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• The quality of the analysis of nuclear spectrometric data consists in 

general  in correct identification of the existence of peaks and 

subsequently in good estimation of their positions and intensities 
(areas).   

• The peaks as the main carrier of spectrometric information are very 

frequently positioned close to each other.  

• The extraction of correct information out of spectra sections, where 

due to the limited resolution of the equipment, presence of noise, 

overlapped signals from various sources, is a very complicated 

problem.  

• The deconvolution methods represent an efficient tool to improve 

the resolution in the data. It is of great importance mainly in the 

tasks connected with decomposition of overlapped peaks 

(multiplets) and subsequently for the determination of positions and 

intensities of peaks in gamma-ray spectra. 

Introduction 



 Illustration of smearing effects of an imperfect instrument - analyzer 

Linear system with additive noise 

The system can be identified 

• according to theoretical knowledge, 

• by measurement e.g. calibration source (only one peak) etc. 



where x(i) is the input into the system, h(i) is its impulse function (response), y(i) is 

the output from the system, n(i) is additive noise and “ * “ denotes the operation of 

the convolution.   

• Stationary discrete system that satisfies the superposition principle can be 

described by convolution sum  
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In matrix form it can be written 

where the matrix H has dimensions N × M, the vectors y, n have length N and 

vector x has length M, while N ≥ M (overdetermined system). 

• To find least square solution of the above given system of linear equations    

  the functional 

2H x y

  should be minimized. 
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where N = M + L – 1.  

• For invariant convolution system the columns of the matrix H are 
represented by the response mutually shifted by one position   

• Unconstrained least squares estimate of the solution is  

1ˆ ( )TH H H Tx y



Three types of regularization methods are very often used: 

• smoothing, 

• constraints imposition (for example only non-negative data are accepted), 

• choice of a prior information probability function - Bayesian statistical approach.  

• Tikhonov-Miller regularization. The functional 

2 2H Q x y x

is minimized. The solution can be obtained by solving the equation  

 
1

T T TH H Q Q H


 x y

Q, α are the regularization matrix and parameter, respectively,  

 Zero-th order or Tikhonov regularization for  

 


 
1

T TH H Hx y

• Riley Algorithm (commonly called iterated Tikhonov regularization). To obtain 

smoother solution one may use algorithm of Tikhonov-Miller regularization with 

iterative refinement 
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However, because of its iterative nature, the Riley algorithm lends itself to another type 

of regularization, so called Projections On Convex Sets – POCS. It means we set all 

negative elements to zero after each iteration.   
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Fig. Riley deconvolution with POCS 

regularization - thick line is original 

spectrum, thin line represents 

spectrum after deconvolution. 

Van Cittert Algorithm. The basic form of Van Cittert algorithm for discrete convolution 

system is  
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where:  

  A   is system Toeplitz matrix, 

  n   represents iteration number and  

  μ   is the relaxation factor.  



Fig. 65 Original spectrum (thick 

line), deconvolved spectrum using Van 

Cittert algorithm (without 

regularization) and deconvolved 

spectrum using Van Cittert algorithm 

regularized via POCS method.  

Gold Algorithm. If we choose the local variable relaxation factor 
 

 








( )

1
( )

0

n

i M
n

im

m

x i

A x m


and we substitute it into Van Cittert formula we get the  

Gold deconvolution algorithm: 
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Its solution is always positive when the input data are positive, which makes the 

algorithm suitable for the use for naturally positive definite data, i.e., spectroscopic 

data. 
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Fig.: Original spectrum (thick line) and 

deconvolved spectrum using Gold 

algorithm (thin line) after 10000 

iterations. Channels are shown as small 

circles.  

Fig.: Original spectrum (thick line) and 

deconvolved spectrum using Gold 

algorithm (thin line) after 50000 

iterations.  
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The Bayes solution is found by maximizing the right part of the equation. The maximum likelihood 

(ML) solution maximizes the density  p(y|x) over x. For discrete data the algorithm has the form   
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This iterative method forces the deconvolved spectra to be non-negative. The Richardson-Lucy 

iteration converges to the maximum likelihood solution for Poisson statistics in the data. It is also 

sometimes called the expectation maximization (EM) method.  

• Richardson-Lucy Algorithm. Richardson-Lucy like algorithms use a statistical model for data 

formation and are based on the Bayes formula. The Bayesian approach consists of 

constructing the conditional probability density relationship  

 



Fig.: Original spectrum (thick line) and deconvolved spectrum using 

Richardson-Lucy algorithm (thin line) after  50 000 iterations.  



• Maximum A Posteriori Deconvolution Algorithm. The maximum a posteriori (MAP) solution 

maximizes over  x the product  ( | ) ( )p y x p x . For discrete data the algorithm has the form  
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Positivity of the solution is assured by the exponential function. Moreover the non-linearity permits 

superresolution.  

Fig.: Original spectrum (thick line) and 

deconvolved spectrum using MAP 

algorithm (thin line) after 50000 iterations.  



• In the following figure we present a matrix, which is composed of the 

original spectrum (Fig.(a)) and noise vector with increasing amplitude 

ranging from 0% up to 120% of the amplitude of small peaks (#1, #5 and  

#9), Fig.(c).  

• Matrix composed of deconvolved spectra using classic Gold deconvolution 

algorithm and 10 000 iteration steps is presented in Fig. (d). 

• One can observe that classic Gold deconvolution algorithm is robust to 

noise. Peaks do not change their positions and deconvolved spectra are 

smooth even for high level of noise. On the other hand, the method is not 

able to resolve peaks #3, #5 and to decompose peaks #7 and #8 even for 

noiseless data. 

 

 

• In the following figures we show the results after non-boosted 

deconvolutions (10 000 iterations) and boosted ones (200 iterations 

repeated 50 times with boosting coefficient p = 1.2). 

Robustness of the deconvolution methods in respect 

to increasing level of noise 



Fig. (a): Original spectrum composed of  

9 Gaussians. 

Fig.(b): Original synthetic spectrum (thin 

lines) and  the ideal solution (thick bars).  

Fig.(c): Original spectrum with added increasing noise 

(in % of the amplitude of small peaks #1, #5, #9).  
Fig.(d): Matrix composed of deconvolved spectra  

using classic Gold deconvolution algorithm. 



Fig. (a): Result of one-fold Gold deconvolution 

for  increasing level of noise. 
Fig. (b): Result of boosted one-fold Gold decon- 

volution for increasing level of noise. 

Gold deconvolution algorithm 

• One-fold Gold deconvolution (Fig.(a)) is relatively robust to increasing level of 

noise. It resolves the doublet composed of peaks #7 and #8, respectively. 

Nevertheless the resolution capabilities are quite limited.  

• The boosted one-fold deconvolution (Fig.(b)) decomposes all peaks 

practically to one channel. However for higher levels of noise the peak #3 

changes its position. The peak #5 for more than 40% of noise disappears. 

Other peaks practically do not change their positions. 



• Richardson-Lucy deconvolution splits the peak #9 to two peaks, the second one 

being fake.  

• The boosted Richardson-Lucy algorithm improves resolution, but it also 

generates false twin peak to the peak #9. The positions of other peaks change 

more dramatically than in one-fold Gold deconvolution. 

Richardson-Lucy deconvolution methods 

Fig.(c): Result after Richardson-Lucy deconvo-

lution  for increasing level of noise. 

Fig.(d): Result of boosted Richardson-Lucy 

deconvolution for increasing level of noise. 



• Non-boosted MAP deconvolution algorithm starts to generate false peaks for 

the noise level higher than 40%.  

• Boosted MAP algorithm gives good results up to 20% of noise. After that one 

can observe changing positions of the peaks. There appear fake peaks in 

deconvolved data as well. 

Fig. (a): Result of MAP deconvolution algorithm 

for  increasing level of noise. 

Fig. (b): Result of boosted MAP deconvolution  

algorithm for increasing level of noise. 

MAP deconvolution algorithm 



Fig.: Original spectrum (thick line) and 

deconvolved spectrum using boosted Gold 

algorithm (thin line) after 200 iterations and 50 

repetitions (p=1.2). 

Fig.: Original spectrum (thick line) and 

deconvolved spectrum using boosted 

Richardson-Lucy algorithm (thin line) 

after 200 iterations and 50 repetitions.  

Fig.: Original spectrum (thick line) and 

deconvolved spectrum using boosted MAP 

algorithm (thin line) after 200 iterations and 

50 repetitions.  



Fig. Original gamma-ray spectrum (thick line) and deconvolved spectrum using 

classic Gold algorithm (thin line) after 10 000 iterations.  

Fig.: Gamma-ray spectrum (thick line) and deconvolved spectrum using boosted 

Gold algorithm (thin line) after 200 iterations and 50 repetitions (p=1.2)  



 Fig.: Experimental gamma-gamma-ray 

spectrum (after background elimination). 

Fig.: Spectrum after boosted Gold 

deconvolution (50 iterations repeated 20 

times).  



• We have discussed and analyzed a series of deconvolution methods. There 

exists immense number of variations of deconvolution algorithms applied in 

various scientific fields. We have introduced only basic classes of 

deconvolution algorithms that can be easily employed and implemented for 

the processing of spectrometric data. 

• The classical positive definite methods of deconvolution improve substantially 

the resolution in the gamma-ray spectra, but they are not efficient enough to 

decompose closely positioned peaks.  

• We have presented the robustness of the deconvolution methods in respect 

to increasing level of noise. It has been shown, that the methods are 

insensitive to the noise enough.   

• Though the procedures are fully automatic, due to large variability of the data, 

some intervention of the user and tuning of some parameters are required.  

• Several algorithms were also implemented in ROOT system in the form of 

TSpectrum, TSpectrum2 and TSpectrum3 classes, developed in collaboration 

with CERN.  

Conclusions 
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