
ADAPTATIVE TRACK SCHEDULING TO

OPTIMIZE CONCURRENCY AND

VECTORIZATION IN GEANTV

J Apostolakis, M Bandieramonte, G Bitzes, R Brun, P Canal,

F Carminati, J C De Fine Licht, L Duhem, V D Elvira, A Gheata,

S Jun, G Lima, M Novak, R Sehgal, O Shadura, S Wenzel

 ACAT 2014
Prague, 1-5 September 2014

Outlook

• GeantV: project description

• The data model: vectors and baskets

• The track dispatching model

• Vectorization overheads

• Scalability and performance

• Optimizing concurrency

• Optimizing the model parameters

Andrei Gheata 2

The project goals
• Started in 2012

• Prototype a new approach to
speedup particle transport
simulation

• Most simulation time spent in few
percent of volumes

• Enforce locality and vectorization
transporting groups of tracks

• Add parallelism on top

• Add new entity to control the
workflow

Andrei Gheata 3

• Evolved into an ambitious project exploring many dimensions of
performance
– Locality (cache coherence, data structures)

– Parallelism (multi/many core, SIMD)

– Vector dispatching down to algorithms

– Transparent usage of resources (CPU/GPU)

– Algorithm template specializations & generality of code (next talk)

– Physics & geometry algorithm improvements

R&D directions

Andrei Gheata 4

GeantV

kernel

Scheduler

Geometry Physics

• Locality by geometry or physics

• Dispatch efficient vectors

• Manage concurrency and

resources

• Schedule transportation, user

code, I/O based on queues

• Optimize model parameters

• Data structures, SOA types

• Concurrency libraries

• Steering code

• Base classes, interfaces

• Management and configuration

• Testing, benchmarking,

development tools

• Next generation geometry

modeling

• Template specialized algorithms

• Re-usability of inlined “codelets”

• CPU/GPU transparent support

• Support for vectorization

• Transforming existing G4

algorithms into “kernels”

• Support for vectorization

• Fast tabulated physics

• Template specializations

• Support for user fast simulation

models

geant.web.cern.ch

Techniques for efficient

algorithm vectorization and

beyond: see talk of

Sandro Wenzel in this

session

http://geant.web.cern.ch
http://geant.web.cern.ch

Data structures for vectorization

Andrei Gheata 5

fEvent

fEvslot

fParticle

fPDG

…

fXpos

fYpos

fZpos

fXdir

fYdir

fZdir

…

Edep

Pstep

Snext

Safety

 *fPath

*fNextpath

*fEventV

*fEvslotV

*fParticleV

*fPDGV

…

*fXposV

*fYposV

*fZposV

*fXdirV

*fYdirV

*fZdirV

…

*fEdepV

*fPstepV

*fSnextV

*fSafetyV

00 40 80 C0 00

*fPathV

*fNextpathV

fEventV fEvslotV fParticle

V fPDGV …

fXPosV fYPosV

fZPosV

fSnextV fSafetyV

…

fPathV fNextpathV

fN
tra

c
k
s
=

1
0
 p

a
d
d
in

g
=

3
2

v
e
c
to

r
 1

v
e

c
to

r
2

GeantTrackPool<VolumePath_t*>

GeantTrack GeantTrack_v

S
O

A
 o

f fN
tra

c
k
s

fBuffer

1
9
2
 b

y
te

s

Track locality criteria

• Putting together tracks having some locality criteria -> baskets
• Geometry: particles located in the same detector (logical) volume -> stepper

• Physics: particles matching type/energy range -> physics processes

• Custom: e.g. triggers for fast physics handover

• After some processing stage a particle is “stamped” for the next stage
• Produced new particles added to the “basket” output

• Currently stages are chained, in future the particle will be “released” for more
efficient re-scheduling

Andrei Gheata 6

Input
Scheduling

(concurrent)

Scheduling

(concurrent)

Transport (thread local)

Physics (thread local)

Output

 P
a

rt
ic

le
s

GeantV features

Andrei Gheata 7

GeantV

scheduler

Monitoring

Triggers, alarms

A
C

T
IO

N
S

:
in

je
c
t,

V
e

c
to

r/
s
in

g
le

,
p

ri
o

ri
ti
z
e

,

d
ig

it
iz

e
,

g
a

rb
a

g
e

c
o

lle
c
t

Generator
Geometry

filter

Logical

volume

trigger

Physics

filter

Particle

type,

energy

trigger

Fast

transport

filter

Geometry

region,

particle

type,

energy

INPUT VECTORS OF PARTICLES

Vector

stepper

VecGeom

navigator

F
u
ll

g
e

o
m

e
tr

y

S
im

p
lif

ie
d

g
e

o
m

e
tr

y

Step

sampling

Filter neutrals

(Field)

Propagator

Physics

sampler

Tab. Xsec

Tab. final

state

samples

Phys. Process

post-step
(Vector)

physics

Compute

final state

Step limiter

reshuffle

Secondaries

TabXsec

manager

OUTPUT VECTORS OF PARTICLES

FastSim

stepper

TO SCHEDULER

GPU

broker

User defined

param.

Fill output

vector

WORK QUEUE

THREADS

GPU Connector to the Vector Prototype

• Goals
• Pick up baskets and select only tracks GPU can handle

• Maximize kernel coherence

• Adapt to GPU ‘ideal’ bucket size (very different from CPU)

• Without hanging on to event too long

• Implementation
• Stage particles in a set of buckets

• Type(s) of bucket is customizable.

• For example based on particle/energy that have a common (sub)set of
physics models likely to apply

• Keep order provided by main scheduler

• Delay the start of a kernel/task until it has enough data or has not
received any new data in a while

• Start uploads after each basket processing to maximize overlap
(even before the bucket is full) -> asynchronous transfers

Andrei Gheata 8

Scheduling features

Andrei Gheata 9

empty

full
Basket pool

TGeoVolume

Basket manager

current

Generator Scheduler

1…Nvolumes Transport

queue

Stepper

transported

recycle
AddTrack

priority

AddTrack

Push on

threshold

1…Nworkers 1…Nworkers

Automatic threshold-

based basket dispatch

Reusage of baskets

On-demand event

flushing mechanism

Work balancing:

FIFO

Prioritize events:

LIFO

Challenges for vectorization

• Pre-requirement to use vectorized: contiguity and

alignment of the track arrays

Andrei Gheata 10

fEventV fParticleV …

• During transport, tracks stop leaving holes in the

container

Method(fXposV,…, fNtracks)

or

Method(GeantTrack_v &)

fEventV fParticleV …

fEventV fParticleV

fEventV fParticleV fEventV fParticleV

Use

Compact

Compact

Move

A

A

A

B A

Vector dispatching overheads

• Track selection according some criteria

Andrei Gheata 11

fEventV fParticleV …

• Tracks have to be copied to a receiver during

rescheduling

fEventV fParticleV …

fEventV fParticleV

fEventV fParticleV

Reshuffle

Copy

Copy

fEventV fParticleV …

A A

A

B

C
multithreaded

Scheduling actions

• The scheduler has to apply policies to:
• Provide work balancing (concurrency)

• Single work queue

• Keep memory under control
• Buffering limited number of events

• Prioritizing events, prioritizing I/O

• Issuing event flushing actions

• Keep the vectors up (most of the time)
• Optimize vector size

• Too large: to many pending baskets

• Too small: inefficient vectorization

• Trigger postponing tracks or tracking with scalar algorithms

• Sensors/triggers
• Work queue size thresholds

• Memory threshold

• Vector size threshold

Andrei Gheata 12

Scalability for MT is challenging

1000 events with 100 tracks each,
measured on a 24-core dual socket E5-
2695 v2 @ 2.40GHz (IVB).

Andrei Gheata 13

• Performance is constantly monitored
– Jenkins module run daily

• Allows detecting and fixing
bottlenecks

• Amdahl still high due to criticity of
basket-to-queue dispatching
operations

Bottleneck due to dynamic

object allocation of navigation

states

“Fast” physics and upgrades

• Optimizing the performance of GEANT4 physics will have a long path

• Goal: compact, simple and realistic physics to study the prototype
concepts and behavior

• Requirements: reproduce physics well enough to study the prototype
behavior
• energy deposit, track length, # steps, # secondary tracks, etc.

• Implementation:
• tabulated vales of x-sections(+dE/dx) from any GEANT4 physics list for all particles

and all elements over a flexible energy grid (EM and hadronic processes)

• flexible number of final states for all particles, all active reactions, all elements are
also extracted from GEANT4 and stored in tables

Andrei Gheata 14

GEANT4

Geant4

physics

GEANT4

TabXsec

physics

GeantV

TabXsec

physics

GeantV

Optimized

physics

• Status:
– a complete particle transport has been

implemented based on these tables both behind
the prototype and behind GEANT4

– possible to test new concepts, performance
relative to GEANT4 tracking

– individual physics processes can be replaced by
their optimized version when ready

Preliminary performance checks

• Is overhead larger than gain?

• Simple example imported from GEANT4
novice examples
• Scintillator+absorber calorimeter

• 30 MeV to 30 GeV electrons, 100K primaries

• Physics reproduced, small differences to be
investigated for the highest energy

• Single thread performance expected to
increase with the setup complexity
• Evolve the example

Andrei Gheata 15

ExN03 example

P

b

Scintillator

Caching&SIMD

- overheads

Parameters: memory buffer

• Policy: keep fixed number of events in memory
• Inject Nbuff events at startup (from Ntotal to be simulated)

• As an event gets flushed, inject a new one

• Maximum memory has an optimum at Nbuff/Ntot~ 20%

• CPU performance is reached at Nbuff/Ntot~ 40%
• Gain for optimum value can reach 10%

Andrei Gheata 16

Parameters: basket size
• The vector size is a major parameter of

the model
• Impacts on vectorization potential

• The optimum value depends on many
parameters

• Such as geometry complexity, physics

• To be explored for several setups

• Small vectors = inefficient vectorization,
dispatching becomes an overhead

• Large vectors = larger overheads for
scatter/gather, more garbage
collections (less transportable baskets)

• The differences in total simulation time
can be as high as 30-40%

• Aiming for an automatic adjustment of vector
size per volume

• Performing at least as good as the optimum
for fixed vector size

Andrei Gheata 17

GeantV & genetic algorithms

• Optimize GeantV scheduler model
• Use genetic algorithms to find the optimum in the parameter space

• Repeat for many setups with different geometry and physics
configurations

• Understand the patterns of the model and derive adaptative behavior
for parameters (short learning phase followed by parameterized
behavior)

• Model chromosomes: thresholds for prioritizing events, basket
size, number of threads, threshold for switching to single track
mode, size of event buffer

• Fitness function: minimize simulation time while keeping in
predefined memory limits

• Currently investigating single parameter space
• Understand the range to be scanned, expected behavior

• Used in order to define the crossover, mutation, or other methods to
evolve the genetic population

Andrei Gheata 18

Summary

• Track scheduling is one of the core components of the GeantV
project

• Allowing to achieve performance from locality, fine grain parallelism
and vectorization

• Vectorization has a cost

• Overheads in vector reshuffling and gather/scatter have to be (much)
smaller than the SIMD and locality gains

• The preliminary benchmarking shows important performance
gains with respect to the classical transport approach

• Simple geometry and physics so far

• The gains expected to increase with the complexity

• The scheduling model is complex and its optimization difficult

• Currently understanding the behavior of single parameters

• Started to investigate an approach based on genetic algorithms

Andrei Gheata 19

