The Run 2 ATLAS
Analysis Event Data
Model

Marcin Nowak, BNL

On behalf of the ATLAS Analysis Software Group and
Event Store Group

16" International workshop on Advanced Computing

and Analysis Technigues in physics research (ACAT)
September 2014 Prague




Overview

= ATLAS Run 1 analysis data model
« The original design
« The actual analysis model during Run 1
= Problem areas and things we wanted to improve

« The new model for Run 2
« Design
Implementation

Persistency
= ROOT file structure
= Simple code example

Schema evolution
Performance

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak



The ATLAS Run 1 Event Data Model

« Event reconstruction process produces data in the AOD format (Analysis Object
Data): official ATLAS-wide event representation with reduced information for
physics analysis

= Fully object-oriented (complex) EDM, part of Athena: ATLAS offline software
framework

= Size = 350-400KB

= Persistency: object based

Using a different persistent data model to be able to freely evolve the transient EDM without
compromising backward compatibility

Statically defined persistent object shape (schema)

= Persistent data format required Athena (or at least its persistency layer) to read AOD
Even though the files were in ROOT format
Quite a lot of libraries needed (dictionaries, converters)

= Frozen TierO policy
Reconstruction fixes not part of original AOD — need to be redone every time

« AOD reading too slow for many physicists
= Athena startup, object reading and AODfix overheads
« Majority of the users turned to intermediate data formats (DPD)

= Working groups started to produce their own private Derived Physics Data datasets —
readable directly from ROOT

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak



ATLAS Analysis Model During Run 1
Fix -

1 ROOT-based tools !
]
Athena :
]
)
~PB ~GB y
Reconstruction | Fix Athena | /C_P\ SIENANTUPLE L - _" SESULTS
Athena ! \_/
A
CP Fix: Reconstruction fixes on top of
~PBYYYVY the results from “frozen” central
production

CP tools: combined performance
(~ analysis tools for end-user
CP

ROOT-based tools analysis

« DPDs produced on request only — delay in respect to the central AOD production
= Data format different than in Athena causing duplication of software tools
« DPD-based tools also different between groups
« Hard to share code and compare results
« Combined DPD size ~3x the size of corresponding AOD

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 4



Coming up with a Better Model for Run 2

= The first Long Shutdown of LHC created an opportunity to rethink and redesign
the analysis data model, based on the experience from Run 1

« New model design requirements:
= Prepare for increased data rate in Run 2 (~2x that of Run 1)
= Flexibility in balancing CPU vs disk space requirements
Maintain the I/O performance of standalone ROOT: >1kHz
= Enable reading of single attributes
= Data directly analyzable in ROOT
Reduce the latency of delivering data to the end users
Make code sharing between groups and between Athena and DPDs possible
= Promote collaboration between groups
Maintain the ability to read full AOD in Athena environment
= Access to calibration databases

« Proposal: merge AOD and DPD into a new format called xAOD

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 5



Introducing the xAOD Format

Replacement for both AOD and DPD data for Run 2

= Produced as the end result of the Athena-based reconstruction
= Full xAOD data available without delay

« Used as both input and output for physics group productions
= XAOD allows reduction of content without changing the format

= Can be created and read in standalone ROOT
= Lightweight — number of libraries limited to minimum

Single, object-oriented API
« From the user point of view just like the old AOD
« Special implementation with respect to class data members
« Software tools using single common API can function in both frameworks
Dynamic xAOD object shape
Data members added at runtime or removed during copying
Single transient/persistent representation
= No longer fixed class shape like before
= No separate persistent data model
= Ability to read single attributes

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak



The New Analysis Model for Run 2

Derivation
framework
(Athena) ~TB

4 E Athena-based analysis
(CP)

CP|
ROOT-based analysis

Athena-based analysis

CP)
p—
ROOT-based analysis

Reconstruction
(Athena)

= XAOD data format delivered by central production, directly usable for analysis in Athena
and ROOT (lower path)

= Reduction Framework producing reduced-size data samples for analysis groups (upper
path)

= CP tools: combined performance analysis tools for end-user analysis, both in Athena and
ROOT

= Final analysis stage done in pure ROOT, primarily on local resources

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak



XAOD Format: Basic Design

= XAOD objects consist of an interface object and a storage container
= Not to be confused with class interface, more like a proxy
« From the user point of view, the interface object is the only visible object, but
usually it does not have any data members itself
= Data member are stored in the storage container

= There is one storage container per collection of objects
ATLAS collections in Athena are implemented using DataVector class

= Storage containers keep arrays DataVector<xAOD:Electron>
of attributes xAOD::ElectronAuxContainer

- An apparent array-of-structs is RSB
actually represented in memory o
as a struct-of-arrays

= Interesting implications for xAOD:Electron
vectorization and /O

xAQOD::Electron

Single objects have their dedicated AOD:Electron

storage container with 1-element arrays
Can be added or removed from collections

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 8



XAOD Implementation: Data Stores

«  XAOD objects have a set of pre-defined (static) attributes

= Storage containers assigned to these types have data arrays to store their static
attributes:

class JetAuxContainer_vl1l : public AuxContainerBase {
public: JetAuxContainer v1();

private: std::vector<float> pz; & storage array for PZ attribute

}

JetAuxContainer_vl: :JetAuxContainer v1i( {
AUX_VARIABLE( pz );

+
= The constructor uses a macro to automatically register data arrays in Registry
Arrays can be later looked up by their names

= Additional (dynamic) object attributes can be added at any time
= They are kept in a storage container extension that allocates storage arrays as needed
« Type-specific storage containers are only an optimization!
Technically all different xAOD types could use just the dynamic store
« Dynamic attributes may be selectively dropped when writing to file
= 3 level selection lists in Athena: by object type / name / attribute
= Static store may be converted to dynamic in order to drop static attributes

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 9



XAOD Implementation: Data Store Access

« XAOD object data is stored in the storage container

« The interface object uses getter and setter methods to access static attributes

= Accessors are provided to make these methods fast:

float Jet vl::pz() const {
static Accessor<float> pz_acc(“pz”);

return pz_acc(*this);
}

void Jet vl::setPz(float pz) {
static Accessor<float> pz_acc(“pz”);

pz_acc(*this) = pz;
return;

}

= Accessors use attribute type and name for initialization (lookup in Registry)

= C++ static storage can be used to ensure the (slow) identifier lookup is done only
once

= After initialization the accessor provides direct access to the storage array
= Accessors are attribute-specific, not object-specific
= Object they access needs to be specified for every use (still fast)

= Accessors for dynamic attributes can be declared anywhere in the user code
= Also C++ static!

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 10



XAOD: Persistency

« XAOD data files are created both by Athena and standalone ROOT

= Files coming from both sources need to be readable by ROOT and in particular allow
single attribute reading

= Athena persistency layer had to be modified:

= Historically Athena used object-based I/0O with fixed class schema defined in
dictionaries — not possible for the dynamic store!

= Static store single attribute reading needed tuning of ROOT split level
= Solution: writing XAOD collections by components:
= Collection (DataVector) of interface objects: stored as an object

= Static part of the storage container: stored as an object
(object-based storage requires (ROOT) class dictionary)

= Dynamic attributes: stored in dedicated TTree branches created as needed
= Storage container provides uniform API for accessing storage of both static and
dynamic attribute storage
= For both attribute types the I/O API delivers storage array plus the type information
= Opens interesting options for conversion of object shape during writing
= Reading of dynamic attributes is implemented with a dedicated storage container
= Empty in the beginning, with attributes read transparently when accessed

Note: dynamic attributes can make files with the same data types have different TTree structure
Can be a surprise when trying to merge files!

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 11




XAOD File in the TBrowser

| Browser [le Ect View Optons Toois X Inspecting an XxAOD file produced

| Files |

i o o[ =] during ATLAS Data Challenge

l m\wnmrmw:u -
N

B 2014 — using ROOT TBrowser

3% CamKt1 2L CTopoJets
3 Camkti 2Truthets
B ComKe1 2Truthv/ 2 Jets
A Photon CallectionAus

------ TrurthivertexAux.

- By BTagging_Antikt1 DLCTopo
K BTagging_antiKt1 0Truth
B BTanging_AntiKt OTruthW2

- BTagging_antikt4EMTopo =32

3 BTagaing_Antikt4L CTopo
B BTagaing_AntiKtaTruth

B BTagaing_antikt4Truthi 2

- Hmneventa InDetTrackParticles

‘B CombinedhuonTrack Particles

- S collection — the interface
object with no attributes

- InDetTrack ParticlesForward

A Andikt 1 0TruthJets Au

o R AR OTruth W2 Jetsdurs.

o R A tiKEIPVO Track Jetsdu:,
A Antist3 ZTrack Jetadus
A ArtiKt4 EMTopoJets i,

oo ) AnfiKt4 L CTopo Jets A,

- 5 antiktd FADTrack Jetsdus.

M dtikta Truth Jets i

A AntiKtaTruth W2 Jeta i,

A Antitt4 TTrack Jetsdips. -
4 1 k
Filter. | ROOT Files (* roof) =]

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 12



XAOD File in the TBrowser (2)

“% ROOT Object Browser.

|| Browwser | Eile Edit Miew Onptions Tools

canvas_1 (¥ | Editor 1 0]

|| Files |

i

i 2t vV & DrawOptiun:| vi
N ———

i A=t =
0 -

atitainer Base

% InDetTrack Particlessus <AQD AL
----- % InDetTrack ParticlesAu.d0
----- % InDetTrackParticlesuzx 20
----- 4 InDetTrack Particles.Aux phi
----- % InDetTrack Particles&ux theta
----- % InDetTrack Particlesdus.qOwver P
[]---ﬂInDetTrackParticIes.fl\ux.deﬂningParameters
----- % InDetTrack Particles A v
----- % InCetTrack Particlesdus vy
----- % InCetTrack Particles.dux: vz
----- ﬂ InDetTrack Particles&ux parameter &
----- ﬂ InDetTrack Particlesdux parameter’y’
----- ﬂ InDetTrack Particlesdux parameter 2
----- ,ﬂ InDetTrack Particlesux parameter P s
----- & InCetTrack Particlesdux parameter PY
----- ﬂ InCetTrack Particles.dux parameter P2
----- InDetTrack Farticles&ux trackParameter Covarighce M
----- ﬂ InDetTrack Particles &y parameter Position
. InDetTrckPartiobshux chisquarsd
----- % InDetTrack Particlesdux number DoF
----- % InDetTrack ParticlesAux trackFitter
----- & InCetTrack Particles.fux particle Hypothesis

ik PizelLayer:

InDetTrackParticlesAux.chiSquared

140
120
100

80O

40

20

htemp
Entries 1603207
Mean
RMS

34.2
19.8

Static attributes in the
InDetTrackParticles
storage container’s
TBranches

1 1 1 1 1
150 200 250 300 350 400
InDetTrackParticlesAux.chiSquared

«

N

3

" 4
Fiter: [ROCT Fnes\(’.‘m»._/

=

Cammand I

Command (local): |

ACAT Sept 2014

ATLAS Run 2 EDM Marcin Nowak

13




XAOD File in the TBrowser (3)

fa — ™
oot oo R | . s =& =

Help

| Browser | File Edit Yiesw Options Tools

| Files |

8 V¥ &

Drrany Optiun:| vi

Canvas_1 ] | Editor 1 ]

| i h GSFConversion\erticesduxDyn py
TS ﬁ GSFConversion\ertices =Dy pz
----- ﬂ GEFTrackFarticlesAus Dyn truth ParticleLink
----- GSFTrackFarticlesAux Dyn trackLink

articles A Dyn original Track Par
InDetTrack Farticlesdux Dyn truth Type

----- ,ﬂ InDetTrack Particlesdux Dyn truth Particle Link
----- ﬂ InDetTrack Particlesdus Dyn. track Link
InDetTrack Particlesdu=Dyn truth Origin
ar ticlesForwardaus Dyn. trut
----- ﬁ InDetTrack ParticlesForward 2o=Dyn truth Match Probakility
----- ,ﬂ InDetTrack ParticlesFarward&us Dyn. troth Particle Link
----- & InDetTrack ParticlesForward Au= Dyn track Link
----- ﬁ InCetTrack ParticlesForwardAu=Dyn. truth Origin
----- ﬁ L&y Closter EMPFraclaoxDyn BAD_CELLS_CORF_E
----- & L&y Cluster EMPFrawci&xDyn . CELL_SIGNIFICANCE
----- ﬁ L&y Cluster EMPraclaoxDyn . CELL _SIG_SAMPLING
----- ﬁ L&y Cluster EMPFracldnxDyn . CENTER_LAMEDA
----- ﬁ L&y Cluster EMFrwdausDyn . CENTER_MAG
----- ﬁ L&y Cluster EMFrwdAusDyn CENTER &
----- & L&y Cluster EMFrwdau=Dyn. CENTER_W
----- ﬁ L& Cluster EMFrwdAusDyn . CENTER_Z
----- ﬁ L&y Cluster EMFrwddu=Dyn DELTA_ALFHA
----- 3% Ler Cluster EMFrwvci&im: Dyn. DELTA_FHI
----- ﬁ L& Cluster EMPFrwdAusDyn DELTA_THETA
----- & Lér Cluster EMFrwd s Dyn DM_WEIGHT
----- ﬁ L&y Cluster EMPFraclaoxDyn EM_FROBABILITY
----- ﬁ L& Cluster EMFrwdAuxDyn EMG_BAD_CELLS
----- h L& Cluster EMPFrwdau=Dyn ENG_FRAC_CORE
P o a

1 [ 1T [

-

Filter: | ROOT Files (".roof)

InDetTrackParticlesAuxDyn.truthMatchProbability. \nDetTrack ParticlesAuxDyn. truthMatch Probability

x10° htemp
& Entries 1603207
1000 — Mean 0.9758
: RMS 0.07446
800 — ]
—~__ InDetTrackParticles
o  dynamic attributes in
- standalone TBranches
400—
200_—
B +
o I Il A E N O AT W AU T IO ol I, i |
0.1 0.4 0.5 0.6 0.7 0.8 0.9 1

etTrackParticlesAuxDyn.truthMatchProbability.InDetTrackParticlesAuxDyn.truthMatch Probability

Cammand |

Command (local): |

ACAT Sept 2014

ATLAS Run 2 EDM Marcin Nowak

14




Standalone ROOT xAOD Code Example

= Lightweight and simple access to xXAOD from user code “in ROOT”:

#include ‘“xAODRootAccess/Init_h”
#include ‘“xAODRootAccess/TEvent.h”
#include “xAODMuon/MuonContainer.h”

int main(Q) {
XAOD::Init();
TFile* file = TFile::Open(*“xA0OD.root”, “READ’);

XAOD: :TEvent event;
event.readFrom(file);

for( Long64_t entry=0; entry < event.getEntries(); ++entry ) {
event.getEntry(entry);

const xAOD: :MuonContainer* muons = O;
event.retrieve(muons, “Muons’);

std::cout << “1st muon pT = “ << muons->at(0)->pt() << std::endl;

}

return O;

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak

15



XAOD: Schema Evolution

« In Run 1, support for schema evolution in Athena had a big impact on the
persistent data format
= Design tailored specifically to Athena, operating on a whole object at a time
= Maintaining 2 separate data models and necessary converters required effort and
expertise
= A model fitting better to reconstruction than to analysis
« For Run 2, the xAOD is both the transient and the persistent EDM

=  XAOD objects have version number in the class name: e.g. Jet vl
Serious changes in class schema will increase the version number
Athena can read old version if the class converter support is (like in Run 1)
= The end user sees the class name without the version (typedef)
= For standalone ROOT, no support for schema evolution is foreseen
Except what we can get from ROOT
Always working with the “current” EDM, no backward compatibility

= Athena will continue to use its conversion layer
Used in general not only for schema evolution
Can be used for schema evolution but only when reading

= ROOT support for schema evolution is much better now than 10 years ago
= |t's class-based, so dynamic attributes have limited schema evolution support

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 16



XAOD: Performance

- Performance gains:
= No conversion to/from persistent EDM during I/O
= Data members arranged “column-wise”
= Dynamic attributes read only on-demand

= Potential trouble areas:

= Large numbers of top-level branches in the TTree
One per each dynamic attribute

= Read-everything mode has more overhead because of the dynamic attributes
Main reason for not storing all attributes in dynamic format

Observed results (ATLAS Data Challenge 2014):

=  XAOQOD files are larger than Run 1 files by ~20%
= But there will be no duplication between AOD and DPD

= Size increase depends on the data type
worst case almost 2x larger but also seen some types become smaller

= Difference attributed to absence of T/P converters that were compressing data
« In ROOT reading selected attributes >1KHz
= Interactive ROOT very responsive

= In Athena the development is still ongoing (changes to Eventinfo)
= Not much reliable performance data yet

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak

17



Summary

We implemented a new data format that allows in a flexible way to add
and remove object properties at runtime

= In collaboration with the ROOT team
« We hope to use the model for vectorization

= The full reconstruction code was rewritten to use xAOD

= Currently teaching the collaboration members to use the new data format
giving a series of tutorials

= First response is positive

=  Files can be accessed without the full ATLAS offline software
= The format is readable with ROOT using only ~100MB of xAQD libraries

« ATLAS Data Challenge 2014 is under way with the new data format

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 18



	The Run 2 ATLAS Analysis Event Data Model 
	Overview
	The ATLAS Run 1 Event Data Model
	ATLAS Analysis Model During Run 1
	Coming up with a Better Model for Run 2
	Introducing the xAOD Format
	The New Analysis Model for Run 2 
	xAOD Format: Basic Design
	xAOD Implementation: Data Stores
	xAOD Implementation: Data Store Access
	xAOD: Persistency
	xAOD File in the TBrowser
	xAOD File in the TBrowser (2)
	xAOD File in the TBrowser (3)
	Standalone ROOT xAOD Code Example
	xAOD: Schema Evolution
	xAOD: Performance
	Summary

