Geant4 developments in multi-threading, reproducibility, and physics

```
J. Apostolakis*, M. Asai*, G. Cosmo*, A. Dotti*, G. Folger*, M. Gayer*, V. Ivantchenko*, M. Kelsey*, T. Koi*, T. Nikitina*, W. Pokorski*, A. Ribon*, V. Uzinskiy*, M. Verderi§ and D.H. Wright*
```

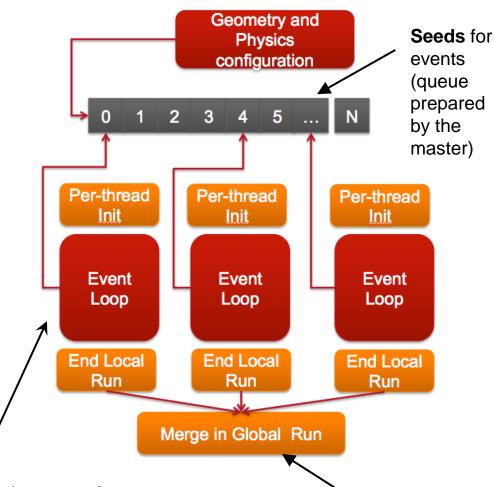
Institutions: * CERN, ¥Ecoanalytica, # JINR, § LLNR, + SLAC

Overview

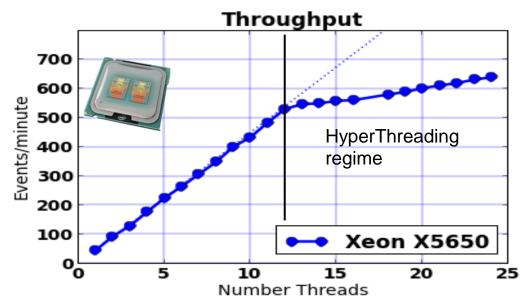
- Recent Geant4 releases
- Latest release 10.0 why 'major'?
 - Multi-Threading
 - Strong reproducibility of events
- Improvements in Hadronic Physics
 - Improvement of cross sections and physics models
- Performance improvement
- New in Geometry the first USolids library
- Note: Highlights of latest developments

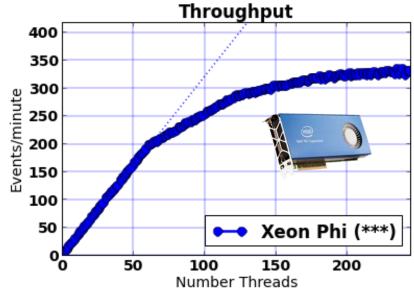
Recent G4 releases

- Geant4 9.4 (Dec 2010) baseline for Run 1
 - Used in production: ATLAS(most), CMS(all) of LHC Run 1
- Geant4 9.6 (Dec 2012) is 'long-term support' version
 - ATLAS production Run2; patches for LHC exp. to 2015+
- Geant4 10.0 (Dec 2013) was first major release in 6.5 years (since rel. 9.0 in June 2007)
 - Added big feature (MT)
 - Removed some features & physics models, ones which are obsolete, unnecessary or hard to maintain
 - CMS preparing to use it (10.0.p02) for production in Run2
- Recent development release: 10.1-beta (June 2014)
 - For the upcoming minor release 10.1 (Dec 2014)

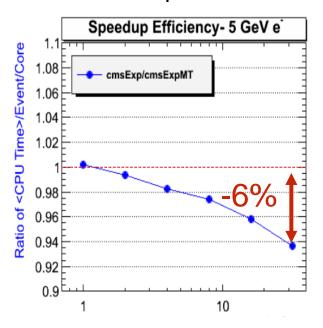

MultiThreading - Intro

- •Geant4 10.0: First release with Multi-Threading
 - Events are **independent**: each event can be simulated separately
 - Chosen event-level parallelism as current target
- Key goals: more cores within a memory 'budget'
 - Scaling to use more CPU cores
 - Reduce extra amount of memory per worker thread
 - Use caches (L2/L3) better by sharing 'constants'/tables
 - Small effort to port an application (compared to the effort to develop it.)
- First experiences
- Recent improvements

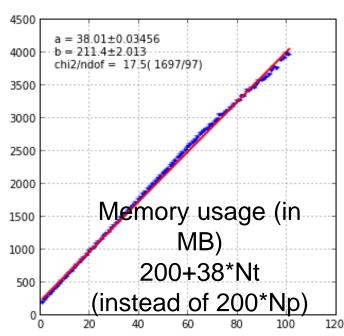

Each thread obtains a set of events, simulates it and comes back for more. (**Dynamic** scheduling)


Global **output** for G4 scorers & histograms.

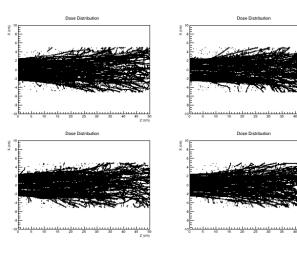
Per event hits 'iust work'.



CPU / Memory performance



Geant4 10.0p02 on 12-core Xeon X5650



Obtained with simple application but realistic HEP geometry (CMS gdml 2008) - no hit output.

Multi-threading: recent/upcoming

- Control of per-thread memory improved
 - Ensuring more 'constants' (tables) are shared;
 - reduce memory reported 'lost' at the end of a job
- Extended to other parallelism 'frameworks'
 - MPI: having 2+ MPI 'jobs', each 2+ threads
 - TBB: Changing workers to be task-based
- Tens of standalone applications ported
 - Limited number of changes, esp. to user action classes
- Big experiment applications limited by complex frameworks
 - must be thread-aware or thread-safe; CMS leads (task/TBB)
- Improve control of thread-local memory objects
 - create 'workspace' that owns thread-local objects, allowing it to be passed between threads (an inactive and a newly activated one.)
 - Needed to reduce memory use on task-based frameworks (e.g. TBB)
- Goal: Reduce thread memory to fit more threads on ~8-16 GB
 RAM (of accelerators) free room for per-event data (hits)
 - Already identified several areas for improvements
- Goal: Enable threads to join/leave 'work pool'.

What is Reproducibility?

- 'Strong' reproducibility
 - same result for an event, independent of its 'location' in a job (first, middle or last) or whichever the series of previous events.
- Required for HEP experiment applications
 - To enable easier debugging of problems/issues
 - Enables repeatable results in MT mode where the order of events depends on number of workers (and load.)
- Testing: run a job; then rerun each event in separately
 - Use same RNG seed/state, input for the event
 - Compare number of RNG calls (weaker), observables (stronger)

Fixes and benefits

- First deployment of tests found several *discrepancies* (events with repetition errors)
 - Careful, long investigation needed to find source of each discrepancy
 - Typical error: caching a value of a cross-section using a different input (Energy within a bin, or one isotope of an element)
- Expanded, regular testing introduced
 - Found both new and other existing errors.
 - The wait to **start debugging** problems in a long ATLAS jobs is not 16 hours, but 45 minutes!

Hadronic Physics

Goal: improve physics performance, in particular for LHC calorimeters

- Energy response
- Energy resolution
- longitudinal shower 'size' (moment)
- lateral shower 'size' (moment)

Starting point:

 QGSP_BERT, the production physics list for HEP experiments (2005-2012) Some key interaction properties which correspond to observables:

- Nuclear breakup, EM fraction
- Variance of EM frac., p/n inter.
- X-sections, products of quasi-elastic interactions
- neutron production, transport

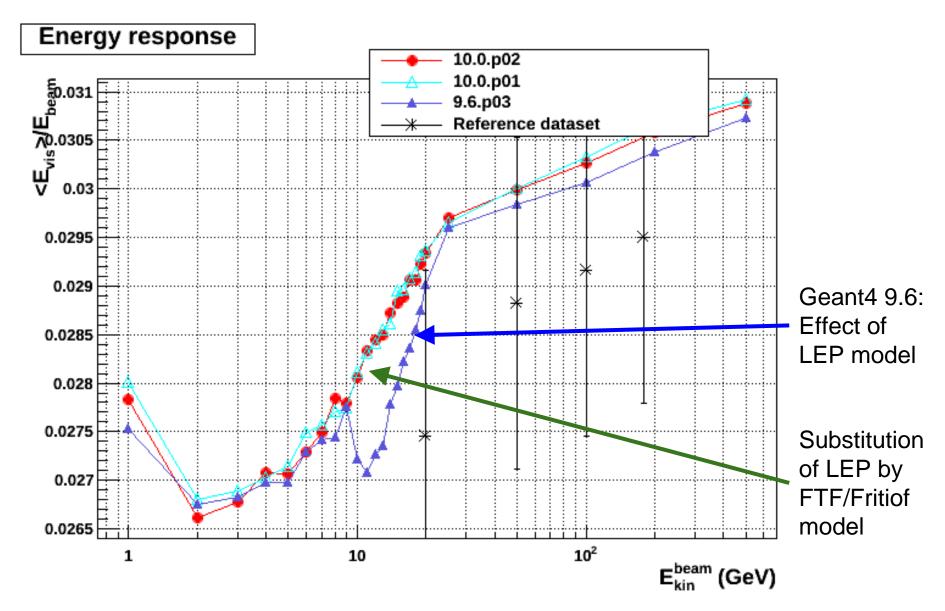
Means:

- replace 'weak' physics models
- plug gaps between the stronger 'microscopic' models
- improve models, extend E range

Starting point: Physics lists 9.4

Type of Physics	QGSP_BERT (9.4)	FTFP_BERT (9.4)
Electromagnetic Physics	Bremstrahlung	Bremstrahlung
	Urban93 tune	Urban93 tune
Hadron elastic	CHIPS (H), coherent (other)	CHIPS (H), coherent (other)
Hadron Inelastic	Bertini cascade: 0-9.9 GeV	Bertini cascade: 0-5 GeV
(p,n,π, K)	LEP Parameterised :9.5-25 GeV	Fritiof FTF model: 4GeV - 1TeV
	QGS model: 12 GeV - 1TeV	
Anti-baryons	LEP	CHIPS (p-bar) / LEP (other)
De-excitation	Precompound, evaporation	Precompound, evaporation
Quasi-elastic	CHIPS	FTF
Stopping particles	CHIPS	CHIPS
γ-nuclear, e-nuclear	CHIPS	CHIPS
n-capture	CHIPS	CHIPS

BERT LEP QGSP


9.5GeV 9.9GeV 12GeV 25GeV

p/n K/π

BERT

FTFP

E_{response} / E_{beam} in QGSP_BERT

π QGSP_BERT in slabs Fe/Sci

Hadronic Improvement (2009-11)

- Developed & tuned Fritiof/FTF model
 - to plug gap below 5 GeV (and up to 12-15 GeV)
 - provide alternative model at high E
- Re-engineered Bertini cascade
 - Enabled use of alternative cross-sections
- **HP Neutron** option greatly improved (v 9.5)
 - ENDF/B VII.0 data files + alternatives
 - Results closer to MCNP with same data
- Many improvements (2009-13) in cascades, string models (later)

Hadronic Improvement (2012-13)

Improved cross-sections (elastic, inelastic)

Determines lateral hadronic shower size.

- 'XS': better cross-section, model of neutron capture
 - x-sec derived from HP, accuracy close to HP, without HP's CPU penalty
- Improved model of stopping (negative particles)

Energy-response, track multiplicity

- Dropped LEP/HEP parameterised models (<GHEISHA)
 - at core of LHEP, and used also in QGSP_BERT
- Consistent handling of nuclear levels in decay, deexcitation
 - revision of databases for levels with lifetime down to 1 ns
- Create isomers in pre-compound, evaporation, decay

necessary to enable simulation of activation

Fritiof (FTF) improvement

Impacts multiplicity, energy/type of tracks => energy response and resolution

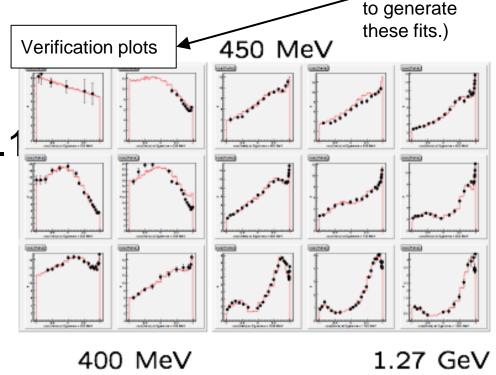
- Add/tune Reggeon cascade de-excitation (G4 v9.3)
- Light anti-ion interactions (9.5) \overline{p} , \overline{n} , \overline{d} , \overline{t} , $\overline{\alpha}$, $\overline{He^3}$
- Extension to nucleus-nucleus (10.0)
 - Interfaced to Binary Cascade, Pre-Compound
 - Support energy from 3-4 A*GeV to RHIC
- Recent / ongoing:
 - Correction in string decay (10.1-β)
 - Retuning of parameters to improve description of h+p & h+A interactions - with NA49 data
 - more validation of nucleus-nucleus interaction

Enabled analysis of anti-nucleons and light anti-ions production in ALICE

Impacts on shower size (long. & lateral), energy-response.

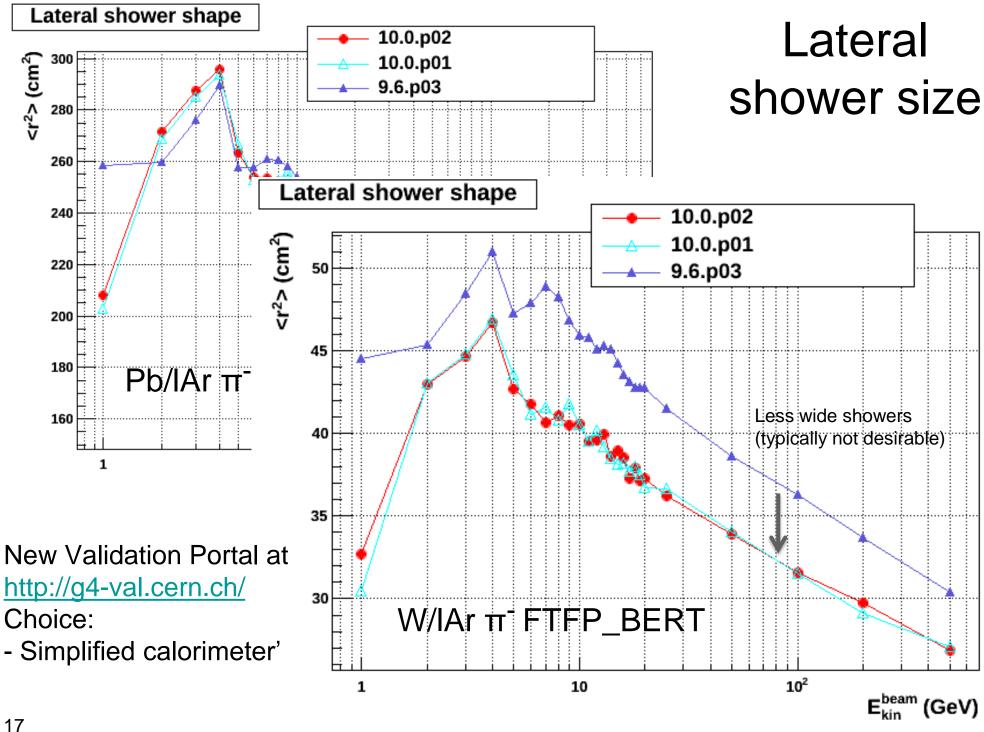
Cascades

- Treat projectiles 0.1-3 GeV (extended to 5-10 GeV)
 - Bertini-like: shells, (E<10GeV) wide use "BERT"
 - Binary QMD-like: static nucleons, pot. V, E< 3 (π: 1.5)
 - INCL++ Liege cascade: mature alternative (systematics)
- Components
 - Nucleus = 1-6 shells (density) or individual nucleons
 - Collisions create 'holes', secondaries => tracked
- Remnant de-excited by pre-compound, evaporation, fission, ...


Cascades: Bertini

 New angular distributions for two-body final states

γ p, N-N elastic + pi-N (10.1


 Added γ- and electro-nuclear interactions (9.6)

> replace CHIPS model (10.0?)

(Comparison to data used

- Improved multi-body final state (N>5)
 - Kopylov N-body phase space generation (optional)
- Leptons as projectiles
 - Stopping/capture of muons generate cascade
- 16 Improvement of selection of first interaction

Current state: Physics lists in 10.0

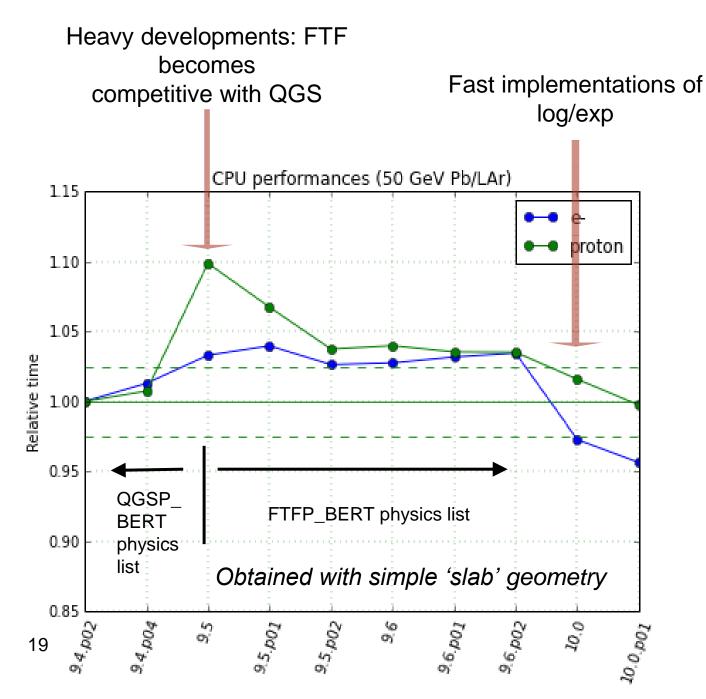
Type of Physics	QGSP_FTFP_BERT (CMS)	FTFP_BERT (ATLAS)
Electromagnetic Physics	Improved Brem, γ-conversion	Improved Brem, γ-conversion
	Urban96 tune + Wentzel MSc	Urban96 tune + Wentzel MSc
Hadron elastic	CHIPS (H), coherent (other)	CHIPS (H), coherent (other)
Hadron Inelastic (p,n,π, K)	Bertini cascade: 0-5 GeV	Bertini cascade: 0-5 GeV
	Fritiof FTF: 4-25 GeV	Fritiof FTF model: 4GeV - 1TeV • Reggeon cascade (in FTF)
	QGS model: 12 GeV - 1TeV	
Anti-baryons	FTF	FTF
De-excitation	Better Precompound (9.5)	& better Evaporation (9.5)
Quasi-elastic	a-la CHIPS	FTF
Stopping particles	Bertini	Bertini
γ-nuclear, e-nuclear	Bertini	Bertini
n-capture	Bertini	Bertini

BERT

QGSP

25GeV

p/n


BERT

FTFP

12GeV **QGSP_BERT**

Green: New replace/improved ^{5GeV}

Absolute throughput (sequential)

Improvements for MT brought CPU benefits also to sequential

Improvements (3-5% each):

- Refactor eA, γA X-sections (per isotope to per element)
- Fast log/exp (from VDT)

Smaller improvements (1-2%)

- Fluctuations
- UrbanMSc

Continuous monitoring of CPU time of benchmarks

- Regular (monthly+) runs
- Slabs and complex geom.

Challenge of diminishing returns (few parts >2%)

Geometry: USolids

- Usolids: started as unique solids library for Geant4 and Root.
- First goal: fast, robust implementations for all solids
- Available in 10.0 (first version) & improved in 10.1-β

- New fast tesselated solid (voxelized)
- New type: *multi-union* (10.1β)
 - voxels make it faster > 4+ unions
- Better implementations (< VecGeom)
 - sections of solids (e.g. Tube)
- Seek *feedback* on existing, upcoming versions
- Strong new focus of Usolids ('VecGeom'): performant vector (and sequential) implementation, using the same source code (also for GPU)
- USolids will become the default in Geant4, Root and Geant-V
 - Single-track vectorization for a few key solids: polycone, trd

Conclusions

Multi-threading

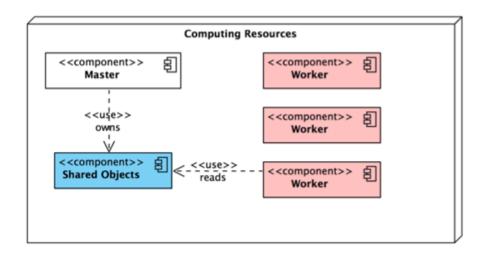
- MT saves ~150 MB/thread
 - Effort to reduce the 38MB of G4 – leave room for app hits
- CPU Performance per core maintained, seq. & MT
 - Sequential perf. ~ +5%
 - MT: scaling >90%*N_{threads} for 1 thread/core, (for 60 avail.)
 - HT gave +30%
 - Easy Porting of simple app
- Achieved repeatability
 - A must for MT & debugging

Physics, Geometry

- Replaced obsolete LEP models with FTF
 - Corrects E-response QGSP_BERT in 10-20 GeV
- Improved, tuned FTF
 - Enabled extension to antinucleon, anti-ion
- Refactoring, retune of Bertini
 - > Improved lateral shower shape
- New USolids library
 - Available for testing now will become the default
 - Common with Root & GeantV

Backup slides

Shared Vs Thread-local


- To reduce memory footprint, threads must share part of their memory
- General rule in G4: threads are allowed to share whatever is invariant during the event loop (e.g. threads do not change those objects while processing events - they are "read-only")

The 'constant' parts which we identified are:

- Geometry definition
- Electromagnetic physics tables

A few other processes have large tables

> a few are now shared, others tbd

- Memory cost for each additional thread requires 20-40MB for Geant4 data
 - o the user hits, histograms and other output are in addition to this
 - saves ~150MB per thread for applications O(100) materials

Physics Lists: Alternatives in 10.0

Evolution of old recommended LHC production physics list: **QGSP_BERT** (ver **10.0**, Dec2013)

EM

- Urban(96) & Wentzel Multiple Scattering
- Improved Bremstrahlung
- Improved γ-conversion (E>80 GeV)

Hadronic

- Elastic
 - CHIPS (H), Coherent (other)
- Inelastic (p,n,π)
 - Bertini cascade: 0 9.9 GeV
 - String Fritiof/FTF: 9.5 25 GeV
 - String QGS model: 12GeV 1TeV
 - Precompound & Evaporation
 - Anti-baryons: FTF
- Quasi-elastic model: FTF
- Stopping particles FTF
- γ-nuclear, e-nuclear: Bertini

New recommended LHC production physics list: **FTFP_BERT** (Geant4 ver 10.0, Dec 2013)

EM

- Urban(96) & Wentzel Multiple Scattering
- Improved Bremstrahlung
- Improved y-conversion (E>80 GeV)

Hadronic

- Elastic
 - CHIPS (H), Coherent (other)
- Inelastic (p,n,π)
 - Bertini cascade: 0 5 GeV
 - String Fritiof/FTF model 4GeV -1TeV
 - Reggeon cascade (in FTF)
 - Improved Precompound (G4 v9.5)
 - Anti-baryons: FTF
- Quasi-elastic model: FTF
- Stopping particles: Bertini
- γ-nuclear, e-nuclear: Bertini

Cascades

- Treat projectiles 0.1-3 GeV (extended to 5-10 GeV)
- Nucleus = 1-6 shells (density) or individual nucleons
- Collisions create 'holes', secondaries => tracked
 - Bertini-like: shells, (E<10GeV) wide use "BERT"
 - Binary QMD-like: static nucleons, pot. V, E< 3 (π: 1.5)
 - INCL++ Liege cascade: mature alternative (systematics)
- Remnant de-excited by pre-compound, evaporation, fission, ...

Cascades: INCL++

- Mature 'first-principles' cascade
- Provides alternative for systematics studies
 - to Bertini for $\pi/p/n$, and to Binary, QMD for ions
- INCL++ = Liege cascade INCL recast in C++
 - Full implementation of models from INCL 4.6
- Extended validity up to 10-15 GeV (G4 10.1-β)
- Improved cross-sections for **small clusters** (d, t, α)
- Restored independent ABLA module for deexcitation

Isomers

- Isomer levels existed for all nuclei already
 - before G4 10.0 they were decayed promptly
- In G4 10.0 isomers with $T_{1/2} > 1$ µsec are created/tracked
 - Option: use ENSDF State file with more data
- Need G4RadioactiveDecayPhysics to decay isomers
 - this must be added to physics list (it is not default)
- Relevant processes create/handle isomers
 - Cascades and decay create excited residuals
 - Capture, absorption, quasi-elastic can excite nucleus
- Improvement of radioactive decay / database

Improved Radioactive decay

- Fix: entire decay chains occur with their correct timing
 - in the past if a short-lived nuclide was reached, all subsequent decays would happen instantaneously
- Database synchronization
 - New radioactive decay database (4.1)
 - New photon evaporation database (3.1)
 - Synchronized to have identical energy levels and lifetimes down to a lifetime of 1 ns
- Model adapted to new isomer creation scheme (previous slide)

Event biasing

- New design for event biasing
 - Physics biasing
 - Angle biasing
 - Geometry/important biasing
- Flexible coupling of different types of biasing

Starting point: Physics lists 9.4

QGSP_BERT (Geant4 9.4, Dec 2010)

EM Standard ('hard-wired')

- Urban93 Multiple Scattering
- 'Standard' Bremstrahlung

Hadronic final state models

- Elastic
 - CHIPS (H), Coherent (other)
- Inelastic (p,n,π, K)
 - Bertini cascade: 0 9.9 GeV
 - *Parameterised* (LEP): 9.5 25 GeV
 - QGS model: 12 GeV 1TeV
 - Precompound, evaporation, fission
 - Anti-baryons: LEP
- Quasi-elastic: CHIPS
- Stopping particles CHIPS
- γ-nuclear, e-nuclear: CHIPS
- n-capture: LEP

FTFP_BERT (Geant4 9.4, Dec 2010)

EM Standard ('hard-wired')

- Urban93 Multiple Scattering
- 'Standard' Bremstrahlung

Hadronic final state models

- Elastic
 - CHIPS (H), Coherent (other)
- Inelastic (p,n,π, K)
 - Bertini cascade: 0 5 GeV (revised)
 - Fritiof FTF model: 4GeV 1TeV
 - Precompound, evaporation, fission
 - Anti-baryons: LEP
- Quasi-elastic: FTF
- Stopping particles: CHIPS
- γ-nuclear, e-nuclear: CHIPS
- n-capture: LEP