabPhys
..... P
L]
5 . et SOOI RSN S R
........ B
*
................. e
T T IO A e
|]
1 2 3 4 5 6 7 8 9 10

Andrei Gheata

Parameters: memory buffer

- Policy: keep fixed number of events in memory
- Inject N, 5 events at startup (from N, to be simulated)
- As an event gets flushed, inject a new one

- Maximum memory has an optimum at N, «/N,,,~ 20%

- CPU performance is reached at N, /N,,,~ 40%
- Gain for optimum value can reach 10%

Job time versus number of buffered events (4 threads)

Dependency of number of buffered events and resident memory [ME]

7.2

Job time, sec

7.1

6.9

6.8

80 100

20 40 60
Number of buffered events

60 80 100
Number of buffered events

Andrei Gheata

Parameters: basket size

- The vector size is a major parameter of
the model
- Impacts on vectorization potential Simulation time as function of basket size (8 threads)
- The optimum value depends on many ,
parameters
- Such as geometry complexity, physics
- To be explored for several setups

- Small vectors = inefficient vectorization,
dispatching becomes an overhead 3

- Large vectors = larger overheads for 12
scatter/gather, more garbage
collections (less transportable baskets)

- The differences in total simulation time 1o
can be as high as 30-40%

- Aiming for an automatic adjustment of vector
size per volume g

) : . -
E)(?r;i())(gglcgc?(t) Iresait;[e as good as the optimum 10 O of tracks/basket

15

simulation time

14

9

Andrei Gheata

GeantV & genetic algorithms

- Optimize GeantV scheduler model
- Use genetic algorithms to find the optimum in the parameter space

- Repeat for many setups with different geometry and physics
configurations

- Understand the patterns of the model and derive adaptative behavior
for parameters (short learning phase followed by parameterized
behavior)

- Model chromosomes: thresholds for prioritizing events, basket
size, number of threads, threshold for switching to single track
mode, size of event buffer

- Fitness function: minimize simulation time while keeping in
predefined memory limits

- Currently investigating single parameter space

- Understand the range to be scanned, expected behavior

- Used in order to define the crossover, mutation, or other methods to
evolve the genetic population

Andrei Gheata

Summary

- Track scheduling is one of the core components of the GeantV
project

- Allowing to achieve performance from locality, fine grain parallelism
and vectorization

- Vectorization has a cost

- Overheads in vector reshuffling and gather/scatter have to be (much)
smaller than the SIMD and locality gains

- The preliminary benchmarking shows important performance
gains with respect to the classical transport approach
- Simple geometry and physics so far
- The gains expected to increase with the complexity
- The scheduling model is complex and its optimization difficult
- Currently understanding the behavior of single parameters
- Started to investigate an approach based on genetic algorithms

