GENFIT - a Generic Track-Fitting Toolkit

Johannes Rauch ¹ Tobias Schlüter ²

¹ Physik Department E18, Technische Universität München

²Ludwig-Maximilians-Universität München

ACAT 2014

Track Fitting - GENFIT

Overview
Design of GENFIT

Track Fitting Algorithms

Kalman Filter
Kalman Filter with Reference Track
Deterministic Annealing Filter

Summary

GENFIT - A Generic Track Reconstruction Toolkit

What is GENFIT?

- Modular track-fitting framework.
- Suitable for a wide variety of experiments and detectors.
- Interface to vertex-fitting-framework RAVE.
- Interface to alignment-code MILLIPEDE II.
- Open source C++ code (LGPL v3, http://sourceforge.net/projects/genfit/).

History and Status

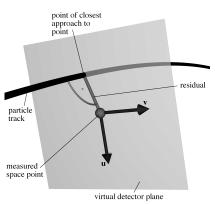
- Originally developed in the PandaR00T framework at TUM (C. Höppner, S. Neubert et al., NIMA 620, 2-3, 1121 Aug. 2010, P. 518-525).
- Major update ("GENFIT2") based on experience gained esp. in Belle II.
- Large user community (e.g. Belle II, PANDA, GEM-TPC, FOPI, ...).

Modular Design

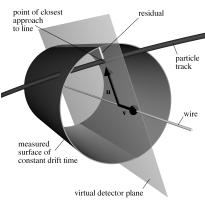
- Measurements
 - E.g. strip-, pixel-, wire-, spacepoint-measurements.
 - Provide (virtual) detector planes and measurement coordinates and covariance projected into that plane.
- Track representations ("TrackReps")
 - Track parametrization.
 - Extrapolation through material and magnetic field.
 - Particle hypothesis.
- Track fitting algorithms
 - Use measurements and TrackReps to calculate fit results.
 - Start value for fit needed, e.g. from pattern recognition.

Track

- Contains measurements (can be from different detectors).
- Can be fitted with several. TrackReps simultaneously (esp. particle hypotheses).



Spacepoint measurement (e.g. from TPC).



Wire measurement (e.g. from drift-chamber or STT).

Track Fitting Algorithms

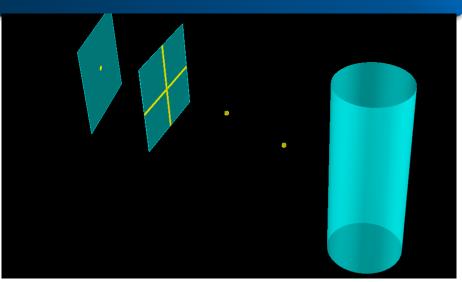
Algorithm

- Iterative algorithm to produce an optimal estimate of a system state (with covariance) from a series of noisy measurements.
- Prediction step: extrapolate state and covariance to next measurement.
- Update step: Calculate a "weighted average" between prediction and measurement.

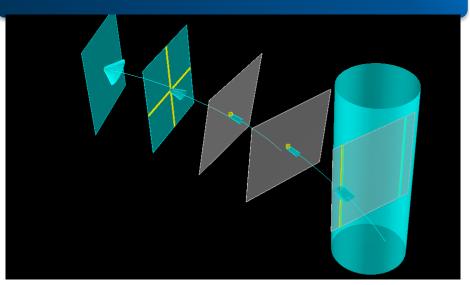
Iterate over measurements. forth and back, until converged.

Linearization

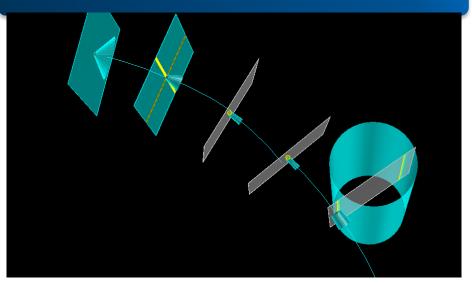
- Kalman filter is a linear estimator → need to linearize transport.
- Expansion point: e.g. state prediction.



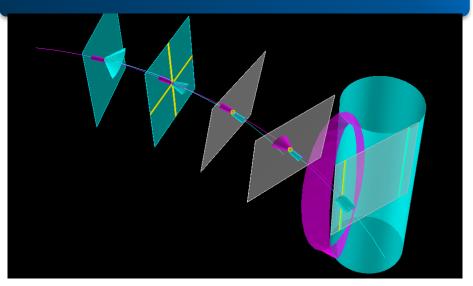
Series of noisy measurements.



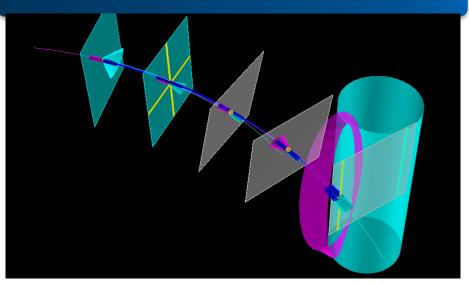
Forward fit with virtual detector planes.



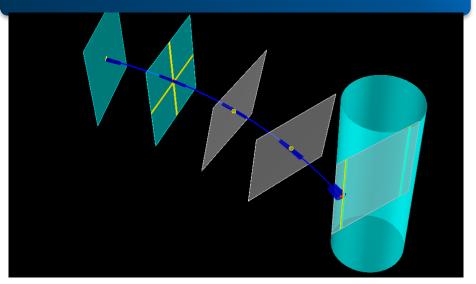
Forward fit.



Backward fit.



Smoothed track.



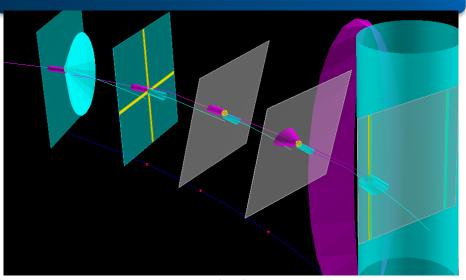
Smoothed track.

Problems when linearizing around predictions

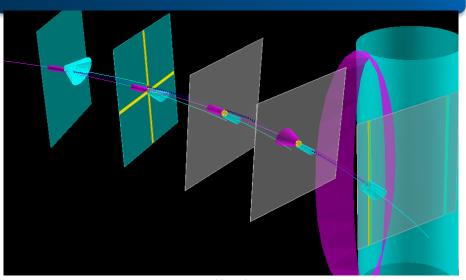
- Especially for the first few hits, state predictions can be far off the actual trajectory.
- Outliers can bend the prediction away from the actual trajectory.
- Consequences:
 - · Linearization makes no more sense.
 - Wrong material lookup.
 - The fit can fail (track can be bent so far from the actual trajectory that detectors with hits can no longer be reached).

Solution: reference track

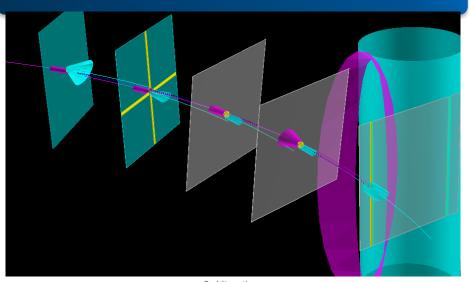
- Take estimated track parameters from pattern recognition or previous fit as expansion point for linear approximation.
- I.e. linearize around reference track instead of state predictions.



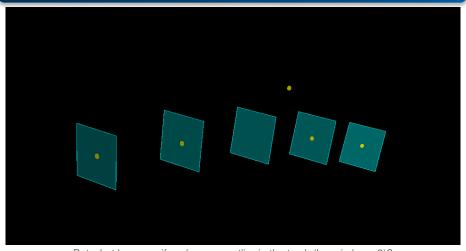
1st iteration.



2nd iteration.

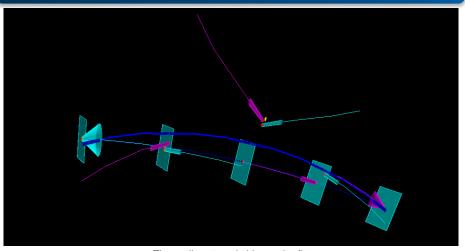


3rd iteration.



But what happens if we have an outlier in the track (here in layer 3)?

Outlier - Fitted with the Kalman

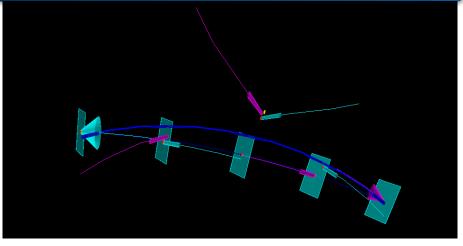


The outlier strongly biases the fit.

Deterministic Annealing Filter

DAF

- Robust track fitter.
- Produces assignment probabilities (weights) of measurements.
- Iterative Kalman filter with weighting and annealing to find best fit.
- Can e.g. be used to reject outliers or to resolve left/right ambiguities of wire-measurements.



 $\beta = 100$ initial weights: $\log_{10} \beta = 2$

new weights:

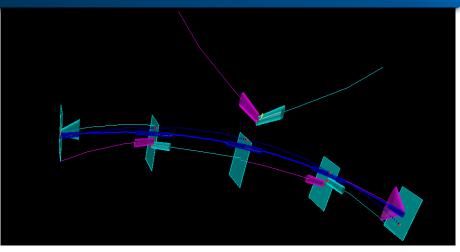
0.4960

0.4238

0.1940

0.4310

0.5003

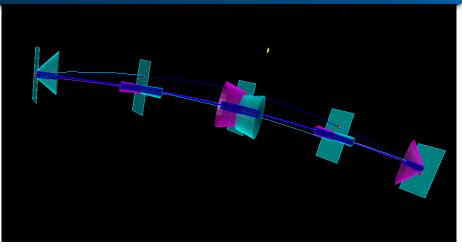


 $\beta = 17.78$ $\log_{10}\beta = 1.25$

initial weights: new weights: 0.4960 0.5426 0.4238 0.3640 0.1940 6.052×10^{-6}

0.4310 0.3913

0.5003 0.5470



 $\beta = 3.162 \\ \log_{10} \beta = 0.5$

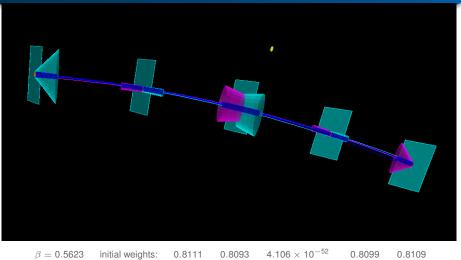
initial weights: new weights:

0.5426 0.8111 0.3640 0.8093 $6.052 \times 10^{-6} \\ 4.106 \times 10^{-52}$

0.3913

0.5470

0.8099 0.8109



 $\beta = 0.5623$ $\log_{10} \beta = -0.25$

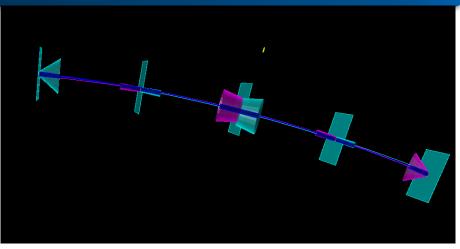
initial weights: new weights: 0.8111 0.9997

 $0.9997 1.725 \times 10^{-290}$

0.8099 0.9997

0.8109

0.1000



 $\log_{10} \beta = -1$ new weights:

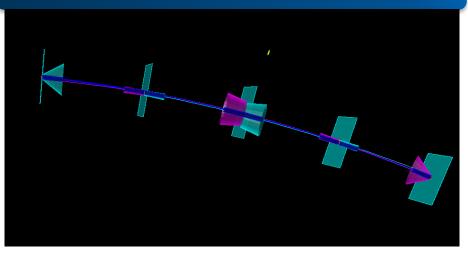
 $\beta = 0.1$ initial weights:

0.9997 0.9997

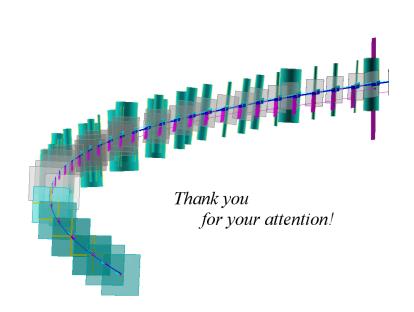
 1.725×10^{-290}

0.9997

0.1000



- Open-source, experiment-independent track-fitting framework.
- Validated code.
- Successfully running in various experiments.
- http://sourceforge.net/projects/genfit/



Backup Slides

Kalman Filter Equations

Prediction:

$$\begin{aligned} & p_{k|k-1} = F_k p_{k-1|k-1} + c_k \\ & C_{k|k-1} = F_k C_{k-1|k-1} F_k^T + N_k \end{aligned}$$

Update:

$$\begin{split} & \rho_{k|k} = \rho_{k|k-1} + K_k \left(m_k - H_k \rho_{k|k-1} \right) \\ & K_k = C_{k|k-1} H_k^T \left(V_k + H_k C_{k|k-1} H_k^T \right)^{-1} \\ & C_{k|k} = (I - K_k H_k) C_{k|k-1} \end{split}$$

