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Overview

= ATLAS Run 1 analysis data model
« The original design
« The actual analysis model during Run 1
= Problem areas and things we wanted to improve

« The new model for Run 2
« Design
Implementation

Persistency
= ROOT file structure
= Simple code example

Schema evolution
Performance
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The ATLAS Run 1 Event Data Model

« Event reconstruction process produces data in the AOD format (Analysis Object
Data): official ATLAS-wide event representation with reduced information for
physics analysis

= Fully object-oriented (complex) EDM, part of Athena: ATLAS offline software
framework

= Size = 350-400KB

= Persistency: object based

Using a different persistent data model to be able to freely evolve the transient EDM without
compromising backward compatibility

Statically defined persistent object shape (schema)

= Persistent data format required Athena (or at least its persistency layer) to read AOD
Even though the files were in ROOT format
Quite a lot of libraries needed (dictionaries, converters)

= Frozen TierO policy
Reconstruction fixes not part of original AOD — need to be redone every time

« AOD reading too slow for many physicists
= Athena startup, object reading and AODfix overheads
« Majority of the users turned to intermediate data formats (DPD)

= Working groups started to produce their own private Derived Physics Data datasets —
readable directly from ROOT
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ATLAS Analysis Model During Run 1
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« DPDs produced on request only — delay in respect to the central AOD production
= Data format different than in Athena causing duplication of software tools
« DPD-based tools also different between groups
« Hard to share code and compare results
« Combined DPD size ~3x the size of corresponding AOD
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Coming up with a Better Model for Run 2

= The first Long Shutdown of LHC created an opportunity to rethink and redesign
the analysis data model, based on the experience from Run 1

« New model design requirements:
= Prepare for increased data rate in Run 2 (~2x that of Run 1)
= Flexibility in balancing CPU vs disk space requirements
Maintain the I/O performance of standalone ROOT: >1kHz
= Enable reading of single attributes
= Data directly analyzable in ROOT
Reduce the latency of delivering data to the end users
Make code sharing between groups and between Athena and DPDs possible
= Promote collaboration between groups
Maintain the ability to read full AOD in Athena environment
= Access to calibration databases

« Proposal: merge AOD and DPD into a new format called xAOD
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Introducing the xAOD Format

Replacement for both AOD and DPD data for Run 2

= Produced as the end result of the Athena-based reconstruction
= Full xAOD data available without delay

« Used as both input and output for physics group productions
= XAOD allows reduction of content without changing the format

= Can be created and read in standalone ROOT
= Lightweight — number of libraries limited to minimum

Single, object-oriented API
« From the user point of view just like the old AOD
« Special implementation with respect to class data members
« Software tools using single common API can function in both frameworks
Dynamic xAOD object shape
Data members added at runtime or removed during copying
Single transient/persistent representation
= No longer fixed class shape like before
= No separate persistent data model
= Ability to read single attributes
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The New Analysis Model for Run 2

Derivation
framework
(Athena) ~TB
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= XAOD data format delivered by central production, directly usable for analysis in Athena
and ROOT (lower path)

= Reduction Framework producing reduced-size data samples for analysis groups (upper
path)

= CP tools: combined performance analysis tools for end-user analysis, both in Athena and
ROOT

= Final analysis stage done in pure ROOT, primarily on local resources
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XAOD Format: Basic Design

= XAOD objects consist of an interface object and a storage container
= Not to be confused with class interface, more like a proxy
« From the user point of view, the interface object is the only visible object, but
usually it does not have any data members itself
= Data member are stored in the storage container

= There is one storage container per collection of objects
ATLAS collections in Athena are implemented using DataVector class

= Storage containers keep arrays DataVector<xAOD:Electron>
of attributes xAOD::ElectronAuxContainer

- An apparent array-of-structs is RSB
actually represented in memory o
as a struct-of-arrays

= Interesting implications for xAOD:Electron
vectorization and /O

xAQOD::Electron

Single objects have their dedicated AOD:Electron

storage container with 1-element arrays
Can be added or removed from collections
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XAOD Implementation: Data Stores

«  XAOD objects have a set of pre-defined (static) attributes

= Storage containers assigned to these types have data arrays to store their static
attributes:

class JetAuxContainer_vl1l : public AuxContainerBase {
public: JetAuxContainer v1();

private: std::vector<float> pz; & storage array for PZ attribute

}

JetAuxContainer_vl: :JetAuxContainer v1i( {
AUX_VARIABLE( pz );

+
= The constructor uses a macro to automatically register data arrays in Registry
Arrays can be later looked up by their names

= Additional (dynamic) object attributes can be added at any time
= They are kept in a storage container extension that allocates storage arrays as needed
« Type-specific storage containers are only an optimization!
Technically all different xAOD types could use just the dynamic store
« Dynamic attributes may be selectively dropped when writing to file
= 3 level selection lists in Athena: by object type / name / attribute
= Static store may be converted to dynamic in order to drop static attributes

ACAT Sept 2014 ATLAS Run 2 EDM Marcin Nowak 9



XAOD Implementation: Data Store Access

« XAOD object data is stored in the storage container

« The interface object uses getter and setter methods to access static attributes

= Accessors are provided to make these methods fast:

float Jet vl::pz() const {
static Accessor<float> pz_acc(“pz”);

return pz_acc(*this);
}

void Jet vl::setPz(float pz) {
static Accessor<float> pz_acc(“pz”);

pz_acc(*this) = pz;
return;

}

= Accessors use attribute type and name for initialization (lookup in Registry)

= C++ static storage can be used to ensure the (slow) identifier lookup is done only
once

= After initialization the accessor provides direct access to the storage array
= Accessors are attribute-specific, not object-specific
= Object they access needs to be specified for every use (still fast)

= Accessors for dynamic attributes can be declared anywhere in the user code
= Also C++ static!
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XAOD: Persistency

« XAOD data files are created both by Athena and standalone ROOT

= Files coming from both sources need to be readable by ROOT and in particular allow
single attribute reading

= Athena persistency layer had to be modified:

= Historically Athena used object-based I/0O with fixed class schema defined in
dictionaries — not possible for the dynamic store!

= Static store single attribute reading needed tuning of ROOT split level
= Solution: writing XAOD collections by components:
= Collection (DataVector) of interface objects: stored as an object

= Static part of the storage container: stored as an object
(object-based storage requires (ROOT) class dictionary)

= Dynamic attributes: stored in dedicated TTree branches created as needed
= Storage container provides uniform API for accessing storage of both static and
dynamic attribute storage
= For both attribute types the I/O API delivers storage array plus the type information
= Opens interesting options for conversion of object shape during writing
= Reading of dynamic attributes is implemented with a dedicated storage container
= Empty in the beginning, with attributes read transparently when accessed

Note: dynamic attributes can make files with the same data types have different TTree structure
Can be a surprise when trying to merge files!
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XAOD File in the TBrowser
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XAOD File in the TBrowser (2)
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XAOD File in the TBrowser (3)
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Standalone ROOT xAOD Code Example

= Lightweight and simple access to xXAOD from user code “in ROOT”:

#include ‘“xAODRootAccess/Init_h”
#include ‘“xAODRootAccess/TEvent.h”
#include “xAODMuon/MuonContainer.h”

int main(Q) {
XAOD::Init();
TFile* file = TFile::Open(*“xA0OD.root”, “READ’);

XAOD: :TEvent event;
event.readFrom(file);

for( Long64_t entry=0; entry < event.getEntries(); ++entry ) {
event.getEntry(entry);

const xAOD: :MuonContainer* muons = O;
event.retrieve(muons, “Muons’);

std::cout << “1st muon pT = “ << muons->at(0)->pt() << std::endl;

}

return O;
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XAOD: Schema Evolution

« In Run 1, support for schema evolution in Athena had a big impact on the
persistent data format
= Design tailored specifically to Athena, operating on a whole object at a time
= Maintaining 2 separate data models and necessary converters required effort and
expertise
= A model fitting better to reconstruction than to analysis
« For Run 2, the xAOD is both the transient and the persistent EDM

=  XAOD objects have version number in the class name: e.g. Jet vl
Serious changes in class schema will increase the version number
Athena can read old version if the class converter support is (like in Run 1)
= The end user sees the class name without the version (typedef)
= For standalone ROOT, no support for schema evolution is foreseen
Except what we can get from ROOT
Always working with the “current” EDM, no backward compatibility

= Athena will continue to use its conversion layer
Used in general not only for schema evolution
Can be used for schema evolution but only when reading

= ROOT support for schema evolution is much better now than 10 years ago
= |t's class-based, so dynamic attributes have limited schema evolution support
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XAOD: Performance

- Performance gains:
= No conversion to/from persistent EDM during I/O
= Data members arranged “column-wise”
= Dynamic attributes read only on-demand

= Potential trouble areas:

= Large numbers of top-level branches in the TTree
One per each dynamic attribute

= Read-everything mode has more overhead because of the dynamic attributes
Main reason for not storing all attributes in dynamic format

Observed results (ATLAS Data Challenge 2014):

=  XAOQOD files are larger than Run 1 files by ~20%
= But there will be no duplication between AOD and DPD

= Size increase depends on the data type
worst case almost 2x larger but also seen some types become smaller

= Difference attributed to absence of T/P converters that were compressing data
« In ROOT reading selected attributes >1KHz
= Interactive ROOT very responsive

= In Athena the development is still ongoing (changes to Eventinfo)
= Not much reliable performance data yet
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Summary

We implemented a new data format that allows in a flexible way to add
and remove object properties at runtime

= In collaboration with the ROOT team
« We hope to use the model for vectorization

= The full reconstruction code was rewritten to use xAOD

= Currently teaching the collaboration members to use the new data format
giving a series of tutorials

= First response is positive

=  Files can be accessed without the full ATLAS offline software
= The format is readable with ROOT using only ~100MB of xAQD libraries

« ATLAS Data Challenge 2014 is under way with the new data format
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