
Evolution of the ATLAS Software 
Framework towards Concurrency 
Roger Jones, Graeme Stewart, Charles Leggett, Ben Wynne	



for the ATLAS collaboration	



2014-09-02
1

See also: 
Gaudi Components for Concurrency: Concurrency for Existing and Future Experiments: Daniel Funke



High Luminosity LHC
• Very high pile up	



• Very high trigger 
acceptance rates	



• Very challenging computing 
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Event Complexity 
x Rate



HL-LHC In Numbers
• Pileup likely to be about 150 

instead of <m> = 25 in Run 1	



• Exceedingly difficult conditions 
for tracking	



• Readout rate will be x10 higher 
than Run 1	



• So data rate will be much 
higher	



• Storage, archive, processing loads 
go up

3

Total RAW data 
recorded

Predrag Buncic

Z! μμ 



Processor Landscape
• Moore’s law, still alive and well: 2 

years → 2 x transistors	



• There is now a lot of transistors 
looking for something do do:	



• Vector registers	



• Out of order execution	



• Multiple Cores	



• Hyperthreading	



• All of these techniques increase 
the theoretical performance of a 
processor	



• But hard to achieve this 
performance (or close to it) with 
HEP applications
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Transistors
Clock
Power
Performance
Performance/W

Moore’s law

Clock speed 
(free lunch)



Processor 
Heterogeneity 

• Seeing an increase in the range of platforms 
that will be available to do HEP computing 
on	



• Xeon Phi with very high x86 core counts 
(>60)	



• ‘Weak’ 64bit ARM multi-core processors 
and Intel Atoms and Avatons	



• GPGPU architectures with huge FLOPS	



• Flat or falling computing budgets make it 
imperative that we are prepared for anything 
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ATLAS Offline 
Processing in Run1

• Trivially parallel 
event processing	



• Independent 
processes are 
efficient, but 
memory hungry	



• 2GB physical 
memory per 
core

6

Event 3

Event 1

Event 2

Event 4

Different Algorithms



Multi-Processing Athena

• Simple parallelisation of the 
ATLAS framework, Athena, 
by forking after initialisation	



• Saves considerable memory 
using Linux kernel’s ‘copy 
on write’ feature	



• Will be a major part of 
ATLAS’s Run 2 processing 
(online and offline)	



• However, memory savings 
(~0.8GB/additional event) 
are unlikely to be enough 
for post-Xeon architectures
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Event 3

Event 1

Event 2

Event 4

Different Algorithms

Mother	


Process



Memory Savings Beyond 
Multi-Processing

• To save memory beyond multi-processing it’s necessary to 
use a multi-threading framework	



• Memory savings can be huge as all heap memory is 
shared	



• However, a more difficult programming model as threads 
can interfere with each other: data races and deadlocks	



• Especially difficult to back-port threading into a framework 
and physics code base which has been run in a serial mode 
for (more than) a decade	



• We need to consider options for evolution carefully
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A possible future…

• Take advantage of 
concurrency by 
exploiting event 
parallelism, 
algorithmic parallelism 
and in-algorithm 
parallelism	



• Scenario should be 
suitable for many-
core machines or light 
cores, where memory 
per core is limited

9

Multiple threads within an algorithm



First Experiments

• Clearly the investment needed to convert ATLAS 
reconstruction is considerable	



• Start with some tests with simulated algorithms 
(CPU crunchers) to see if multi-threading can 
work in principle	



• For this we used the GaudiHive prototype 
framework developed by CERN SFT and LHCb	



• Recall that ATLAS already shares the Gaudi 
framework (Athena is a derivative) with LHCb
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Data Flow

• ATLAS reconstruction runs several 100 
algorithms with 100s of data objects produced 
in the event store
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This is just a 
snippet!	



And there are 
hidden 

dependencies 
through public tools



CPU Cruncher Results
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With few evts in flight, cloning helps

Hive potentially scales as well as AthenaMP



CPU Cruncher Results

• Multi-threading among 
events works	



• Exploitation of machine’s 
resources is good	



• AthenaMP is doing well 
already
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Next Steps - Real 
Reconstruction

• After demonstrating potential 
improvements with a simulation we 
embarked on running real ATLAS 
reconstruction in GaudiHive	



• Converting large parts of the 
reconstruction would be time consuming, 
so we picked calorimeter reconstruction as 
a suitable piece of work
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Calorimeter Data Flow

• 7 algorithms	



• 16 data 
objects	



• Hopefully 
Tractable!
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Code Modifications
• Even so, many pieces of code around the framework need to change, which are quite 

independent of the number of algorithms involved	



• Athena EventSelector	



• redesign for Hive	



• event data I/O (Converters) event data store (StoreGate)	



• make thread safe by locking (no attempt at parallelisation for now)	



• Multiple events blocked to a single convertor (could be improved)	



• AthAlgorithm and AthAlgTool base classes 	



• enhance thread/event slot information for debugging	



• bypass Incidents (BeginEvent, EndEvent)	



• Plus some necessary changes to the user code	



• Do not use incidents to trigger actions	



• Do not add data to the event store until it’s ready to be used by other algorithms	



• Unfortunately a frequent pattern in ATLAS is to create a container then 
update its contents - this confuses the GaudiHive scheduler of today
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Results without Cloning
• Only one instance of 

each algorithm	



• Throughput is 
bottlenecked by 
slowest single 
algorithm	



• Improvements plateau 
after 3 events in flight, 
after which you are 
partially processing 
more events at once
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Events in 
Flight

Runtime (s)!
100 events Memory (MB)

1 Athena 305 445

1, 5 alg 30 th 283 550

2 175 590

3 161 630

4 161 680

10 161 950

Algs 5, up to 30 threads



Algorithm Cloning
• Important to be able to clone the most expensive algorithms 

(and their tools)	



• This is an intermediate solution on the way to full thread 
safe algorithms*	



• Helps alleviate the choke point at the single most 
expensive algorithm	



• However, in this case some algorithms were inherently 
thread unsafe and would have required substantial recoding 
to work	



• At least clone the easier ones then
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* Probably only necessary for the 
most expensive algorithms



Results with Cloning 
• With this limited 

cloning bottlenecks 
are alleviated	



• Best results are 2.3x 
increase in speed for a 
28% increase in 
memory	



• Discounting 
initialisation, speed 
increase is 3.3x
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Events in 
Flight Runtime (s) Memory (MB)

1 305 450

2 175 570

3 135 618

4 129 667



Testbed Conclusions
• Multi-threading can speed up processing at a lower memory cost than serial or multi-

process techniques 

• Not being able to clone certain Algorithms (and their tools) is a bottleneck 

• How to fix? 

• make tools thread safe 

• split up monster algorithms into smaller ones 

• all requires significant intervention into user code.  

• Incidents are definitely problematic 

• Experience shows that in many places ATLAS code uses this pattern, but in a way 
that only works in serial processing 

• Access to the event store should have clearer patterns, more suited to a concurrent 
framework 

• Data dependencies need to be automatically propagated to the lowest level 
component where they are used; algorithms may not know about the data they are 
using via their tools
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Framework 
Requirements

• Encouraged by these results, ATLAS constituted a Future 
Frameworks Requirements Group, FFREQ	



• Plan how our framework should evolve for Run 3 
and beyond	



• Incorporate the requirements of the ATLAS High 
Level Trigger (HLT)	



• At the moment, while code is shared between 
offline and HLT there are also substantial 
differences	



• Emphasis on gathering requirements and use cases
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Elements of the offline Framework

• At the start of processing 
services are setup (Event Store, 
Magnetic Field)	



• Events pass through a 
sequence of algorithms	



• Read event and other data, 
calculate, write new objects	



• Much work actually done 
through tools	



• Tools can be private (used 
within only one algorithm)	



• Incidents are callbacks 
triggered by any event during 
the workflow
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Changes we should make 
to framework patterns

• Building on the knowledge gained from running in the GaudiHive 
prototype:	



• Get rid of public tools (i.e., tools which are used by more than 
one algorithm)	



• Replace these with services, which need to be thread safe	



• Reduce reliance on incidents and replace them with data flow or 
control flow dependencies	



• Interactions with the event store should proceed via data handles	



• Data handles provide a well defined interface that declares an 
algorithm’s intent with an event store object	



• Read, Write, Update
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Mutable Event Store Data
• Event store data may be mutable	



• An algorithm can ask to read and write 
the same object in the store	



• e.g., performing calibrations or decorating 
the object	



• If multiple algorithms wish to mutate the 
same data item then their order must be 
given explicitly at configuration time	



• Otherwise there is a configuration error	



• Algorithms that only read the data object 
will be scheduled after all mutations	



• i.e., they get the final version of the 
object	



• Obviously scheduling of B, C, D (or anything 
else that might update ‘Reco Obj’) is decided 
at runtime
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Super Algorithms
• These chained algorithms are 

schedulable units	



• Scheduler only needs to be 
concerned with schedulable units	



• Will reduce the load on the 
scheduler	



• One possibility is to schedule super 
algorithms as Threaded Building 
Blocks graphs	



• TBB graph scheduler is efficient 
even with small computational 
units (10

5
 instructions)
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HLT Picture
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Muon pt > 
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

✘
Alg Alg

Muon pt > 
6GeV

✔ ✘

• HLT is more complicated than offline	



• Multiple regions of interest (RoI) seeded from 
level 1	



• Reconstruction starts within a RoI	



• Then every trigger chain must be run	



• Until a chain fails a hypothesis (e.g., pt > 
10GeV) or event is accepted	



• 99% of events are rejected	



• Need to minimise resource usage:	



• Data requests from read out system	



• CPU time/event (HLT farm size)	



• Time until event built & read out buffers cleared 	



• Events are built on demand

Different chains 
could configure the 
same algorithm, but 
only run once on 

the same data



Regions of Interest
• Seeding multiple regions of interest runs the same 

algorithms in the trigger chain over different detector 
regions
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Event Store Views
• To accommodate the HLT regions of interest, different views of 

the event store are needed
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ROI1

ROI1

Muon Spectrometer

Tracks

ROI2

ROI2

Algorithm in ROI1

Algorithm in ROI2

Algorithm in Whole 
Event Context

• This means that the 
combinations of Algs/RoIs 
become event dependent	



• Complicates event 
scheduling	



• Accepted events move to 
the ‘whole event’ context	



• Views could also be 
useful offline - e.g., 
running more expensive 
tracking for tausExact implementation under discussion



Code Changes
• For simple algorithms that do not consume a lot of resources, single instances 

with no special constraints are fine	



• Physics code can remain more or less unchanged	



• However, patterns that were hostile to threading need to be removed (public 
tools, incidents)	



• For time consuming code, care must be taken to ensure thread safety	



• Aim for cloning in existing code, true thread safety in new code	



• Thread-safety work can commence before the new framework is ready	



• Can already use multithreading within a single algorithm; works well with Hive	



• Services which can be called multiple times in different contexts must be thread 
safe	



• Essential to provide good programming models and training to the developer 
community
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Summary
• Evolution of computing hardware makes multi-threading inevitable for 

HEP	



• ATLAS has demonstrated that multi-threading can work successfully 
with Gaudi and Athena	



• Now undertaking a careful look at requirements to design a framework 
for Runs 3 and 4	



• Integrating trigger requirements needs modifications to the scheduler 
and the event store beyond the hive prototype	



• Offline may benefit from these extensions to speed up simulation 
and reconstruction	



• Timescales are to design and implement the new framework during Run 
2, ready for developers to adapt during LS2 and be ready for Run 3
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