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Setting: The problem of renormalization

Perturbative Quantum Field Theory demands for
renormalization.

Choose BPHZ (also known as the MOM scheme) as
renormalization scheme.

Does not require a regulator to make a theory UV-finite.

It has good algebraic properties ⇒ Hopf algebra.
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The Hopf algebra of Feynman graphs

The Hopf algebra of Feynman graphs gives renormalization a
mathematically sound algebraic framework.

The most important object in the Hopf algebra: The
coproduct ∆.

It formalizes the BPHZ forest formula.

Gives the prescription how counterterms need to be
substracted to make the Feynman integral finite.

Definition:

∆Γ :=
∑
γ⊆Γ
γ=
⋃
i
γi

γi 1PI and ω(γi )≤0

γ︸︷︷︸
Counterterms

⊗ Γ/γ︸︷︷︸
Cographs
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Motivation for the development of feyngen and feyncop

The study of new techniques2 for systematic of Feynman
integration demand for high loop order Feynman diagrams
and their coproducts.

Two python programs were developed3. feyngen for
Feynman graph generation:

Wϕ3 =
1

2
+

1

2
+

1

6
+

1

12
+

1

8
+ . . .

and feyncop for coproduct computation:

∆4

( )
= I⊗ + ⊗ I + 3 ⊗ .

2Brown and Kreimer 2013; Panzer 2014.
3Borinsky 2014.
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Feynman graph generation with feyngen

Generates ϕk for k ≥ 3, QED (with Furry or without),
Yang-Mills, ϕ3 + ϕ4 diagrams with symmetry factors.

Uses the established nauty4 package for fast generation and
isomorphism testing.

Filters for connectivity, 1PI-ness, vertex-2-connectedness and
tadpole freeness are implemented.

High performance: 342430 1PI, QED, vertex residue type,
6-loop diagrams can be generated in three days.

4McKay 1981.
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Feynman graph generation with feyngen

feyngen assigns an auxillary labeling to the vertices of a
graph.

Edges are represented as pairs of vertices.

Graphs are represented as a list of edges.

The auxillary labeling is unique for every isomorphism class.
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ϕ3, 1PI graph generation

Suppose all two loop, propagator, 1PI ϕ3 diagrams shall be
generated.

The call ./feyngen 2 -p -k3 -j2 will yield

phi3_j2_h2 :=

+G[[1,0],[1,0],[2,1],[3,0],[3,2],[4,2],[5,3]]/2

+G[[2,0],[2,1],[3,0],[3,1],[3,2],[4,0],[5,1]]/2

;

Corresponding to the sum of graphs.

1

2
+

1

2
.
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Check of validity

feyngen uses zero-dimensional quantum field theory to check
the validity of the generated graphs.

For ϕk -theory the partition function of the zero-dimensional
QFT is given by the integral

Zϕk (a, λ, j) :=

∫
R

dϕ√
2πa

e−
ϕ2

2a
+λϕk

k!
+jϕ,

where a counts the number of edges, λ the number of vertices
and j the number of external edges.

This integral is calculated perturbatively, i.e. by termwise
integration:

Z̃ϕk (a, λ, j) :=
∑

n,m≥0

∫
R

dϕ√
2πa

{
e−

ϕ2

2a
1

n!m!

(
λϕk

k!

)n

(jϕ)m
}
.
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The perturbative expansion of Zϕk can be obtained by
integration or using Feynman diagrams.

For ϕ3 theory the first few terms after integration are:

Z̃ϕ3(a, λ, j) = 1 +
1

2
j2a +

(
1

8
j4 +

1

2
jλ

)
a2+

+

(
1

48
j6 +

5

12
j3λ+

5

24
λ2

)
a3 + . . .

(1)

Diagrammatically the series is:

Z̃ϕ3(a, λ, j) = 1 +
1

2︸︷︷︸
1
2
j2a

+
1

8︸︷︷︸
1
8
j4a2

+
1

2︸ ︷︷ ︸
1
2
jλa2

+
1

48︸ ︷︷ ︸
1

48
j6a3

+

+
1

6
+

1

4︸ ︷︷ ︸
5

12
j3λa3

+
1

12
+

1

8︸ ︷︷ ︸
5

24
λ2a3

+ . . .

(2)
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Coproduct calculations with feyncop

feyncop can calculate the reduced coproduct of given 1PI
diagrams.

Compatible with feyngen and maple.

Can calculate superficially divergent subgraphs, cographs and
the tensor products.

Additionally, feyncop can filter a list of graphs for primitive
ones.
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Calculating the relevant subgraphs

The graph is represented as an edge list using an

auxillary vertex labeling
G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]].

This can be used as input for feyncop:

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]]" | ./feyncop -D4

And will yield the output:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]],

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]]

;

M. Borinsky (HU Berlin) Computations and generation of elements on the Hopf algebra of Feynman graphs 11



Calculating the relevant subgraphs

The graph is represented as an edge list using an

auxillary vertex labeling
G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]].

This can be used as input for feyncop:

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]]" | ./feyncop -D4

And will yield the output:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]],

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]]

;

M. Borinsky (HU Berlin) Computations and generation of elements on the Hopf algebra of Feynman graphs 11



Calculating the relevant subgraphs

The graph is represented as an edge list using an

auxillary vertex labeling
G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]].

This can be used as input for feyncop:

$ echo "G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]]" | ./feyncop -D4

And will yield the output:

+ D[G[[1,0],[2,0],[2,0],[3,1],[3,1],[3,2],

[4,0],[5,1],[6,2],[7,3]],

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]]

;

M. Borinsky (HU Berlin) Computations and generation of elements on the Hopf algebra of Feynman graphs 11



The output line

[{{1,2}}, {{3,4}}, {{1,2},{3,4}}]

corresponds to the subgraphs which are composed of
superficially divergent, 1PI graphs, represented a by their
edge sets. The edges are indexed by their order of
appearance in the edge list.

5

21 43

0

,

5

21 43

0

and

5

21 43

0

,

represented as the sets of sets,

{{1,2}}, {{3,4}} and {{1,2},{3,4}}.
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Check of validity

Validation using an identity5 on sums of Feynman graphs:

∑
Γ∈T

∆Γ

|Aut(Γ)|
=

∑
γ=

(∏
i
γi

)
∈F

ω(γi )≤0

∑
Γ̃∈T

∣∣∣I(Γ̃|γ)
∣∣∣

|Aut(γ)|
∣∣∣Aut(Γ̃)

∣∣∣γ ⊗ Γ̃,

where
∣∣∣I(Γ̃|γ)

∣∣∣ is the number of insertions of γ into Γ̃, T the

set of all 1PI graphs and F the set of all products of 1PI
graphs.

5Suijlekom 2007.
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Conclusion

Two python programs were developed feyngen and feyncop.

feyngen generates high loop order Feynman graphs using
nauty.

feyncop automizes the combinatorics behind BPHZ
renormalization.

Easy to extend and fast (because of nauty).

Both programs were validated.

Zero-dimensional quantum field theory was used to check the
graph generation.

A combinatorical identity was used to validate the coproduct
computation.
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