
Evolution of the ATLAS Software
Framework towards Concurrency
Roger Jones, Graeme Stewart, Charles Leggett, Ben Wynne	

for the ATLAS collaboration	

2014-09-02
1

See also:
Gaudi Components for Concurrency: Concurrency for Existing and Future Experiments: Daniel Funke

High Luminosity LHC
• Very high pile up	

• Very high trigger
acceptance rates	

• Very challenging computing

2

Event Complexity
x Rate

HL-LHC In Numbers
• Pileup likely to be about 150

instead of <m> = 25 in Run 1	

• Exceedingly difficult conditions
for tracking	

• Readout rate will be x10 higher
than Run 1	

• So data rate will be much
higher	

• Storage, archive, processing loads
go up

3

Total RAW data
recorded

Predrag Buncic

Z! μμ

Processor Landscape
• Moore’s law, still alive and well: 2

years → 2 x transistors	

• There is now a lot of transistors
looking for something do do:	

• Vector registers	

• Out of order execution	

• Multiple Cores	

• Hyperthreading	

• All of these techniques increase
the theoretical performance of a
processor	

• But hard to achieve this
performance (or close to it) with
HEP applications

4

1980 1990 2000 2010

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

Processor scaling trends

dates

R
el

at
ive

 s
ca

lin
g

●

●

●

●●

●

●●
●●

●
●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●
●●●●

●

●●
●

●●
●
●
●
●●●●●●●●●●●●

●●●●
●●●

●
●

●●●●●●●
●
●●

●
●

●

●●●●●●●●●●
●

●
●

●
●
●●●
●●
● ●

●●●
●

●
●

●●

●

●

●

● ●

●

●

●●

●

●
●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●

●●●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●

●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●
●●●●●●●
● ●●●●

●●●●●●

●●●●

●●
●●●

●

●

●●
●

●●

●●

●

●●

●
●●

●

●
●●

●●●●●●

●●●●●
●

●●●●
●●●●●●

●●● ●
●
●● ●●●●●●●●●

●●●●●

●

●

●●
●

●

●●●

●●●●●●●●

●
●
●●
●●●●●●

●●

●

●

●

●

●

●

●●●●●
●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●

●●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

● ● ●

●

●

●

●●●

●

●

●●●●

●
●

●●●●●
●●●●
●●●
●●●●●●●●●●●● ●

●●●●●

●●●●●
●●

●●
●●●●●●●●●●

●●●●

●●

●

●●●

●●

●

●
●●●● ●●●●

●● ●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●
●●
●●●

●
● ●● ●●●●●●●

●●●
●●

●●●●●

●●

●●●●●●●

●

●●

●●●●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●●●
●●

●

●
●

●●●

●●
● ●● ●

●

●●●● ●
●● ●

●●●●

●
●●

●●●●●●●

●●●●●● ●
●●●

●
●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●
●●

●

● ●●●●●●●●

●

●
●
●●

●●●

●

●●●●
●●●●●●●●●●●

●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●
●●●
●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●
●●●●●●

●●●●●●●●●● ●●

●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●
●
●●
●●●

●●●●
●●●

●●●
● ●●

●
●●●
●●●

●●●●●●●●

●
●
●
●

●

●

●
●

●●
●
● ●●●●●●●● ●● ●

●●●●●●
●●●●●●●●

● ●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

● ●●

●●●
● ●●●

●
●●

●●

●

●●
●●

●●

●●●●●
●●●●●●●●

●●●●●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●
●
●●●●●●

●●

●●●●●●
●

●
●●

●●●●●●●●
●●

●

●●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●●

●●

●

●

●●●●

●●

●●●●

●

●●●
●●●●

●●

●

●●

●●

●●●●●●●●●

●●●●●●●●

● ●

●

●

●

●

●●
●

●
● ●● ●

●●

●●
●●

●
●

●

●

●

●
●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●●

●●●●●●● ●●

●●●●●●●●●● ●
●●●●●
●●●

●

●●●●

●

●●

●●

●
●
●●●●●●●

●●●●
● ●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●● ●●●

●●

●

●●

●

●

●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●

●
●●

●●●●●●
●●
●●

●

●●●●●●●●
●●●●
●●●●
●●●●●●●●

●
● ●●●●

●●
●●●●

●●●
●

●●
●●●

●

●
●
●●
●●

●●

●●

●

●●

●
●
●

●
●
●●●●
●●●●●
●

●●●●
●
●●●●●

●●●
●●
●

●●●
●●●●●●

●●●
●
●

●

●
●●

●

●●●

●●●●●●●●

●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●
●●
●
●

●●●●●
●●●●●
●
●
●●

●
●

●
●
●
●

●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●● ●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●● ●●
●
●

●●●

●●

●●

●●●● ●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●

●●●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●

●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●●●●●●●

●●

●

●●

●●

●

●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●

●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
● ●●●●

●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●
●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●
●●
●●

●
●●
●
●
●
●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●
●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●●
●

●● ●

●

●
●
●●
●●

●
●
●●●●●

●
●●
●
●●
●

●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●
●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●

●●●
●●●

●
●

●

●

●●●●●●

●

●●
●

●
●
●

●● ●

●

●●

●●

●

●●●●
●
●

●●
●●

●●●

●●●●

●●

●

●●

●●

●●●●●●●
●●

●
●
●
●
●●●●

●

●● ●

●
●

●●
● ●●

●●

●
●

●

●

●
●●
●●

●
●●●●

●●●●

●●

●●●●●●●●●●●●

●●●●
●●● ●●●●●●● ●●

●●●●●●●●●● ●

●●●●●

●

●

●
●●●

●
●

●

●●

●●

●
●
●●●●●●●

●●●●
●

●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●
●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●●
●●●●●●

●●●●

●
●●●●●●●●
●●●●
●●●●
●

●●●●

●●
●●●●

●

●●
●●●

●

●●

●●

●

●●●●●

●●●
●●●
●●●●●●

●●●
●
●

●●●

●●●●●●●● ●●
●
●
●●●●●

●●●●●

●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●

●●

●●●
●

●

●●●●●
●●●●
●●●
●●●●●●●●●●●●

●
●●●●● ●●●●●

●●
●
●
●
●
●●
●●●●
● ●

●
●●

●

●●●

●
●
●●●●

●
●●●
●●

●●
●●●

●

●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●
●●

●●
●

●

●●●
●●

●●

●●

●

●●

●
●
●
●●

●●

●
●

●●●

●●

●●

●●●● ●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●

●●

●

●

●●●

●
●● ●

●

●

●●●
●

●●

●●
●

●

●

●●
●
●●●

●●●●
●
●

●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●
●●●●
●●●●●●●● ●●

●

●●

●●

●
●●

●●
●●●

●

●●
●●
●

●

●●●●●●●●
●
●
●

●
●●● ●●●●●●●●●●●
●●●●●

●●●●●●●●●
●

●●●●
●●●

●
●
●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●
●●●●
●●●●●
●●

●●●●●●
●●●●●●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●●●●
●●●
●●

●
●●
●
●
●

●●
●
●
●
●
●●●

●●
●●
●●●●●
●

●●

●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●●

●●●●

●●

●●●

●
●●●
●
●●

●

●●
●
● ●●●●●●●
●

●
●

●●
●●●●
●●●●●
●●
●

●●●●
● ●●●●
●
●●●●●

●●●
●●
●
●●●

●
●
●
●
● ●●● ●●

●
●

●
●
●

●
●
●●●
●●

●●●

●
●●●●●●●●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●
●●
●

●

●

●●

●●
●

●
●
●

●●
●
●
●●●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●
●
●
●
●
●
●
●

●●●●

●●● ●

●● ●

●

●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●●

●

●
●

●
●

●●

●

●

●

●

Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed
(free lunch)

Processor
Heterogeneity

• Seeing an increase in the range of platforms
that will be available to do HEP computing
on	

• Xeon Phi with very high x86 core counts
(>60)	

• ‘Weak’ 64bit ARM multi-core processors
and Intel Atoms and Avatons	

• GPGPU architectures with huge FLOPS	

• Flat or falling computing budgets make it
imperative that we are prepared for anything

5

ATLAS Offline
Processing in Run1

• Trivially parallel
event processing	

• Independent
processes are
efficient, but
memory hungry	

• 2GB physical
memory per
core

6

Event 3

Event 1

Event 2

Event 4

Different Algorithms

Multi-Processing Athena

• Simple parallelisation of the
ATLAS framework, Athena,
by forking after initialisation	

• Saves considerable memory
using Linux kernel’s ‘copy
on write’ feature	

• Will be a major part of
ATLAS’s Run 2 processing
(online and offline)	

• However, memory savings
(~0.8GB/additional event)
are unlikely to be enough
for post-Xeon architectures

7

Event 3

Event 1

Event 2

Event 4

Different Algorithms

Mother	

Process

Memory Savings Beyond
Multi-Processing

• To save memory beyond multi-processing it’s necessary to
use a multi-threading framework	

• Memory savings can be huge as all heap memory is
shared	

• However, a more difficult programming model as threads
can interfere with each other: data races and deadlocks	

• Especially difficult to back-port threading into a framework
and physics code base which has been run in a serial mode
for (more than) a decade	

• We need to consider options for evolution carefully

8

A possible future…

• Take advantage of
concurrency by
exploiting event
parallelism,
algorithmic parallelism
and in-algorithm
parallelism	

• Scenario should be
suitable for many-
core machines or light
cores, where memory
per core is limited

9

Multiple threads within an algorithm

First Experiments

• Clearly the investment needed to convert ATLAS
reconstruction is considerable	

• Start with some tests with simulated algorithms
(CPU crunchers) to see if multi-threading can
work in principle	

• For this we used the GaudiHive prototype
framework developed by CERN SFT and LHCb	

• Recall that ATLAS already shares the Gaudi
framework (Athena is a derivative) with LHCb

10

Data Flow

• ATLAS reconstruction runs several 100
algorithms with 100s of data objects produced
in the event store

11

This is just a
snippet!	

And there are
hidden

dependencies
through public tools

CPU Cruncher Results

12

With few evts in flight, cloning helps

Hive potentially scales as well as AthenaMP

CPU Cruncher Results

• Multi-threading among
events works	

• Exploitation of machine’s
resources is good	

• AthenaMP is doing well
already

13

Next Steps - Real
Reconstruction

• After demonstrating potential
improvements with a simulation we
embarked on running real ATLAS
reconstruction in GaudiHive	

• Converting large parts of the
reconstruction would be time consuming,
so we picked calorimeter reconstruction as
a suitable piece of work

14

Calorimeter Data Flow

• 7 algorithms	

• 16 data
objects	

• Hopefully
Tractable!

15

Code Modifications
• Even so, many pieces of code around the framework need to change, which are quite

independent of the number of algorithms involved	

• Athena EventSelector	

• redesign for Hive	

• event data I/O (Converters) event data store (StoreGate)	

• make thread safe by locking (no attempt at parallelisation for now)	

• Multiple events blocked to a single convertor (could be improved)	

• AthAlgorithm and AthAlgTool base classes 	

• enhance thread/event slot information for debugging	

• bypass Incidents (BeginEvent, EndEvent)	

• Plus some necessary changes to the user code	

• Do not use incidents to trigger actions	

• Do not add data to the event store until it’s ready to be used by other algorithms	

• Unfortunately a frequent pattern in ATLAS is to create a container then
update its contents - this confuses the GaudiHive scheduler of today

16

Results without Cloning
• Only one instance of

each algorithm	

• Throughput is
bottlenecked by
slowest single
algorithm	

• Improvements plateau
after 3 events in flight,
after which you are
partially processing
more events at once

17

Events in
Flight

Runtime (s)!
100 events Memory (MB)

1 Athena 305 445

1, 5 alg 30 th 283 550

2 175 590

3 161 630

4 161 680

10 161 950

Algs 5, up to 30 threads

Algorithm Cloning
• Important to be able to clone the most expensive algorithms

(and their tools)	

• This is an intermediate solution on the way to full thread
safe algorithms*	

• Helps alleviate the choke point at the single most
expensive algorithm	

• However, in this case some algorithms were inherently
thread unsafe and would have required substantial recoding
to work	

• At least clone the easier ones then

18

* Probably only necessary for the
most expensive algorithms

Results with Cloning
• With this limited

cloning bottlenecks
are alleviated	

• Best results are 2.3x
increase in speed for a
28% increase in
memory	

• Discounting
initialisation, speed
increase is 3.3x

19

Events in
Flight Runtime (s) Memory (MB)

1 305 450

2 175 570

3 135 618

4 129 667

Testbed Conclusions
• Multi-threading can speed up processing at a lower memory cost than serial or multi-

process techniques

• Not being able to clone certain Algorithms (and their tools) is a bottleneck

• How to fix?

• make tools thread safe

• split up monster algorithms into smaller ones

• all requires significant intervention into user code.

• Incidents are definitely problematic

• Experience shows that in many places ATLAS code uses this pattern, but in a way
that only works in serial processing

• Access to the event store should have clearer patterns, more suited to a concurrent
framework

• Data dependencies need to be automatically propagated to the lowest level
component where they are used; algorithms may not know about the data they are
using via their tools

20

Framework
Requirements

• Encouraged by these results, ATLAS constituted a Future
Frameworks Requirements Group, FFREQ	

• Plan how our framework should evolve for Run 3
and beyond	

• Incorporate the requirements of the ATLAS High
Level Trigger (HLT)	

• At the moment, while code is shared between
offline and HLT there are also substantial
differences	

• Emphasis on gathering requirements and use cases

21

Elements of the offline Framework

• At the start of processing
services are setup (Event Store,
Magnetic Field)	

• Events pass through a
sequence of algorithms	

• Read event and other data,
calculate, write new objects	

• Much work actually done
through tools	

• Tools can be private (used
within only one algorithm)	

• Incidents are callbacks
triggered by any event during
the workflow

22

Services
Services

Services

Alg

Initialisation

Services
Setup

Alg

Alg

Alg

Alg

Tool

Tool

Tool

Tool

Finalisation

Tool

Incidents!

Incidents!

Tool

Changes we should make
to framework patterns

• Building on the knowledge gained from running in the GaudiHive
prototype:	

• Get rid of public tools (i.e., tools which are used by more than
one algorithm)	

• Replace these with services, which need to be thread safe	

• Reduce reliance on incidents and replace them with data flow or
control flow dependencies	

• Interactions with the event store should proceed via data handles	

• Data handles provide a well defined interface that declares an
algorithm’s intent with an event store object	

• Read, Write, Update

23

Mutable Event Store Data
• Event store data may be mutable	

• An algorithm can ask to read and write
the same object in the store	

• e.g., performing calibrations or decorating
the object	

• If multiple algorithms wish to mutate the
same data item then their order must be
given explicitly at configuration time	

• Otherwise there is a configuration error	

• Algorithms that only read the data object
will be scheduled after all mutations	

• i.e., they get the final version of the
object	

• Obviously scheduling of B, C, D (or anything
else that might update ‘Reco Obj’) is decided
at runtime

24

Must order
B, C, D

explicitly
Event
Store

Alg A

Alg B

Alg C

Alg D

Alg E

Source
Obj

Reco
Obj

Final
Obj

Update

Update

Update

Super Algorithms
• These chained algorithms are

schedulable units	

• Scheduler only needs to be
concerned with schedulable units	

• Will reduce the load on the
scheduler	

• One possibility is to schedule super
algorithms as Threaded Building
Blocks graphs	

• TBB graph scheduler is efficient
even with small computational
units (10

5
 instructions)

25

Event
Store

Alg A

Alg B

Alg C

Alg D

Alg E

Source
Obj

Reco
Obj

Final
Obj

Update

Update

Update

HLT Picture

26

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

✘
Alg Alg

Muon pt >
6GeV

✔ ✘

• HLT is more complicated than offline	

• Multiple regions of interest (RoI) seeded from
level 1	

• Reconstruction starts within a RoI	

• Then every trigger chain must be run	

• Until a chain fails a hypothesis (e.g., pt >
10GeV) or event is accepted	

• 99% of events are rejected	

• Need to minimise resource usage:	

• Data requests from read out system	

• CPU time/event (HLT farm size)	

• Time until event built & read out buffers cleared 	

• Events are built on demand

Different chains
could configure the
same algorithm, but
only run once on

the same data

Regions of Interest
• Seeding multiple regions of interest runs the same

algorithms in the trigger chain over different detector
regions

27

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

✘
Alg Alg

Muon pt >
6GeV

✔ ✘

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

Alg Alg

Muon pt >
6GeV

✔ ✔

✘

Event Store Views
• To accommodate the HLT regions of interest, different views of

the event store are needed

28

ROI1

ROI1

Muon Spectrometer

Tracks

ROI2

ROI2

Algorithm in ROI1

Algorithm in ROI2

Algorithm in Whole
Event Context

• This means that the
combinations of Algs/RoIs
become event dependent	

• Complicates event
scheduling	

• Accepted events move to
the ‘whole event’ context	

• Views could also be
useful offline - e.g.,
running more expensive
tracking for tausExact implementation under discussion

Code Changes
• For simple algorithms that do not consume a lot of resources, single instances

with no special constraints are fine	

• Physics code can remain more or less unchanged	

• However, patterns that were hostile to threading need to be removed (public
tools, incidents)	

• For time consuming code, care must be taken to ensure thread safety	

• Aim for cloning in existing code, true thread safety in new code	

• Thread-safety work can commence before the new framework is ready	

• Can already use multithreading within a single algorithm; works well with Hive	

• Services which can be called multiple times in different contexts must be thread
safe	

• Essential to provide good programming models and training to the developer
community

29

Summary
• Evolution of computing hardware makes multi-threading inevitable for

HEP	

• ATLAS has demonstrated that multi-threading can work successfully
with Gaudi and Athena	

• Now undertaking a careful look at requirements to design a framework
for Runs 3 and 4	

• Integrating trigger requirements needs modifications to the scheduler
and the event store beyond the hive prototype	

• Offline may benefit from these extensions to speed up simulation
and reconstruction	

• Timescales are to design and implement the new framework during Run
2, ready for developers to adapt during LS2 and be ready for Run 3

30

