
Elizabeth Sexton-Kennedy FNAL	

Christopher Jones FNAL	

Patrick Gartung FNAL	

David Lange LLNL	

On behalf of CMS Offline

Implementation of a Multi-threaded
Framework for Large-scale Scientific
Applications
Transitioning CMS to a Hierarchical Threaded Framework

• CMS Threaded Framework ACAT 2014

Outline
Goals

Design

Thread Safety

Tools

Performance

2

• CMS Threaded Framework ACAT 2014

Goals
Better scaling of system resources as core count increases

• Puts less burdens on existing grid sites and workflow
management since one batch slot uses more cores

• Flexibility: Potential to use sites with lower available resources

Reduce latency of processing, not necessarily increasing throughput
• Prompt reconstruction can finish processing a big file faster

More sharing between cores
• Share infrequently updated memory

1. Conditions
2. I/O buffers

• Share file handles
• Share network connections

Minimize changes to existing framework
3

Design

• CMS Threaded Framework ACAT 2014

Legacy Design
State Transitions

Event Processing
• Algorithms are encapsulated into modules

5

Begin
Job

Begin
Run

Begin
Lumi

Event
1

Event
2

Event
3

Begin
Lumi

Event
4

End
Lumi

Begin
Lumi

Event
5

End
Lumi

Event
6

End
Lumi

End
Run

End
Job

Path

EndPath

EndPath

Path

Filter

Producer

Source Analyzer

Path
Results

Output
Module

Analyzer Analyzer

Analyzer

Producer

Filter

Filter Event
Done

• CMS Threaded Framework ACAT 2014

Threaded Design
Run multiple transitions, i.e. events, concurrently

• Introduces new concepts: Global and Stream

Within one event run multiple modules concurrently
• Have to take into account module dependencies
• Want to minimize any required changes to module code

Within one module be able to run multiple tasks concurrently

Intel’s Threaded Building Blocks used for all of the above
• Break down work into ‘tasks’ and TBB can run the tasks in

parallel
• http://threadingbuildingblocks.org

6

http://threadingbuildingblocks.org

• CMS Threaded Framework ACAT 2014

Concurrent Transitions

7

Begin
Job

Begin
Stream

Begin
Stream

Global

Stream A

Stream B

Begin
Run

Begin
Lumi

Begin
Run

Begin
Run

Begin
Lumi

Begin
Lumi

Event
1

Event
2

Event
3

End
Lumi

Begin
Lumi

Begin
Lumi

Event
4

End
Lumi

End
Lumi

Begin
Lumi

Begin
Lumi

Event
5

End
Lumi

End
Lumi

Begin
Lumi

Event
6

End
Lumi

End
Lumi

End
Run

End
Run

End
Lumi

End
Run

End
Stream

End
Stream

End
Job

Begin
Job

Begin
Stream

Begin
Stream

Global

Stream A

Stream B

Begin
Run

Begin
Lumi

Begin
Run

Begin
Run

Begin
Lumi

Begin
Lumi

Event
1

Event
2

Event
3

End
Lumi

Begin
Lumi

Begin
Lumi

Event
4

End
Lumi

End
Lumi

Begin
Lumi

Begin
Lumi

Event
5

End
Lumi

End
Lumi

Begin
Lumi

Event
6

End
Lumi

End
Lumi

End
Run

End
Run

End
Lumi

End
Run

End
Stream

End
Stream

End
Job

Serial Non-EventTransitions

• CMS Threaded Framework ACAT 2014

Concurrent Tasks
Can use TBB directly inside a module

• TBB will handle scheduling tasks for both modules and
sub-modules

TBB has some convenience functions

Can create own tasks for complex algorithms

Users tasks must finish before returning from module

8

std::vector<Results> results(input.size(),Results());!
tbb::parallel_for(0U,input.size(), DoWork(results));

class MyTask : public tbb::task { ... };!
...!
MyTask* mt = new (tbb::task::allocate_root()) MyTask;!
tbb::task::spawn_root_and_wait(mt);

Thread-Safety

• CMS Threaded Framework ACAT 2014

Thread Safety
Data Products

• Information passed from module to module
• Framework only provides ‘const’ access to data products
• ‘const’ member functions must be thread safe

• Matches C++11 thread-safety guarantee for containers

Modules
• Majority of user defined code
• Different module varieties define different levels of thread

safety
1. Stream
2. Global
3. One
4. Legacy

10

• CMS Threaded Framework ACAT 2014

Stream Module
Replicate an instance of a module configuration for each Stream

• E.g. if have 8 Streams in a job will have 8 copies of a
module

A Stream only processes one Event at a time
• A module copy will only be called at most once per event
• Member data does not have to be thread safe

One Stream only sees a fraction of the Events in the job
• Therefore a module copy only sees a fraction of the events
• Not a problem for most Producers and Filters

Easy to convert from Legacy to Stream interface

11

class TrackClusterRemover : public stream::Producer<> {!
... };

• CMS Threaded Framework ACAT 2014

Global Module
One instance of a module shared by all Streams

• One module sees all Runs, LuminosityBlocks and Events

All member functions and member data must be thread-safe
• Member functions called on each transition are ‘const’
• The interface provides ways to help you with thread-safety

1. per transition caching

!

Only use if
• Need to share as much memory across Streams as possible

or Algorithm must see all Runs, LuminosityBlocks or
Events

High performance OutputModules would be Global
12

class Counter : public global::Analyzer<StreamCache<int>> {!
... !
 void analyze(StreamID id, Event const& event) const { !
 ++(*streamCache(id)); }!
};

• CMS Threaded Framework ACAT 2014

One Module
One instance of a module shared by all Streams

• One module sees all transitions

Module instance sees only one transition at a time
• Framework guarantees the serialization
• Member data does not need to be thread-safe

Can use a resource shared across different modules
• Modules declare the use of the resource
• Framework guarantees only one module using the resource

runs at a time
• Can call code which uses ‘static’

1. E.g. legacy FORTRAN based MC event generators

Easy to convert from Legacy to One interface
13

class NTupleMaker : public one::Analyzer<> {!
... };

• CMS Threaded Framework ACAT 2014

Legacy Module

Modules which have not been ported to new interface
• Just need to recompile

Only one legacy module will run at a time
• Have to assume the modules can interfere with one another
• Performance problem

Eases code migration

14

• CMS Threaded Framework ACAT 2014

Module Interface Change
aka. Consumes Migration

Framework orchestration requires interface change for Modules

Up until now, Modules only needed to declared the
DataProducts that they produce.

Now Modules must also declare what they consume so that can
be scheduled in a way that avoids deadlocks.

This is the largest interface migration. Over 2270 modules to
convert, however only about 10% are needed for the
reconstruction (our primary interest).

15

• CMS Threaded Framework ACAT 2014

Pushing for Concurrency
We started this migration in January of this year.

It was certainly a herding cats exercise requiring a lot of
attention from our RECO conveners.

By January we had 20 conforming modules.

In June we had 200 in time for the first release of the multi-
threaded framework, and now we have 230.

However this was not the largest obstacle to performance
• HEP software, required patching for concurrent use
• thread unsafe data and conditions objects
• framework policy and coding guideline violations

1. Do not use non-const globals and non-const statics
2. Do not ‘cast away const’ on Event or EventSetup data products
3. Do use non-static module member data as long as the data object
does not contain hidden global state

16

Tools

• CMS Threaded Framework ACAT 2014

Tool Categories

Static code analysis
• Clang

Run time checking
• Helgrind

18

• CMS Threaded Framework ACAT 2014

Static Code Analysis

CMS extended clang static analysis tool
• http://clang-analyzer.llvm.org

Types of Checkers
• Problem with const member functions of data products
• Finding statics that affect modules

19

• CMS Threaded Framework ACAT 2014

Data Products Checking
Data Products are shared between modules

Only const access is allowed

We check for
• Non-const statics
• Mutable member data which is not std::atomic<>
• Member functions casting away const on member data
• Pointer member data being returned from const function
• Pointer member data being passed as non-const argument

to function
1. includes calling a non-const member function of the pointed to
class

Checks done recursively on all data members which are classes
20

• CMS Threaded Framework ACAT 2014

Modules & Statics
Any non-const static used by a module is shared state

Used the extended clang tool which
• Finds which functions in system interact with statics
• For each function in system, determine which other

functions they call
• For a given module, see if any functions it calls ultimately

reach a static

21

• CMS Threaded Framework ACAT 2014

Helgrind
Tool in Valgrind suite

Searches for data races between threads
• Records memory reads/writes done by each thread
• Flags if multiple threads use same memory address and one

does a write
• Ignores cases where posix synchronization mechanism

protects memory
1. mutex, semaphore, pthread_join

!

!

!

!

!

22

 Possible data race during write of size 1 at 0x8D878A0 by thread #7!
 Locks held: none!
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)!
 ...!
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)!
 !
 This conflicts with a previous write of size 1 by thread #2!
 Locks held: none!
 at 0x8E7B62C: MessageLogger::establishModule(...) (in libFWCoreMessageService.so)!
 ...!
 by 0x49CF6E9: EventProcessor::processEvent(unsigned int) (in libFWCoreFramework.so)!
 !
 Address 0x8D878A0 is 144 bytes inside a block of size 152 alloc'd!
 at 0x4807A85: operator new(unsigned long) (in vgpreload_helgrind-amd64-linux.so)!
 ...

Performance

• CMS Threaded Framework ACAT 2014

The Amdahl Problem
To keep 8 cores 95% busy need 99.2% of our code to run in parallel
Even quick running modules will bottleneck threading
a heuristic that worked -> fix the module that is waiting to execute

24

Given the 90% saturation at 16 cores we calculate that 99.3% of the
reconstruction code is run in parallel.

Saturation at 16 proc 90% Saturation at 16 threads

Utilization of Cores

Av
er

ag
e

U
til

iza
tio

n
of

 C
or

es

0.0

0.2

0.4

0.6

0.8

1.0

Number of Cores

0 2 4 6 8

80% 90% 95%
98% 99%

Parallel Fractions

• CMS Threaded Framework ACAT 2014

Our benchmark for performance is reconstruction of a t-tbar MC
sample with 25ns bunch spacing with average 40 interactions per
crossing… most difficult problem for Run 2

25

0"

2"

4"

6"

8"

10"

12"

14"

0" 5" 10" 15" 20" 25" 30"

Ra
#o

%

Number%of%threads%/%jobs%

Ra#o%of%throughput%

ra,o"of"event"throughput"mul,threaded"job"to""serial"job" ra,o"of"event"throughput"mul,ple"jobs"to"serial"job"

The above compares running n simultaneous processes to n
simultaneous streams.
Good scaling up to 8 on this 16 core, 64 GByte AMD machine.

Throughput Performance

Number of threads / job

R
at

io
 o

f T
hr

ou
gh

pu
t

• CMS Threaded Framework ACAT 2014

Memory Performance
The big win is in memory consumption and network load.

26

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

40000"

45000"

0" 5" 10" 15" 20" 25" 30"

M
ax
$R
SS
$

Numberofthreads$/$jobs$

MaxRSS

max"RSS"mul/threaded"job" max"RSS"parallel"jobs"

• CMS Threaded Framework ACAT 2014

Network Load
The big win is in memory consumption and network load.

27

• CMS Threaded Framework ACAT 2014

Conclusion
CMS has moved to a multi-threaded framework

The design allows many different levels of concurrency
• Events, modules and sub-module

Thread-unsafe code is allowed via ‘One’ module variety
• Framework guarantees serialization

Tools to find thread-safety issues have been developed

First performance results show that 99.3% of our reconstruction
application can run in parallel

• memory consumption is no longer a problem
• network load is way down

28

