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Outlook 

• GeantV: project description 

• The data model: vectors and baskets 

• The track dispatching model 

• Vectorization overheads 

• Scalability and performance 

• Optimizing concurrency 

• Optimizing the model parameters 
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The project goals 
• Started in 2012 

•  Prototype a new approach to 
speedup particle transport 
simulation 

• Most simulation time spent in few 
percent of volumes 

• Enforce locality and vectorization 
transporting groups of tracks 

• Add parallelism on top 

• Add new entity to control the 
workflow 
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• Evolved into an ambitious project exploring many dimensions of 
performance 
– Locality (cache coherence, data structures) 

– Parallelism (multi/many core, SIMD) 

– Vector dispatching down to algorithms 

– Transparent usage of resources (CPU/GPU) 

– Algorithm template specializations & generality of code (next talk) 

– Physics & geometry algorithm improvements 



R&D directions 
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GeantV 

kernel 

Scheduler 

Geometry Physics 

• Locality by geometry or physics 

• Dispatch efficient vectors 

• Manage concurrency and 

resources 

• Schedule transportation, user 

code, I/O based on queues 

• Optimize model parameters 

• Data structures, SOA types 

• Concurrency libraries 

• Steering code 

• Base classes, interfaces 

• Management and configuration 

• Testing, benchmarking, 

development tools 

• Next generation geometry 

modeling 

• Template specialized algorithms 

• Re-usability of inlined “codelets” 

• CPU/GPU transparent support 

• Support for vectorization 

 

• Transforming existing G4 

algorithms into “kernels” 

• Support for vectorization 

• Fast tabulated physics 

• Template specializations 

• Support for user fast simulation 

models 

geant.web.cern.ch 

Techniques for efficient 

algorithm vectorization and 

beyond: see talk of 

Sandro Wenzel in this 

session 

http://geant.web.cern.ch
http://geant.web.cern.ch


Data structures for vectorization 
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Track locality criteria 

• Putting together tracks having some locality criteria -> baskets 
• Geometry: particles located in the same detector (logical) volume -> stepper 

• Physics: particles matching type/energy range -> physics processes 

• Custom: e.g. triggers for fast physics handover 

• After some processing stage a particle is “stamped” for the next stage 
• Produced new particles added to the “basket” output 

• Currently stages are chained, in future the particle will be “released” for more 
efficient re-scheduling 
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GeantV features 
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GPU Connector to the Vector Prototype 

• Goals 
• Pick up baskets and select only tracks GPU can handle 

• Maximize kernel coherence 

• Adapt to GPU ‘ideal’ bucket size (very different from CPU) 

• Without hanging on to event too long 

• Implementation 
• Stage particles in a set of buckets 

• Type(s) of bucket is customizable. 

• For example based on particle/energy that have a common (sub)set of 
physics models likely to apply 

• Keep order provided by main scheduler 

• Delay the start of a kernel/task until it has enough data or has not 
received any new data in a while 

• Start uploads after each basket processing to maximize overlap 
(even before the bucket is full) -> asynchronous transfers 
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Scheduling features 
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Challenges for vectorization 

• Pre-requirement to use vectorized: contiguity and 

alignment of the track arrays 
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fEventV fParticleV … 

• During transport, tracks stop leaving holes in the 

container 
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Vector dispatching overheads 

• Track selection according some criteria 
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fEventV fParticleV … 

• Tracks have to be copied to a receiver during 

rescheduling 
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Scheduling actions 

• The scheduler has to apply policies to: 
• Provide work balancing (concurrency) 

• Single work queue 

• Keep memory under control 
• Buffering limited number of events 

• Prioritizing events, prioritizing I/O 

• Issuing event flushing actions 

• Keep the vectors up (most of the time) 
• Optimize vector size 

• Too large: to many pending baskets 

• Too small: inefficient vectorization 

• Trigger postponing tracks or tracking with scalar algorithms 

• Sensors/triggers 
• Work queue size thresholds 

• Memory threshold 

• Vector size threshold 
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Scalability for MT is challenging 

1000 events with 100 tracks each, 
measured on a 24-core dual socket E5-
2695 v2 @ 2.40GHz (IVB). 
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• Performance is constantly monitored  
– Jenkins module run daily 

• Allows detecting and fixing 
bottlenecks 

• Amdahl still high due to criticity of 
basket-to-queue dispatching 
operations  

Bottleneck due to dynamic 

object allocation of navigation 

states 



“Fast” physics and upgrades 

• Optimizing the performance of GEANT4 physics will have a long path 

• Goal: compact, simple and realistic physics to study the prototype 
concepts and behavior 

• Requirements: reproduce physics well enough to study the prototype 
behavior 
• energy deposit, track  length, # steps, # secondary tracks, etc.  

• Implementation:  
• tabulated vales of x-sections(+dE/dx) from any GEANT4 physics list for all particles 

and all elements over a flexible energy grid (EM and hadronic processes) 

• flexible number of final states for all particles, all active reactions, all elements are 
also extracted from GEANT4 and stored in tables  
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• Status:  
– a complete particle transport has been 

implemented based on these tables both behind 
the prototype and behind GEANT4  

– possible to test new concepts, performance 
relative to GEANT4 tracking  

– individual physics processes can be replaced by 
their optimized version when ready 

 

 



Preliminary performance checks 

• Is overhead larger than gain? 

• Simple example imported from GEANT4 
novice examples 
• Scintillator+absorber calorimeter 

• 30 MeV to 30 GeV electrons, 100K primaries 

• Physics reproduced, small differences to be 
investigated for the highest energy 

• Single thread performance expected to 
increase with the setup complexity 
• Evolve the example 
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Parameters: memory buffer 

• Policy: keep fixed number of events in memory 
• Inject Nbuff events at startup (from Ntotal to be simulated) 

• As an event gets flushed, inject a new one 

• Maximum memory has an optimum at Nbuff/Ntot~ 20% 

• CPU performance is reached at Nbuff/Ntot~ 40% 
• Gain for optimum value can reach 10% 
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Parameters: basket size 
• The vector size is a major parameter of 

the model 
• Impacts on vectorization potential 

• The optimum value depends on many 
parameters 

• Such as geometry complexity, physics 

• To be explored for several setups 

• Small vectors = inefficient vectorization, 
dispatching becomes an overhead 

• Large vectors = larger overheads for 
scatter/gather,  more garbage 
collections (less transportable baskets) 

• The differences in total simulation time 
can be as high as 30-40% 

• Aiming for an automatic adjustment of vector 
size per volume 

• Performing at least as good as the optimum 
for fixed vector size 
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GeantV & genetic algorithms 

• Optimize GeantV scheduler model 
• Use genetic algorithms to find the optimum in the parameter space 

• Repeat for many setups with different geometry and physics 
configurations 

• Understand the patterns of the model and derive adaptative behavior 
for parameters (short learning phase followed by parameterized 
behavior) 

• Model chromosomes: thresholds for prioritizing events, basket 
size, number of threads, threshold for switching to single track 
mode, size of event buffer 

• Fitness function: minimize simulation time while keeping in 
predefined memory limits 

• Currently investigating single parameter space 
• Understand the range to be scanned, expected behavior 

• Used in order to define the crossover, mutation, or other methods to 
evolve the genetic population 
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Summary 

• Track scheduling is one of the core components of the GeantV 
project 

• Allowing to achieve performance from locality, fine grain parallelism 
and vectorization 

• Vectorization has a cost 

• Overheads in vector reshuffling and gather/scatter have to be (much) 
smaller than the SIMD and locality gains 

• The preliminary benchmarking shows important performance 
gains with respect to the classical transport approach  

• Simple geometry and physics so far 

• The gains expected to increase with the complexity 

• The scheduling model is complex and its optimization difficult 

• Currently understanding the behavior of single parameters 

• Started to investigate an approach based on genetic algorithms 
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